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Multiple slowly oscillating periodic solutions for
x′(t) = f(x(t− 1)) with negative feedback

Benjamin Kennedy (Gettysburg, PA)
and Eugen Stumpf (Hamburg)

Abstract. We consider the prototype equation

x′(t) = f(x(t− 1))

for delayed negative feedback. We review known results on uniqueness and nonuniqueness
of slowly oscillating periodic solutions, and present some new results and examples.

1. Introduction. Consider the scalar-valued differential equation

(1.1) x′(t) = f(x(t− 1))

with constant delay 1. Throughout, we shall impose the following assump-
tions on the function f :

(H)


f is continuous and bounded below or above;

f is of negative feedback type: xf(x) < 0 for all x 6= 0;

f is C1 on a neighborhood of 0, with f ′(0) < 0.

Clearly, the continuity of f implies f(0) = 0; accordingly, the zero function
x(t) = 0, t ∈ R, always satisfies (1.1) on all of R.

Various applications have been proposed for (1.1). For example, taking
f(u) = −α(1− e−u), α > 0, yields what is now called Wright’s equation. An
appropriate transformation yields the equation (also called Wright’s equa-
tion) y′(t) = −αy(t − 1)[1 + y(t)], which was examined in [43] and was
heuristically motivated by the study of the distribution of primes; see Mar-
shall and Smith [27] for a recent recounting of this connection.

Such applications aside, it is undoubtedly the simplicity of (1.1) that
has made it among the most intensively studied and best understood types
of differential delay equations.
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A slowly oscillating periodic solution (SOP solution) of (1.1) is a peri-
odic function p : R→ R that satisfies the equation for all t ∈ R and has the
feature that if z 6= z′ are distinct zeros of p, then |z − z′| > 1. SOP solu-
tions, when they exist, often play an important role in the global dynamics
of (1.1), and they have been studied for the last several decades. Our goal in
this paper is to review some known results on SOP solutions of (1.1) (espe-
cially concerning uniqueness and nonuniqueness), to sketch the prominent
techniques used to obtain those results, and to provide some novel examples
of equations with multiple SOP solutions. In particular, we present a crite-
rion for (1.1) to have multiple nontrivial SOP solutions when the equilibrium
at 0 is locally attracting, and a family of equations for which we can ob-
tain multiple SOP solutions, one of which has arbitrarily long period, while
keeping f uniformly bounded.

In the usual way we write C = C([−1, 0],R) for the Banach space of
all continuous functions ϕ : [−1, 0] → R equipped with the norm ‖ϕ‖ =
sups∈[−1,0] |ϕ(s)| of uniform convergence. If x is any continuous real-valued
function whose domain contains the interval [t − 1, t], the segment xt of x
at t is the member of C given by the formula xt(s) := x(t+ s), s ∈ [−1, 0].
A solution of (1.1) is either a continuously differentiable function x : R→ R
that satisfies (1.1) for all t ∈ R, or a continuous function x : [−1,∞) → R
that is continuously differentiable for all t > 0 and satisfies (1.1) for all t > 0.
In either case, x0 is called the initial value of the solution x. We regard C
as the phase space for (1.1), and view solutions x as describing orbits {xt}
in C.

By the so-called method-of-steps, it is easily seen that every function
ϕ ∈ C determines a solution xϕ : [−1,∞) → R of (1.1) with initial value
xϕ0 = ϕ. Indeed, for t ∈ [0, 1], we have

xϕ(t) = ϕ(0) +

t�

0

f(ϕ(s− 1)) ds,

and the formulas for xϕ on [1, 2], [2, 3], . . . are then similar. We call xϕ the
continuation of ϕ as a solution of (1.1). Equation (1.1) defines a semiflow

F : [0,∞)× C 3 (t, ϕ) 7→ xϕt ∈ C
on the Banach space C. The semiflow F is continuous in the following sense:
given ϕ ∈ C, t ≥ 0, and ε > 0, there exists δ > 0 such that for all ψ ∈ C
with ‖ψ − ϕ‖ < δ and all 0 ≤ s ≤ t,

|F (s, ψ)− F (s, ϕ)| = |xψ(s)− xϕ(s)| < ε.

