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Uniformly rigid models for rigid actions

by

Sebastián Donoso (Santiago) and Song Shao (Hefei)

Abstract. We show that any ergodic nonperiodic rigid system can be topologically
realized by a uniformly rigid and (topologically) weak mixing topological dynamical sys-
tem.

1. Introduction. A fundamental problem in ergodic theory and topo-
logical dynamics is the one of recurrence. In this paper we are interested in
the relation in the measurable and topological context of a special strong
form of recurrence, called rigidity. The main result states that any ergodic
rigid system can be topologically realized in a uniformly rigid and topolog-
ically weakly mixing system.

A measure preserving system (X,X , µ, T ) is rigid if there exists an in-
creasing sequence (ni)i∈N in N such that Tni converges to the identity in the
strong operator topology. This means that for any f ∈ L2(µ), we have
‖f − f ◦ Tni‖2 → 0 as i → ∞. This is also equivalent to saying that
µ(A∩TniA) converges to µ(A) for any measurable set A. Usually one refers
to (ni)i∈N as a rigidity sequence of (X,X , µ, T ). Very recently, nice results
have been found about what sequences can be rigidity sequences for weakly
mixing systems [3, 6, 7].

Topological analogues of rigidity were introduced by Glasner and Maon [9].
A topological dynamical system (X,T ) is (topologically) rigid if there exists
an increasing sequence (ni)i∈N in N such that Tnix converges to x as i→∞
for every x ∈ X (i.e. Tni converges pointwise to the identity). A topological
dynamical system is uniformly rigid if supx∈X d(x, Tnix)→ 0 as i→∞, i.e.
Tni converges uniformly to the identity map. It is clear that uniform rigidity
implies rigidity but the converse is not true even for minimal systems [9, 14].
By the Lebesgue dominated convergence theorem, if (X,T ) is topologically
rigid then (X,B(X), µ, T ) is rigid in the measurable setting for any invariant
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measure µ, where B(X) is the Borel σ-algebra. So, as one could expect,
topological rigidity is a much stronger notion than measurable rigidity. We
refer to [10] for an expanded discussion on rigidity in the measurable and
topological setting. However, we will show that there is no real difference
from the measurable point of view. Our main result states that any ergodic
rigid system can be topologically realized in a uniformly rigid system.

Let (X,X , µ, T ) be an ergodic dynamical system. We say that (X̂,B(X̂),
µ̂, T̂ ) is a topological model (or just a model) for (X,X , µ, T ) if (X̂, T̂ ) is a
topological system, µ̂ is an invariant Borel probability measure on X̂, and
the systems (X,X , µ, T ) and (X̂,B(X̂), µ̂, T̂ ) are measure-theoretically iso-
morphic. In this case, one also says that (X,X , µ, T ) can be (topologically)
realized by (X̂, T̂ ).

Theorem 1.1. Let (X,X , µ, T ) be a nonperiodic ergodic invertible mea-
sure preserving system, rigid for the sequence (ni)i∈N. Then there exists

a topological model (X̂, T̂ ) for (X,X , µ, T ) which is uniformly rigid for a

subsequence of (ni)i∈N. Moreover, (X̂, T̂ ) can be taken topologically weak
mixing.

Letting A be the algebra of continuous functions on X̂ we deduce

Corollary 1.2. Let (X,X , µ, T ) be an ergodic measure preserving sys-
tem, rigid for the sequence (ni)i∈N. Then there exists a subsequence (n′i)i∈N
of (ni)i∈N and a separable subalgebra A ⊂ L∞(µ) which is dense in L2(µ)
such that ‖f − f ◦ Tn′i‖∞ → 0 for any f ∈ A.

In [9] this result is attributed to Weiss but the proof has not been pub-
lished.

A sequence (ni)i∈N is called a rigidity sequence if there exists a measure
preserving system for which (ni)i∈N is a rigidity sequence. Since in Theorem
1.1 we get a subsequence of the original sequence, a natural question arises:

Problem 1.3. Give conditions for (ni)i∈N to be a uniform rigidity se-
quence for a nonperiodic topologically weakly mixing dynamical system. Is
there a sequence (ni)i∈N which is a rigidity sequence in the measurable cat-
egory, but it is not a uniform rigidity sequence in the topological category?

2. Preliminaries

2.1. Measurable and topological systems. A measure preserving
system is a 4-tuple (X,X , µ, T ) where (X,X , µ) is a probability space and
T is a measurable measure preserving transformation on X. In this paper,
we assume that T is invertible and both T and T−1 are measure preserving
transformations. It is ergodic if every invariant set has measure 0 or 1. For
an ergodic system, either the space X consists of a finite set of points on
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which µ is equidistributed, or the measure µ is atomless. In the former case
the system is called periodic, and in the latter nonperiodic.

A topological dynamical system is a pair (X,T ) where X is a compact
metric space and T : X → X is a homeomorphism. It is said to be transitive
when there is a point x ∈ X whose orbit {Tnx : n ∈ Z} is dense in X. It
is minimal if each point has a dense orbit. A topological dynamical system
is weakly mixing if the Cartesian product system (X × X,T × T ) is tran-
sitive. This is equivalent to the condition that for any nonempty open sets
A,B,C,D, there exists n ∈ Z such that A ∩ T−nB 6= ∅ and C ∩ T−nD 6= ∅.
A topological dynamical system is (strongly) mixing if for any nonempty
open sets A,B there exists M ∈ N such that A ∩ T−nB 6= ∅ for any n ∈ Z
with |n| ≥M .

By the Krylov–Bogolyubov theorem, any topological dynamical system
(X,T ) admits a nonempty convex set of invariant probability measures,
which is denoted by M(X,T ). The extremal points of M(X,T ) are the
ergodic measures.