Additionally, using the Arzelà–Ascoli theorem it not difficult to show that
all maps F (t, ·) : C → C, t ≥ 1, are compact in the sense that they map
bounded sets to precompact sets.
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We define a solution x to be slowly oscillating if for any two zeros z < z′

of x we have z′ − z > 1. Similarly, a solution x is called eventually slowly
oscillating if there is some τ ∈ R such that z′ − z > 1 for any two zeros
τ < z < z′ of x. Suppose that ϕ ∈ C is such that (for example) ϕ(s) > 0 for
all s ∈ [−1, 0]. Then either xϕ(t) > 0 for all t > 0 or not; in the latter case,
there is some first positive zero z of xϕ. The negative feedback condition
then implies that f is strictly decreasing on [z, z+ 1]. Thus the next zero z′

after z, if it exists at all, satisfies z′ − z > 1; repeating this argument shows
that any successive zeros of xϕ must be separated by more than one unit.
Thus eventually slowly oscillating solutions clearly exist. Indeed, much more
is true: if f is smooth and strictly decreasing, the solution xϕ is eventually
slowly oscillating for a dense subset of initial values ϕ ∈ C (see Mallet-Paret
and Walther [26], and the earlier but somewhat more restricted work of
Walther [37]); a similar conclusion seems plausible for (1.1) in general. [We
point out, however, that examples are known of equations of the form

x′(t) = −µx(t) + f(x(t− 1)), µ ≥ 0

(that is, like (1.1) but with an instantaneous damping term added), for which
open sets of initial conditions have continuations that are not eventually
slowly oscillating. See, for example, Ivanov and Losson [15] and Stoffer [35].
For such examples, f must be nonmonotone: again see [26].]

The zero function 0∈C is a stationary point of the semiflow F : F (t, 0)=0
for all t ≥ 0. The linear problem associated with (1.1) at 0 is the equation

(1.2) y′(t) = f ′(0)y(t− 1).

Using the ansatz y(t) = eλt we obtain the corresponding characteristic equa-
tion

(1.3) λ− f ′(0)e−λ = 0.

The roots of (1.3) coincide with the eigenvalues of the linearization of F at
0 ∈ C. It is also known that, when f ′(0) < 0, there are only finitely many
eigenvalues with nonnegative real part; there are eigenvalues with positive
real part if and only if f ′(0) < −π/2. Accordingly, the zero solution x(t) = 0,
t ∈ R, of (1.1) is locally asymptotically stable when 0 > f ′(0) > −π/2 and
unstable when f ′(0) < −π/2 by the so-called principle of linearized stability
and instability, respectively. In the former case, the trivial solution of (1.2) is
globally attracting and the trivial stationary point of (1.1) is at least locally
attracting. As we are interested in slowly oscillating periodic solutions we
of course will only consider examples in which the trivial solution of (1.1)
is at most locally, but not globally, attracting.

Remark 1.1. Many authors have given conditions under which the triv-
ial solution of (1.1) is globally attracting.
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A long-standing conjecture, going back to Wright [43], is that 0 is globally
attracting for Wright’s equation when α ∈ (0, π/2); this was proven for
α ∈ (0, 3/2] in [43]. Further progress toward this conjecture is described by
Bánhelyi et al. [2].

In an extension of the Wright result, Liz et al. [23] showed that if f
is sufficiently smooth, has negative Schwarzian derivative everywhere, and
satisfies f ′(0) ∈ [−3/2, 0), then the zero solution x(t) = 0, t ∈ R, is globally
attracting.

Other results on the global attractivity of the trivial solution of (1.1) go
back to the “3/2-stability” criterion given by Yorke [47]. See, for example,
Liz et al. [24].

2. SOP solutions—essential methods and results. For general
facts about delay differential equations we recommend the monograph [8]
by Diekmann et al. and the recent review article [42] by Walther.

The map P : K → K. For the remainder of this paper we restrict our
attention to the case that f is bounded above; the case where f is bounded
below is essentially the same (and can be reduced to our case by considering
the equation y′(t) = −f(−y(t− 1))). In particular, let us take M > 0 such
that f(x) ≤M for all x ∈ R.

Let us write

K := {ϕ ∈ C | ϕ(−1) = 0, ϕ is nondecreasing, ‖ϕ‖ ≤M}.
Then K is a closed convex subset of C.

The following theorem is elementary and mostly intuitively clear. For a
proof we refer the reader to Diekmann et al. [8, Chapter XV], or to Walther
[39] where the more general equation x′(t) = −µx(t)+f(x(t−1)) with µ ≥ 0
is discussed.

Proposition 2.1. Let ϕ ∈ K, ϕ 6= 0. Then x = xϕ is slowly oscillating
on [0,∞). If z > 0 is a zero of x then |x| and |x′| are bounded on the interval
[z, z + 1] by

max{|f(ξ)| | ξ ∈ x([z − 1, z])},
and the function s 7→ |xz+1(s)| is increasing on [−1, 0].