A deep link between measure preserving systems and topological dy-
namical systems is the Jewett–Krieger Theorem [13, 15], which asserts that
any ergodic nonperiodic measure preserving system is measurably isomor-
phic to a uniquely ergodic topological dynamical system (X,T ), meaning
that (X,T ) has only one invariant measure (which is ergodic). Many gen-
eralization of the Jewett–Krieger Theorem in different contexts have been
found [16, 19], and very recently several applications have been given to
the pointwise convergence of different ergodic averages [4, 5, 12] and to the
construction of interesting examples in topological dynamics [17]. All these
recent results show that topological dynamical systems can help to under-
stand purely ergodic problems.

2.2. Partitions. Let (X,X , µ, T ) be a measure preserving system.
A partition α of X is a family of disjoint measurable subsets of X whose
union is X. Let α and β be two partitions of (X,X , µ, T ). We say that α
refines β, denoted by α � β or β ≺ α, if each element of β is a union of
elements of α. The relation α � β is equivalent to σ(β) ⊆ σ(α), where σ(A)
is the σ-algebra generated by the family A.

Let α and β be two partitions. Their join is the partition α ∨ β =
{A ∩ B : A ∈ α, B ∈ β} and one can extend this definition naturally to a
finite number of partitions. For m ≤ n, define

αnm =
n∨

i=m

T−iα = T−mα ∨ T−(m+1)α ∨ · · · ∨ T−nα,

where T−iα = {T−iA : A ∈ α}.
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2.3. Rohklin towers. Let (X,X , µ, T ) be an ergodic measure pre-
serving system and let A be a measurable set. If N ∈ N and the sets
A, TA, . . . , TN−1A are pairwise disjoint, then the array

c = {A, TA, . . . , TN−1A}
is called a column or Rohklin tower with base A and height N . We usually
refer to the sets T iA, i = 0, . . . , N − 1, as the levels of the column. The
levels A and TN−1A are called the base and the roof respectively.

TN−1A

roof ++WWWW

TN−2A

...

TA

A

base
33gggg

A set t is called a tower if it is a disjoint union of columns

ci = {Ai, TAi, . . . , TNi−1Ai}, i = 1, . . . , l.

The union
⋃l
i=1A

i of the bases is the base of t, and the union
⋃l
i=1 T

Ni−1Ai

of the roofs is the roof of t.

2.4. Kakutani–Rokhlin towers. For an ergodic system (X,X , µ, T ),
let B ∈ X be a set of positive measure. Then it is clear that

⋃
n≥0 T

nB = X
(mod µ). Define the return time function rB : B → N ∪ {∞} by

rB(x) = min{n ≥ 1 : Tnx ∈ B}
when this minimum is finite, and rB(x) =∞ otherwise. Let Bk = {x ∈ B :
rB(x) = k} and note that by Poincaré’s recurrence theorem, B∞ is a null
set. Let ck be the column {Bk, TBk, . . . , T k−1Bk}. We call the tower

t = t(B) = {ck : k = 1, 2, . . .}
the Kakutani tower over B. If the Kakutani tower over B has finitely many
columns (i.e. the function rB is bounded), we say that B has a finite height
and we call the Kakutani tower over B a Kakutani-Rokhlin tower or a K-R
tower. The number max rB is called the height of B or the height of the K-R
tower.

We will need the following useful lemma (see [8, 20, 21] for a proof),
which is a special case of the Alpern lemma [1].

Lemma 2.1. Let (X,X , µ, T ) be a nonperiodic ergodic system. For any
positive integers N1, N2 with gcd(N1, N2) = 1, there exists a set C of finite
height such that the K-R tower t(C) satisfies range rC = {N1, N2}.
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2.5. Refining a tower according to a partition. Let (X,X , µ, T )
be a measure preserving system. Let t be a tower with columns {ck : k ∈ K}
(K is finite or countable) and base B =

⋃
k∈K Bk ⊆ X. Given a partition

(finite or countable) α of X, we define an equivalence relation on B as
follows: x ∼ y iff x and y are in the same base Bk and for every 0 ≤ j < Nk,
T jx and T jy are in the same element of α, i.e. x and y have the same (α,Nk)-
name. Now we consider each equivalence class Bk,a, with a an (α,Nk)-name,
as a base of the column ck,a = {Bk,a, TBk,a, . . . , TNk−1Bk,a} and say that
the resulting tower tα = {ck,a : a ∈ αNk , k ∈ K} is the tower t refined
according to α. We usually refer to the columns of the refined tower as pure
columns.

2.6. Symbolic dynamics. Let Σ be a set. Let Ω = ΣZ be the set of
all sequences ω = . . . ω−1ω0ω1 . . . = (ωn)n∈Z, ωn ∈ Σ, n ∈ Z, endowed with
the product topology. The shift map σ : Ω → Ω is defined by (σω)n = ωn+1

for all n ∈ Z. The pair (Ω, σ) is called the full shift over Σ. Any subsystem
(closed and invariant subset) of (Ω, σ) is called a subshift.

Each element of Σ∗ =
⋃
k≥1Σ

k is called a word or a block (over Σ). If
A = a1 . . . an, we use |A| = n to denote its length. If ω = . . . ω−1ω0ω1 . . . ∈ Ω
and a ≤ b ∈ Z, then ω[a, b] =: ωaωa+1 · · ·ωb is the (b−a+1)-word occurring
in ω starting at place a and ending at place b. Similarly we define A[a, b]
when A is a word. A word A appears in the word B if there are some a ≤ b
such that B[a, b] = A.

For n ∈ N and words A1, . . . , An, we denote by A1 . . . An the concate-
nation of A1, . . . , An. When A1 = · · · = An = A denote A1 . . . An by An.
If (X,σ) is a subshift, let [i] = [i]X = {ω ∈ X : ω(0) = i} for i ∈ Σ, and
[A] = [A]X = {ω ∈ X : ω0ω1 . . . ω(|A|−1) = A} for any word A.

2.7. Symbolic representation. Let (X,X , µ, T ) be an ergodic mea-
sure preserving system. Given a measurable function f : X → Σ ⊆ [0, 1],
one can define the itinerary homomorphism f∞ from X to Ω := [0, 1]Z by
f∞(x) = ω, where

ωn = f(Tnx).

The distribution of the stochastic process (f∞)∗(µ) (defined by (f∞)∗(µ)(A)
= µ((f∞)−1(A)) for each Borel A ⊂ [0, 1]Z) is denoted by ρ(X, f), and we
call it the representation measure of (X,T ) given by f . When the system
(X,X , µ, T ) under consideration is fixed, we just write ρ instead of ρ(X, f)
for convenience.

Let

Xf = supp((f∞)∗(µ)) = supp(ρ).

Then we get a homomorphism f∞ : (X,X , µ, T )→ (Xf ,Xf , ρ, σ), called the
representation of the process (X, f).
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An important case is when we consider a finite partition α = {Aj}j∈Σ
(we assume µ(Aj) > 0 for all j). Here Σ ⊂ [0, 1] is a subset of real numbers.
We think of the partition α as the function fα defined as fα(x) = j if
x ∈ Aj . Equivalently, when f has finitely many values {a1, . . . , ak}, we
can think of f as the function given by the partition α = {Aj}j∈Σ where
Aj = f−1(aj). Let (X,α) denote the representation (X, fα) and call it the
symbolic representation given by the partition α.

This will not be a model for (X,X , µ, T ) unless
∨∞
i=−∞ T

−iα = X modulo
null sets.

2.8. Copying names. An important way to produce partitions (equiv-
alently, finite valued functions) is by copying or painting names on towers.

If c = {T jB}N−1
j=0 is a column and a ∈ ΣN then copying the name a on

the column c means that on
⋃N−1
j=0 T jB we define a partition (may be not

on the whole space) by letting

Ak =
⋃
{T jB : aj = k}, k ∈ Σ.

If there is a tower t with q columns ci = {T jBi}Ni−1
j=0 , and q names a(i) ∈

ΣNi , i = 1, . . . , q, then copying these names on t means we copy each name
a(i) on column ci, i.e. we define a partition by

Ak =
⋃
{T jBi : a(i)j = k, i = 1, . . . , q}, k ∈ Σ.

These partitions can be extended to a partition α = {Aa1 , . . . , Aal} of the
whole space by assigning, for example, the value a1 to the rest of the space.

3. Proof of Theorem 1.1. In this section we prove Theorem 1.1. For
the sake of clarity, we divide the proof into two steps. First, we prove that we
can realize an ergodic rigid system in a uniformly rigid topological dynamical
system, and then we show how to add the (topologically) weakly mixing
condition.

Let (X,X , µ, T ) be an ergodic rigid system with rigidity sequence (ni)i∈N.
We start by considering a special topological model: we may assume, by [16],
that (X,T ) is a minimal (strongly) mixing subshift (in fact, since a rigid
system has zero entropy, we may consider a subshift over two symbols [20,
11], but we do not need this property).

3.1. Proof strategy. First, it is worth noting that a model given by a
finite partition does not suit our purposes, as the following remark shows:

Remark 3.1. Let (X,σ) be a nonperiodic (equivalently infinite) sub-
shift. Then (X,σ) is not rigid.

Proof. It is well-known that infinite symbolic systems always have a
forward asymptotic pair (see [2, Chapter 1] for example), i.e. there exist
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ω, ω′ ∈ X such that ω0 6= ω′0 and ωn = ω′n for all n ≥ 1. If (X,σ) is rigid
for the sequence (ni)i∈N then σniω → ω and σniω′ → ω′, which implies that
ω0 = ωni = ω′ni

= ω′0, a contradiction.

The proof of Theorem 1.1 relies on the idea of building a topological
model for an ergodic system using itineraries of a given function. This idea
was already used in [11, 20] to find special models for systems with zero en-
tropy. Let f : X → [0, 1] be a measurable function. Recall that the itinerary
function f∞ : X → [0, 1]Z is

f∞(x) = (. . . , f(T−2x), f(T−1x), f(x), f(Tx), f(T 2x), . . .),

and that the topological system associated to f is the support of the measure
(f∞)∗(µ) in [0, 1]Z endowed with the shift action.

The function f : X → [0, 1] generates for T if the σ-algebra generated by
the functions f ◦Tn, n ∈ Z, is all of X (modulo null sets). This is equivalent
to there being a set of full measure A on which the itinerary function f∞

is injective (see [18, Chapter 1] for a reference). Thus, when f generates
for T , the itinerary function f∞ is an isomorphism between (X,X , µ, T )
and (Xf ,Xf , ρ, σ).

The general strategy consists in finding a sequence (fi)i∈N of functions,
where fi+1 and fi differ on a set of small measure, so that there exists a
pointwise limit function f . The functions fi are required suitable proper-
ties so that the corresponding topological system associated to f has the
properties we are looking for.

Each fi will generate for T , and we will guarantee that f generates for T
by controlling the speed of convergence of fi to f . The fi’s will be continuous
and each will take only finitely many values, so we may identify them with
finite partitions αi of X into clopen sets, where fi : X → {a1, . . . , ami} ⊆
[0, 1] and αi = {A1, . . . , Ami} with Aj = f−1

i (aj).

In our case, the condition we need is that any function fi be close to
uniformly rigid. We introduce the following definition.

Definition 3.2. We say that f : X → [0, 1] is ε-good at n if

‖f − f ◦ Tn‖∞ < ε.

Here ‖ · ‖∞ stands for the essential supremum norm. Of course if f is
continuous this coincides with the supremum norm.