If the zeroset of x|[0,∞) is unbounded then it is given by a sequence of
points zj = zj(ϕ), j ∈ N, with

(so) zj + 1 < zj+1 and x′(zj) 6= 0 for all j,

and x is monotone on [0, z1 + 1] and on each interval [zj + 1, zj+1 + 1].
If the zeroset of x|[0,∞) is bounded then it is given by a finite sequence

of points zj = zj(ϕ), 1 ≤ j ≤ J = J(ϕ), with property (so), and |x(t)|
decreases monotonically to 0 on the interval [zJ + 1,∞) as t→∞.
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Given an initial value ϕ ∈ K, ϕ 6= 0, there are two possibilities: either
xϕ has a second positive zero z and xϕz+1 ∈ K, or not. We define the return
map P : K → K by setting P (0) = 0, P (ϕ) := xϕz+1 if z > 0 exists, and
P (ϕ) := 0 otherwise. Here are the basic facts about xϕ and the map P (for
a proof, see Nussbaum [28, Lemma 2.7]).

Proposition 2.2. The map P is continuous, and P (K) has compact
closure.

Suppose that ϕ is a nonzero periodic point of P with minimal period k.
Then, writing 0 < z1 < · · · < z2k < · · · for the positive zeros of xϕ, we
find that xϕz2k+1 = ϕ and that x is a periodic solution of (1.1) with minimal
period z2k + 1. Conversely, any slowly oscillating periodic solution of (1.1)
has a segment that is a periodic point of P . Accordingly, perhaps the most
prominent technique for proving the existence of SOP solutions of nonlinear
equations like (1.1) and its generalizations has been to show that analogs
of the return map P : K → K have nonzero fixed points. Since 0 ∈ K is a
fixed point of P , merely establishing the existence of at least one fixed point
(by a naive application of Schauder’s Theorem, for example) is insufficient.

We do, however, have the following theorem. This is perhaps the best-
known theorem on existence of SOP solutions of (1.1) and was given by Nuss-
baum in 1974 [29]. The theorem generalizes an earlier result due to Jones
on Wright’s equation [16], which in turn drew on the ideas of Wright [43]
and Browder [3].

Theorem 2.3. If, in addition to the hypotheses (H), we assume that
f ′(0) < −π/2 (and so the equilibrium at the origin is unstable), then P has
a nonzero fixed point.

The idea of Nussbaum’s proof is to show that the instability of the ori-
gin makes 0 ∈ K a so-called ejective fixed point of P and then to apply
the so-called Browder ejective fixed point principle [4], which implies that P
must have a fixed point that is not ejective. This same basic idea has since
been used to prove the existence, when the equilibrium is unstable, of non-
trivial periodic solutions for several generalizations and extensions of (1.1);
these generalizations include versions of (1.1) with instantaneous damping
(Hadeler and Tomiuk [13]) and various equations with state-dependent delay
(e.g. Nussbaum [29], Alt [1], Kuang and Smith [20], and Walther [41]).

Remark 2.4. The above-cited [16] and the companion paper [17] of
Jones have led to the conjecture that, for α > π/2, Wright’s equation has a
unique SOP solution. For some recent work towards this conjecture, see Xie
[46] and Lessard [22].

We now turn to some other important methods for studying SOP solu-
tions of (1.1).
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When f is odd—phase plane methods. An entirely different ap-
proach to proving existence of SOP solutions in the case that f in (1.1)
is odd was pioneered by Kaplan and Yorke in 1974 [18]. In this case the
coupled two-dimensional system of ordinary differential equations

(2.1)

{
u′ = f(v),

v′ = −f(u)

has a first integral of the form

(2.2) H(u, v) := −
u�

0

f(s) ds−
v�

0

f(s) ds.