Let (Ki)i∈N be a sequence of positive integers such that
∑∞

i=1 1/Ki <∞.

Our goal is to build a sequence (fi)i∈N of generating continuous functions
and a subsequence (n′i)i∈N of (ni)i∈N such that

(3.1) fi is
( i∑
l=j

1/Kl

)
-good at n′j for any j ≤ i and µ({fi 6= fi+1}) < ri,
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where ri goes to 0 fast enough (for instance ri = 2−i). In this case, we say
that the sequence (fi)i∈N is good for the sequence (Ki)i∈N.

We will also require that the cardinality of the image of fi+1 be strictly
larger than the one for fi. This guarantees that the pointwise limit of fi is
well defined and also generates for T . To see that f = lim fi generates for T ,
note that since the functions fi are generating, there exists a set A of full
measure where all f∞i are injective (see [18, Chapter 1] for example). The
Borel–Cantelli lemma ensures that in a set B of full measure, x ∈ B implies
that f∞(x) = f∞i (x) for some i ∈ N. So if x, y ∈ A∩B and f∞(x) = f∞(y),
then there exist i, j such that f∞i (x) = f∞j (y). We can assume j > i,
since i = j is not possible by the injectivity of f∞i in A. There is an open
subset of X where each value of fj is different from all values of fi (recall
that the functions are continuous). The minimality of (X,T ) implies that
fi(T

nx) 6= fj(T
ny) for some n. This shows that f∞ is injective on a set of

full measure, and so f generates for T .

3.2. Some facts. Our proof is based on modifying a tall enough tower.
We do so by taking averages between given portions of a subcolumn. We
formalize this idea with the next definition.

Let A = a1 . . . an and B = b1 . . . bn be two blocks and λ ∈ R. Write
λA = (λa1) . . . (λan) and A±B = (a1 ± b1) . . . (an ± bn).

Definition 3.3. Let A = a1 . . . an, B = b1 . . . bn ∈ [0, 1]n and K ∈ N.
We say that C = c1 . . . c(K+1)n is a transition from A to B in K steps if C

is the concatenation of the blocks A+ j
K (B −A) for j = 0, . . . ,K.

Remark 3.4. A and B represent two given subcolumns of length n, and
C represents a subcolumn of length (K + 1)n where the first n and last n
levels are A and B respectively.

Lemma 3.5. Let A = a1 . . . an, B = b1 . . . bn ∈ [0, 1]n and let C =
c1 . . . c(K+1)n ∈ [0, 1](K+1)n be the transition from A to B in K steps. Then
for any l = 1, . . . ,Kn we have

|cl − cl+n| ≤ 1/K.

Remark 3.6. This lemma shows that if K is large enough then we have
a “smooth” K-step transition between two blocks of the same length, which
will be useful to ensure rigidity.

Proof of Lemma 3.5. There exist j ≤ K − 1 and 1 ≤ p ≤ n such that

cl =
K − j
K

ap +
j

K
bp and cl+n =

K − j − 1

K
ap +

j + 1

K
bp.

Thus cl − cl+n = (ap − bp)/K, and the result follows.

The next lemma shows that if two blocks have a similar top and bottom,
then when performing a transition between them, the top of a block and
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the bottom of the consecutive one have a “smooth” transition. This will be
useful in order to get the first property in (3.1).

Lemma 3.7. Let A = a1 . . . an, B = b1 . . . bn ∈ [0, 1]n and let C =
c1 . . . c(K+1)n ∈ [0, 1](K+1)n be the transition from A to B in K steps. Let
n/2 ≥ p ≥ l ≥ 0. If |an−p+l − al| ≤ δ and |bn−p+l − bl| ≤ δ (i.e. A and
B have similar top and bottom) then for every j = 0, . . . ,K − 1 we have
|cjn+n−p+l − c(j+1)n+l| ≤ δ + 1/K.

Remark 3.8. We think of the term cjn+n−p+l as some level close to the

top of the block A+ j
K (B−A), while c(j+1)n+l is a level close to the bottom

of the block A+ j+1
K (B −A).

Proof. By definition we have

cjn+n−p+l − c(j+1)n+l = an−p+l +
j

K
(bn−p+l − an−p+l)− al −

j + 1

K
(bl − al)

=
K − j
K

(an−p+l − al) +
j

K
(bn−p+l − bl)−

bl − al
K

,

and the result follows.

Lemma 3.9. Let (X,X , µ, T ) be a measure preserving rigid system. Then
for each k ∈ N, (X,X , µ, T k) is also rigid.

Proof. Let (ni)i∈N be a rigidity sequence for T and let f ∈ L2(µ). We

have ‖f−f ◦Tnik‖2 ≤
∑k−1

j=0 ‖f ◦Tnij−f ◦Tni(j+1)‖2 = k‖f−f ◦Tni‖2 → 0.

We conclude that (ni)i∈N is also a rigidity sequence for T k.

3.3. Proof of Theorem 1.1: Getting a uniformly rigid model.
We now proceed to prove Theorem 1.1. Recall that we assume that (X,T )
is a minimal (strongly) mixing subshift and we consider a sequence (ri)i∈N
of positive numbers converging to 0 fast enough (for instance ri = 2−i).

Let (Ki)i∈N be an increasing sequence of positive integers such that∑
1/Ki <∞. For simplicity we assume K0 = 1. We construct the sequence

(fi)i∈N of functions good for (Ki)i∈N inductively.

Let α0 = {A1, . . . , Am0} be a clopen generator for T , and a1, . . . , am0

be real numbers in [0, 1]. Let f0 : X → {a1, . . . , am0} ⊆ [0, 1] be such
that Aj = f−1

i (aj) for 1 ≤ j ≤ m0. It is a continuous function and since
K0 = 1, we see that f0 trivially satisfies the properties we require for any
n′0 ∈ (nk)k∈N (we consider values in [0, 1]). To illustrate our method and
make the proof clearer we show how to obtain f1 from f0.