Equation (2.1) is highly symmetric: if (u(·), v(·)) : I → R2, I ⊂ R
an interval, is a solution of (2.1), then so are (−u(·),−v(·)) : I → R2,
(v(·),−u(·)) : I → R2, and (−v(·), u(·)) : I → R2, as simple calculations
show. Note that H(0, 0) = 0 whereas H(u, v) > 0 for all (u, v) 6= (0, 0), and
∇H(u, v) = (0, 0) ∈ R2 if and only if (u, v) = (0, 0); it follows that, given
any real α > 0 with α ∈ H(R2) := {H(u, v) ∈ [0,∞) | u, v ∈ R}, the level
set H−1({α}) is a simple closed curve around the origin in R2. This curve
is the orbit of a periodic and nonconstant solution (u(·), v(·)) : R → R2

of (2.1). From the symmetry of H we conclude that in this situation the
orbits of (u(·), v(·)), (−u(·),−v(·)), (v(·),−u(·)), and (−v(·), u(·)) coincide;
that is, the orbit H−1({α}) is invariant under rotations by π/2, and all the
solutions (−u(·),−v(·)), (v(·),−u(·)), and (−v(·), u(·)) are translations of
the periodic solution (u(·), v(·)).

It was observed by Kaplan and Yorke in [18] that any solution (u(·), v(·)) :
R → R2 of (2.1) with period 4 is associated to a periodic solution of (1.1):
namely, x(t) := u(t), t ∈ R, satisfies (1.1), is periodic of minimal period 4,
and has the special symmetry x(t) = −x(t− 2), t ∈ R. We shall refer to such
a solution as a Kaplan–Yorke solution of (1.1).

The existence result obtained in [18] for (1.1) is the following. The hy-
potheses guarantee that (2.1) has a solution of period 4.

Theorem 2.5. Assume that, in addition to hypothesis (H), f is odd and	∞
0 |f(x)| dx =∞. Write

a = lim
x→0

f(x)

x
and A = lim

x→∞

f(x)

x
.

If either A < −π/2 < a or a < −π/2 < A, then (1.1) has a Kaplan–Yorke
solution.

Nussbaum [31, Remark 2.1] uses the above theorem and the ideas of its
proof to indicate a basic method to construct inductively a continuous odd
function f ensuring that (2.1) has at least n distinct periodic solutions of
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period 4, and so (1.1) has at least n distinct Kaplan–Yorke solutions, for any
fixed n ∈ N. On the other hand, in the same work Nussbaum combines the
last result with Schauder’s theorem—roughly speaking applied on a subset
of a variant of K—to exhibit an example where Kaplan–Yorke solutions
coexist with solutions of period greater than 4. We will present some other
examples of a similar flavor below.

When f is strictly decreasing. As already suggested, the case that
f is smooth and strictly decreasing is particularly well understood. A first
major step in this understanding was made by Kaplan and Yorke [19],
who considered the orbits traced out by slowly oscillating solutions in the
(x(t), x(t−1)) plane. The chief observation was that the ways in which these
orbits can cross in the plane is sharply limited. The main theorem in [19]
says, roughly speaking, that if f ′(0) < −π/2 these orbits tend toward an
annulus in the plane whose inner and outer boundary curves are the orbits
of SOP solutions. In particular, if (1.1) has a unique SOP solution in this
case, this SOP solution is necessarily asymptotically stable.

In [31], Nussbaum built on the phase plane approach in [19] to give
conditions under which this SOP solution is unique (it is sufficient, for ex-
ample, that f be smooth and odd with f ′(x) and f(x)/x increasing on the
positive half-line). Also using a phase plane approach, Cao [6] established
uniqueness of SOP solutions for f smooth and strictly decreasing and with
a slightly different concavity condition, but without the assumption that f
is odd.

Mallet-Paret and Sell [25] have given a Poincaré–Bendixson type the-
orem for a class of equations that includes (1.1) when f is smooth and
strictly decreasing. In this case, the theorem says that ω-limit sets of solu-
tions are either the equilibrium at 0 or nontrivial periodic solutions (at least
if the origin is hyperbolic); and that if p and q are two distinct nontrivial
periodic solutions then the planar traces given by t 7→ (p(t), p(t − 1)) and
t 7→ (q(t), q(t − 1)) are disjoint Jordan curves (we shall revisit this point
later). Among the implications of this fact is that all SOP solutions corre-
spond to fixed points (as opposed to higher-period periodic points) of the
map P : K → K.

Walther has shown that when f is smooth and strictly decreasing, the
attractor of the set of slowly oscillating solutions is either trivial or homeo-
morphic to a closed unit disk [39].

The fixed point index. Other existence results, as well as uniqueness
and nonuniqueness results, depend on the so-called fixed point index. We
shall use the index below and give some of its flavor; very roughly speaking,
the index sometimes allows us to use information on subsets of K where we
understand P well to draw conclusions about the existence of fixed points on



120 B. Kennedy and E. Stumpf

subsets of K where we understand P less well. We mention here a handful
of earlier results. In [28], Nussbaum used a fixed point index approach to
establish the existence of SOP solutions under hypotheses similar to those
in Theorem 2.5, but without the assumption that f is odd; our work in Sec-
tion 3 below bears a strong conceptual affinity with Nussbaum’s approach.
In [44] and [46], Xie combined stability estimates and the fixed point index
to obtain, in certain cases, uniqueness of fixed points of P .