Step 1. Let α0 denote the partition associated to the different values of
f0 (i.e. α0 is the canonical partition at the origin). Consider the integer K1

and the positive number r1. Since f0 has finitely many values, there exists
a constant c0 > 0 such that |f0(x)− f0(y)| ≤ c0 implies f0(x) = f0(y).
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For k ∈ N, consider the set

A0,k := {x ∈ X : |f0(x)− f0(T lnkx)| > c0 for some l ∈ [1, 2K1] ∩ N}.

Since, by Lemma 3.9, the transformations T, T 2, . . . , T 2K1 are rigid for the
sequence (nk)k∈N, the measure of A0,k goes to 0 as k → ∞. By our choice
of c0, the condition x ∈ Ac0,k implies that f0(x) = f0(Tnkx) = · · · =

f0(T 2K1nkx).

We pick nk1 such that the measure of A0,k1 is smaller than r1/(4K1) and
we set A0 = A0,k1 and n′1 = nk1 .

We can use Lemma 2.1 to build a large Kakutani–Rokhlin tower of
heights H1 and H1 + 1 (and with a clopen base). We then refine this col-
umn according to the α0-names. We can assume that H1 has the form
2K1n

′
1N1 + n′1, where 1/N1 ≤ r1/6. We can subdivide every pure column

into N1 subcolumns of length 2K1n
′
1, from bottom to top. We call these

subcolumns principal. The remaining n′1 levels are called the top. For con-
venience, for those columns whose height is H1 + 1 we add the top level to
the top (so the top has n′1 or n′1 + 1 levels). Similarly, the first n′1 levels are
the bottom of the column (see Figure 1).

n′1 levels

top ,,ZZZZZZ

ED

BC
2K1n

′
1 levels

H1 column

n′1 levels

...

n′1 levels

n′1 levels

...

...

ED

BC
2K1n

′
1 levels

n′1 levels

...

n′1 levels

n′1 levels

bottom
22dddd

n′1 + 1 levels

top ,,ZZZZZZ

ED

BC
2K1n

′
1 levels

H1 + 1 column

n′1 levels

...

n′1 levels
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Fig. 1. Principal subcolumns and top of a tower

Our aim is to modify f0 to f1 such that |f1(x) − f1(Tn
′
1x)| < 1/K1

for every x ∈ X. Translated to columns, this means that the difference
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of levels at distance n′1 is smaller than 1/K1. Since c0 is small enough, in
many cases two such levels are equal, but there is a small portion where this
does not happen. We fix this problem by allowing the levels to take more
values between 0 and 1. Now we explain how to do this. Let us consider two
consecutive principal subcolumns and consider the first n′1 levels of each of
them. We remark that if one level is in Ac0 (meaning that the corresponding
set of this level is a subset of Ac0), then it is constant in the ln′1-levels
above it for l = 1, . . . , 2K1. Indeed, this property characterizes belonging
to A0: a level that is in A0 will change its value in some of the levels ln′1,
l = 1, . . . , 2K1, above it. We correct these values as follows:

Step 1-I: Modification of the top and the bottom. We change the values
of the top and the bottom of any pure column putting 0’s, i.e. we paint
(recall Section 2.8) the bottom and top with the 0 symbol on each level.
This step is to ensure that the transition from one pure column to another
one is 1/K1-good at n′1. We may lose the property that f0 is a generating
function, but we fix this later at the end of the next step.

Step 1-II: Modification inside a pure column. Consider two consecutive
principal subcolumns and look at the first n′1 levels of the first one and
the first n′1 levels of the second. Perform a transition in 2K1 steps between
these two subcolumns. Lemma 3.5 ensures that all levels of the first principal
subcolumn become 1/K1-good at n′1.

This of course may change the 2K1 − 1 remaining levels of the first
principal subcolumn, but in fact not many of them are modified: among
the first n′1 levels, those belonging to Ac0 remain unchanged in their n′1
translations. Recall that this follows from the fact that if x ∈ Ac0 then
|f0(x) − f0(T ln

′
1x)| ≤ c0 for all l = 1, . . . , 2K1, which implies that f0(x) =

f0(Tn
′
1x) = · · · = f0(T 2K1n′1x).

On the other hand, we remark that for any level in A0 we change at most
2K1−1 levels, so the number of levels we have changed in the first principal
subcolumn is at most

(2K1 − 1)#(levels in A0 in the first n′1 levels).

We repeat this process for all principal subcolumns, remarking that in
the last one we perform the transition using the top (which has zeros).
Therefore, any level is 1/K1-good for n′1. It remains to show that we have
modified f0 on a small set.

For the first and last principal subcolumn and the top n′1 levels we may
change all levels, which number no more than 4K1n

′
1 + n′1. For any other

principal subcolumn we do not change more than

(2K1 − 1)#(levels in A0 in the first n′1 levels)
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levels. Therefore, in any pure column we change at most

(4K1 + 1)n′1 + (2K1 − 1)#(levels in A0)

levels (here the number of levels in A0 is an upper bound for the number of
levels we may find in the first n′1 levels of the principal subcolumns).

Therefore, we modified any pure column in a proportion of at most

(4K1 + 1)n′1 + 1 + (2K1 − 1)#(levels in A0)

N12K1n′1 + n′1
,

and therefore we have changed f0 on a set of measure smaller than

3/N1 + (2K1 − 1)µ(A0),

which is less than r1 by our assumptions. Since all levels are clopen sets,
we have built a continuous function f1 (with finitely many values) whose
associated partition α1 is close to α0 in the partition metric. The function
f1 is 1/K1-good at n′1 and 1/K0 + 1/K1-good at n′0 (this last condition is
trivial in this case).

We then make sure that all pure columns are different, modifying the
first level of each by much less than all the constants involved, i.e. we paint
(recall Section 2.8) the first level of each pure column with a different, but
very small value. Recall that the definition of being good involves a strict
inequality, so we have enough freedom to achieve this without violating the
“good” property.

By making all pure columns different, we achieve that the sets defined
by α0 names of length H1 are unions of different α1 names of length H1,
which implies that α1 is also a generating partition.

We remark that we have to perform the modification in the order given
above. We need to perform transitions of blocks after modifications of the
top and bottom, in order to correct the lack of rigidity we may have intro-
duced.

Step i+1. The general case, obtaining fi+1 from fi, is similar, but when
trying to secure 1/Ki+1-goodness at n′i+1 we have to be careful not to spoil
the previous good conditions (at this step topological mixing will help us).

Suppose we are given fi and n′1, . . . , n
′
i such that fi is (

∑i
l=j 1/Kl)-good

at n′j for j ≤ i. We now show how to find n′i+1 and build fi+1 with the
corresponding properties.

Since fi takes finitely many values, there exists ci > 0 such that the
inequality |fi(x)− fi(y)| ≤ ci implies that fi(x) = fi(y).

Since (X,T ) is topologically mixing, there exists Li ≥ n′i such that any
couple of itineraries of length n′i can be joined by an itinerary of any length
greater than or equal to Li.
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Consider the set

Ai,k = {x : |fi(x)− fi(T lnkx)| > ci for some l = 1, . . . , 2Ki+1}.

Since T, T 2, . . . , T 2Ki+1 are rigid, for large enough ki+1 the measure of Ai,ki+1

is smaller than ri+1/(6Ki+1), and of course we can also require that 2Li/nki+1

≤ ri/3.

Set Ai = Ai,ki+1
and n′i+1 = nki+1

as above. We remark that x ∈ Aci
implies that the values fi(x), fi(T

n′i+1x), . . . , fi(T
2Ki+1n

′
i+1x) are all equal.

We then use Lemma 2.1 to construct a tower with heights Hi+1 and
Hi+1 + 1 and we can assume that Hi+1 = Ni+12Ki+1n

′
i+1 + n′i+1, where

1/Ni+1 ≤ ri+1/9. Similarly to the first step, we subdivide every pure column
into Ni+1 subcolumns of length 2Ki+1n

′
i+1, from bottom to top, and we call

these subcolumns principal. The remaining n′i+1 levels are called the top.
Again, for those columns whose height is Hi+1 + 1 we add the top level to
the top. The first n′i+1 levels are the bottom of the column.

Refine the columns according to the names given by the partition αi (as-
sociated to fi). Pick a pure column and modify it according to the following
steps:

Step (i + 1)-I: Modification of the bottom and the top. When we are
close to the top of a column, we do not know where the point will lie after
n′i+1 levels, so we will modify the bottoms and the tops of the columns so
that the transitions satisfy the good conditions. To achieve this, we first
modify the top and bottom of any pure column by putting 0’s, i.e. we paint
those levels with 0.

Step (i+1)-II: Guarantee not to spoil anything. We may continue simi-
larly to Step 1-II, i.e. performing transitions between blocks. Unfortunately,
this does not suffice since by doing so we may violate the conditions of being
good for the previous steps. More precisely, the function fi is (

∑i
l=j 1/Kl)-

good at n′j for any j ≤ i, but if we perform transitions we may lose this
property, especially on the levels close to the bottom and top of the blocks
we concatenate. In order to keep this property when performing transitions,
we need to ensure that Lemma 3.7 can be applied. To do so, we make use
of mixing and we proceed as follows.

Pick a pure column and consider a principal subcolumn (different from
the one at the bottom, whose n′i+1 first levels are modified in Step (i+1)-I).

Let B = a1 . . . an′i+1
be the block in [0, 1]n

′
i+1 corresponding to the values of

its first n′i+1 levels. Let B1 = a1 . . . an′i and B2 = an′i+1−n′i−Li+1 . . . an′i+1−Li
∈

[0, 1]n
′
i . Since we assume that (X,T ) is topologically mixing, we can find

B3 ∈ [0, 1]Li such that B2B3B1 is a valid itinerary of fi. We then replace
the top Li levels of B by B3, obtaining a block B′. Since B2B3B1 is a valid
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itinerary for fi, we have

|B′n′i+1−n′j+k −B
′
k| ≤

i∑
l=j

1

Kl
for any j ≤ i and any k ≤ n′j .

B3 Li levelsoo

B2

B

��:
::

::
::

::
::

::

...

...

B1 n′i levelsoo

Step (i + 1)-III: Modification inside a pure column. We are now ready
to perform transitions.

Consider two consecutive principal subcolumns modified according to
Steps (i+ 1)-I and (i+ 1)-II and perform a transition between the first n′i+1

levels of these subcolumns. We recall that a level among the first n′i+1−Li lev-
els of a principal subcolumn (so not modified in Steps (i+1)-I or (i+1)-II) is in
Aci if and only if it is constant in the ln′i+1 levels above it for l = 1, . . . , 2Ki+1.
This means that the transition will not change the values of these levels.
Lemma 3.5 guarantees the precision 1/Ki+1 we are looking for. The modifica-
tions we made in Step (i+1)-II and Lemma 3.7 also ensure that the properties
for j ≤ i+1 are also respected (here we add some error term, given by 1/Ki+1,
but this value is small since we assume that the series is convergent).

Again we modify the first level of each pure column by a small quantity
so that all pure columns are different. The small quantity is chosen in order
to keep the good properties of fi (defined by a strict inequality).