Stability of SOP solutions. Assessing the stability of SOP solutions
is, in general, a difficult problem. The stability implied by uniqueness in
the case that f is monotonic, alluded to above, is one result; and various
authors (see, for example, Cao [5]) have used Kaplan–Yorke-type phase plane
techniques with f monotonic to conclude, based on how solutions “spiral” in
the (x(t), x(t− 1)) plane, that certain SOP solutions are stable or unstable.
Other authors have observed that, loosely speaking, if f is sufficiently flat
on long enough intervals, the return map P becomes contractive (at least
on certain subsets of K) and so we can conclude that asymptotically stable
SOP solutions exist. See, for example, Walther [40] and Vas [36].

Several authors have also established results on the so-called Floquet
multipliers of SOP solutions, especially in the case that f is odd. If p is
an SOP solution with p0 ∈ K and period ω, then the Floquet multipliers
of p constitute the nonzero spectrum of the linear monodromy operator ψ 7→
D2F (ω, p0)ψ. With the possible exception of 1 (which is always an eigenvalue
of the monodromy operator with corresponding eigenvector p′0), the nonzero
spectrum of the monodromy operator coincides with the nonzero spectrum
of the derivative of P at p0 (see, for example, Xie [45] or Diekmann et al.
[8, Chapter XIV] for a fuller discussion).

Results on Floquet multipliers of SOP solutions include the following.
Stability of Kaplan–Yorke solutions is proven by Chow and Walther [7] for a
class of odd f satisfying a monotonicity and concavity condition; instability
of Kaplan–Yorke solutions under conceptually similar kinds of conditions is
proven by Ivanov et al. [14]. (The two sets of hypotheses in these two papers
correspond, roughly speaking, to the two possibilities A < −π/2 < a and
a < −π/2 < A in the statement of Theorem 2.5.) For additional results
and references we also mention the more recent work of Skubachevskii and
Walther [34].

Bifurcation results. Several authors have given bifurcation results for
parameterized versions of (1.1). In 1975 Nussbaum [30] augmented Theo-
rem 2.3 by showing that, for the parameterized equation

x′(t) = αf(x(t− 1)), f ′(0) = −1,
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there is a continuous branch {(α, pα0 ) : α > π/2} of initial conditions of
nontrivial SOP solutions, with (π/2, 0) in its closure. Further branches of
periodic solutions emanating from bifurcation points on this branch (and
hence nonuniqueness of SOP solutions) have been described, especially in
the case that f is odd. Dormayer has described branches of periodic solutions
bifurcating from the primary branch of Kaplan–Yorke solutions and consist-
ing of solutions that are symmetric [9] and that are not symmetric [10] (here
symmetric means that p(t) = −p(t+ τ), where τ is the half-period). Both of
these results draw on earlier work of Walther [38]. See also Dormayer and
Lani-Wayda [11], and the references therein.

Other results on nonuniqueness. Apart from the nonuniqueness re-
sults on periodic solutions arising from the bifurcation scenarios mentioned
above or from the above-discussed work [31] of Nussbaum, we mention some
more nonuniqueness results below.

For instance, Peters [32] and Siegberg [33] have exhibited examples of
(1.1) where P is semiconjugate, on a suitable subset of K, to a chaotic
interval map; in this case P has many periodic points, of many different
periods. A more recent result in this vein is given by Lani-Wayda in [21],
which contains additional references.

Cao [5] and Vas [36] have both given further examples of equations with
many SOP solutions, many of which are stable. In [5], f is monotonic, and
the above-mentioned results of Kaplan and Yorke on the behavior of orbits
in the (x(t), x(t− 1)) plane are exploited to devise a condition that guaran-
tees the existence of several (possibly infinitely many) SOP solutions whose
planar orbits are nested within one another. In [36], f is unbounded and
similar to a decreasing step function (the equation in [36] also has a damp-
ing term added). The many intervals where f is nearly flat cause the analog
of P to be contractive on many different subdomains of C, resulting in many
distinct periodic solutions. In Section 5 we present an example in a similar
spirit, but the feedback function is bounded and the nonmonotonicity of f
plays a key role.