It remains to show that we have changed fi in a set of small measure. For
any principal subcolumn (different from the ones at the bottom and top),
we change at most

(2Ki+1 − 1)
(
Li + #(levels in Ai among the first n′i+1 levels)

)
levels. We may change all levels from the first and last principal subcolumns
and the top (ni+1 or ni+1+1) levels. Therefore, in a pure column the number
of levels we change is at most

4Ki+1(n′i+1 + 1) + 1 + (2Ki+1 − 1)
(
Ni+1Li + #(levels in Ai)

)
,
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and thus we have modified any pure column in a proportion smaller than

4Ki+1n
′
i+1 + 1 + (2Ki+1 − 1)(Ni+1Li + #(levels in Ai))

2Ni+1Ki+1n′i+1 + n′i+1

.

We deduce that the set we modified has measure at most
3

Ni+1
+

2Li
n′i+1

+ (2Ki+1 − 1)µ(Ai),

and this value is smaller than ri+1 by our assumptions. So, we have built
fi+1 which is continuous, generates for T and µ({fi+1 6= fi}) < ri+1.

We now consider the function f , the pointwise limit of the sequence
(fi)i∈N.

Claim. ‖f − f ◦ Tn′i‖∞ → 0 as i→∞.

Let X ′ be a set of full measure where fi converges to f . Let ε > 0 and
let j ∈ N be such that

∑
i≥j 1/Ki ≤ ε/3. Let x ∈ X ′ and i ≥ j. We can find

ī ≥ i such that |fī(x) − f(x)| ≤ ε/3 and |fī(Tn
′
ix) − f(Tnix)| ≤ ε/3. Then,

since fī is
∑ī

j=i 1/Kj-good for n′i, we get

|f(x)− f(Tn
′
ix)| ≤ |f(x)−fī(x)|+ |fī(x)− fī(Tn

′
ix)|+ |fī(Tn

′
ix)−f(Tn

′
ix)|

≤ ε/3 +

ī∑
j=i

1

Kj
+ ε/3 ≤ ε.

Since x and i ≥ j are arbitrary, we get the conclusion.
Now it remains to prove:

Claim. The corresponding model (Xf , σ) = (supp f∞µ, σ) is uniformly
rigid for (n′i)i∈N.

Let ε > 0 and M ∈ N be such that if ω, ω′ ∈ [0, 1]Z satisfy |ωl−ω′l| ≤ ε/8
for any |l| ≤ M then d(ω, ω′) ≤ ε/4, where d is a metric on Xf . Let j be

such that ‖f − f ◦ Tn′i‖∞ ≤ ε/2 for any i ≥ j. Let ω ∈ Y and i ≥ j. We can
pick x such that ω′ = f∞(x) satisfies |ωl − ω′l| ≤ ε/4 for any |l| ≤ M + n′i
and |ω′n′i+p − ω

′
p| ≤ ε/2 for any p ∈ Z. We deduce that

d(σn
′
iω, ω) ≤ d(σn

′
iω, σn

′
iω′) + d(σn

′
iω′, ω′) + d(ω, ω′)

≤ ε/4 + ε/2 + ε/4 = ε.

Since this holds for any i ≥ j and ω ∈ Y , we find that (Y, σ) is uniformly
rigid with rigidity sequence (n′i)i∈N.

3.4. Proof of Theorem 1.1: Adding the weakly mixing condition.
We modify our construction of the previous section so that the resulting
system is (topologically) weakly mixing. Notice that though we assume that
(X,T ) is mixing, this does not guarantee that (Xf , σ) is weakly mixing.
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To make the representation (Xf , σ) weakly mixing, one needs to add
the following condition: for all nonempty open sets A,B,C,D there exists
n such that σnA ∩B 6= ∅ and σnC ∩D 6= ∅. This can be guaranteed by the
following property of α (recall that α is the partition corresponding to f):
For each m ≥ 0 and E1, F1, E2, F2 ∈

∨m−1
j=0 T−jα, there is some s such that

µ× µ
(
(T × T )s(E1 × F1) ∩ (E2 × F2)

)
> 0.

To this end, we need a similar property in each αi. The strategy in this
section consists in securing this property gradually by modifying the bottom
of a single pure column at each step (the ones described in the previous
section) in such a way that we keep the rigidity property.

Now we give the details. Let {αi}∞i=0 be the partitions of the previous
section.

Lemma 3.10. One can achieve the following properties of the partitions
{αi}∞i=0: there are a sequence {si}∞i=0 of positive integers and sequences
{ri}∞i=0, {ei}∞i=0 of positive numbers with ri+1 < min{ri/2, e2

i /4i} such that
for all i ≥ 1:

(1)i d(αi, αi+1) = µ({fi 6= fi+1}) < ri+1.
(2)i Let

∨i−1
j=0 T

−jαi = {U i1, . . . , U iηi} with U ij nontrivial. Then there is a

subset {U i+1
1 , . . . , U i+1

ηi } ⊂
∨i−1
j=0 T

−jαi+1 such that the αi-name of

U ih and the αi+1-name of U i+1
h are the same, for all 1 ≤ h ≤ ηi.

(3)i For all E1, F1, E2, F2 ∈ {U i+1
1 , . . . , U i+1

ηi } as in (2)i, one has

µ× µ
(
(T × T )si+1(E1 × F1) ∩ (E2 × F2)

)
≥ e2

i+1 > 0.

Proof. Assume inductively that we have constructed partitions {αi}ni=0,
a sequence {si}ni=0 of positive integers and sequences {ri}ni=0, {ei}ni=0 of
positive numbers with ri+1 < min{ri/2, e2

i /4i} for each i ≤ n − 1. Let
αi = {Ai1, . . . , Aimi

} for 1 ≤ i ≤ n. Let fi : X → {a1, . . . , ami} ⊆ [0, 1] be

such that Aij = f−1
i (aj).

The sequence {αi}ni=0 has properties (1)i–(3)i for 0 ≤ i ≤ n− 1.
Now we make the induction step. First we need to define a word ωn

which contains all pairs of names of nontrivial elements in
∨n−1
i=0 T

−iαn. We
do it as follows.

Let
∨n−1
j=0 T

−jαn = {Un1 , . . . , Unηn} with Uni nontrivial. LetBt be the name
of Unt for each 1 ≤ t ≤ ηn. Then Wn = {B1, . . . , Bηn} ⊂ {a1, . . . , amn}n is

the set of all names of nontrivial elements of
∨n−1
i=0 T

−iαn. Since (X,T ) is
topologically mixing, there exists Ln such that any couple of Wn can be
joined by an itinerary of length greater than Ln.

Now fix a large number sn+1 > Ln + n, and construct the word ωn as
follows: For each pair (j1, j2) ∈ {1, . . . , ηn}2, make sure that words Bj1 and
Bj2 appear in ωn, and the distance between them is sn+1.
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Let t be the tower in Step n+1 of the previous section. Refine t according
to αn, and choose one column cn+1 of the resulting tower. Let the base of
cn+1 be Cn+1. Let en+1 = µ(Cn+1). Now we adjust cn+1 as follows. Copy the
name ωn on some place close to the bottom of the column cn+1, for instance
to the bottom of the second principal subcolumn. We consider towers of
level n+ 1 such that the bottom is large enough with respect to the length
of ωn so we can apply Steps I, II and III described in the previous section.
This process keeps the good properties related to uniform rigidity.

As in the previous section, we get a new function fn+1 and a correspond-
ing partition αn+1, and we can ensure that

d(αn, αn+1) = µ({fn 6= fn+1}) < rn+1 < min

{
rn

2
,
e2
n

4n

}
.

By the construction of αn+1, there is a subset {Un+1
1 , . . . , Un+1

ηn } ⊂∨n−1
j=0 T

−jαn+1 such that the αn-name of Unh and the αn+1-name of Un+1
h

are the same, for all 1 ≤ h ≤ ηn.
LetDi1 , Di2 , Dj1 , Dj2 ∈ {Un+1

1 , . . . , Un+1
ηn }, and let their respective names

be Bi1 , Bi2 , Bj1 , Bj2 ∈ Wn, where 1 ≤ i1, i2, j1, j2 ≤ ηn. Then by the defini-
tion of ωn, the pairs (Bi1 , Bj1) and (Bi2 , Bj2) appear in the word ωn. Let p
be the position of Bi1 in the column cn+1 and let r be the distance from the
position of Bi1 to the position of Bi2 . Then

T p−1Cn+1 ⊂ Di1 , T p−1+sn+1Cn+1 ⊂ Dj1 ,

T p−1+rCn+1 ⊂ Di2 , T p−1+r+sn+1Cn+1 ⊂ Dj2 .

It follows that

T p−1Cn+1 × T p−1+rCn+1 ⊂ (Di1 ∩ T−sn+1Dj1)× (Di2 ∩ T−sn+1Dj2)

= (Di1 ×Di2) ∩ (T × T )−sn+1(Dj1 ×Dj2).

Hence

µ× µ
(
(Di1 ×Di2) ∩ (T × T )−sn+1(Dj1 ×Dj2)

)
≥ µ× µ(T p−1Cn+1 × T p−1+rCn+1) ≥ e2

n+1 > 0.

Thus (1)n–(3)n hold. The proof is complete.

Recall that α is the partition corresponding to f .

Proposition 3.11. The representation (Xf , σ) is also weakly mixing.

Proof. We show that for nonempty open sets A,B,C,D there exists n
such that σnA ∩ B and σnC ∩D are nonempty. This is guaranteed by the
following property: For each m ≥ 0 and E1, F1, E2, F2 ∈

∨m−1
j=0 T−jα, there

is some s such that

µ× µ
(
(T × T )s(E1 × F1) ∩ (E2 × F2)

)
> 0.
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We follow the notation of Lemma 3.10. By the definition of α and Lemma
3.10, there is some t > m large enough such that there are E′1, F

′
1, E

′
2, F

′
2 ∈∨m−1

j=0 T−jαt that have the same names as E1, F1, E2, F2 respectively. Choose

C ′1, D
′
1, C

′
2, D

′
2 ∈ {U t1, . . . , U tηt−1

} ⊂
∨t−2
j=0 T

−jαt such that C ′1 ⊂ E′1, D′1 ⊂
F ′1, C ′2 ⊂ E′2, D′2 ⊂ F ′2. Then there are C1 ⊂ E1, D1 ⊂ F1, C2 ⊂ E2, D2 ⊂ F2

in
∨t−2
j=0 T

−jα that have the same names as C ′1, D
′
1, C

′
2, D

′
2 respectively.

By Lemma 3.10(3),

µ× µ
(
(T × T )st(C ′1 ×D′1) ∩ (C ′2 ×D′2)

)
≥ e2

t .

Then from d(
∨t−1
j=0 T

−jαt,
∨t−1
j=0 T

−jα) ≤ td(αt, α) < t
∑∞

j=t+1 rj , one has

µ× µ
(
(T × T )st(C1 ×D1) ∩ (C2 ×D2)

)
≥ µ× µ

(
(T × T )st(C ′1 ×D′1) ∩ (C ′2 ×D′2)

)
− t

∞∑
j=t+1

rj

≥ e2
t − t

∞∑
j=t+1

rj ≥ e2
t − t

(
rt+1 +

rt+1

2
+
rt+1

22
+ · · ·

)

≥ e2
t − trt+1

∞∑
j=0

1

2j
≥ e2

t − 2trt+1 ≥ e2
t /2 > 0.

In particular,

µ× µ
(
(T × T )st(E1 × F1) ∩ (E2 × F2)

)
> µ× µ

(
(T × T )st(C1 ×D1) ∩ (C2 ×D2)

)
> 0.
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