3. A class of equations with at least two SOP solutions

Facts about the fixed point index. We here recall only those proper-
ties of the fixed point index that we shall need and even those in a restricted
setting. For a deeper discussion consult Granas and Dugundji [12, Chapter
IV] and also Nussbaum [29, Section 1].

Suppose that X is a closed, bounded, convex subset of a Banach space.
Then X has the subspace topology induced by the Banach space topol-
ogy. (This is the topology to which we shall be referring throughout this
paragraph—so the open sets we refer to just below are open relative to X,
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and may have empty interior with respect to the underlying Banach space.)
Suppose that G : X → X is continuous and compact in the sense that it
maps bounded sets of X into precompact sets. Then, if V is any open (rel-
ative to X) subset of X such that G is fixed-point free on ∂V := V \ V ,
the integer iX(G,V ), the fixed point index of G on V with respect to X, is
defined. The following two properties hold:

(I) If V ⊂ X is convex and G(V ) ⊂ V , then G has a fixed point in V
and iX(G,V ) = 1. In particular, iX(G,X) = 1.

(II) If iX(G,U) and iX(G,V ) are defined, U ∩V = ∅, and the fixed point
set of G is contained in U ∪ V , then

1 = iX(G,X) = iX(G,U) + iX(G,V ).

Property (I) follows from the so-called normalization and homotopy
properties of the index, and (II) is called the additivity property. We will
also need the so-called mod p theorem for the fixed point index. The follow-
ing is a very special case of this theorem; a general statement appears, for
instance, in Granas and Dugundji [12, p. 460]:

Lemma 3.1. Suppose that X is a closed, bounded, convex subset of a
Banach space and that G : X → X is a continuous compact map. Let
p ∈ N be prime and write Fix(G) and Fix(Gp) for the fixed point sets of G
and Gp in X, respectively. Suppose that V ⊂ X is relatively open and that
Fix(G) ∩ V = Fix(Gp) ∩ V = {q}, q ∈ V . Then iX(G,V ) is congruent to
iX(Gp, V ) modulo p.

As a consequence of this result we obtain the next corollary, which will
be essential for our approach.

Corollary 3.2. Suppose that X is a closed, bounded, convex subset of
a Banach space and that G : X → X is a continuous compact map. Let U
be a relatively open convex subset of X. Suppose that q ∈ U is a fixed point
of G and that there is some n ∈ N such that, for all integers m ≥ n,

Gm(U) ⊂ U and Fix(Gm) ∩ U = {q}.
Then iX(G,U) = 1.

Proof. Since Fix(G) ∩ U ⊂ Fix(Gm) ∩ U for all m ≥ n and q ∈ Fix(G)
by assumption, we actually have Fix(G) ∩ U = Fix(Gm) ∩ U = {q} for all
such m. By property (I) of the fixed point index given above, iX(Gm, U) = 1
for all sufficiently large m, and in particular for all sufficiently large primes p.
Thus by Lemma 3.1, i := iX(G,U) is congruent to 1 mod p for all sufficiently
large primes p. It follows that i must equal 1. Indeed, for let p be any prime
greater than m. To say that i ≡ 1 mod p is to say that i = kp+ 1 for some
integer k. Now choose a prime p′ > |kp+ 1|+ 1; if k 6= 0, then kp+ 1 cannot
be congruent to 1 mod p′.
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We are now in a position to discuss our first example of an instance of
(1.1) with at least two distinct slowly oscillating periodic solutions. An im-
portant aspect of this example is the fact that the trivial solution x(t) = 0,
t ∈ R, is locally asymptotically stable. The result thus bears some intu-
itive resemblence to the f ′(0) > −π/2 case of Theorem 2.5 (and even
more so the closely related Theorem 2.1 in [28]) in that there is a peri-
odic solution that is in some sense “between” two stable sets. Here are the
main ideas, which can be applied under several sets of hypotheses other
than those we formulate below. We will apply the fixed point index to
the continuous compact map P on the closed, bounded, convex set K.
We will exhibit two relatively open convex subsets V and U of K such
that V ∩ U = ∅, P (V ) ⊂ V , and U satisfies the hypotheses of Corol-
lary 3.2 (U will be an open set containing 0). We will accordingly have
iK(P,U) = iK(P, V ) = 1; the contrapositive of (II) will then guarantee the
existence of another nontrivial fixed point of P in K \ (U ∪ V ). Since P is
fixed-point free on ∂V and ∂U , this fixed point actually lies in the open set
K \ (U ∪ V ).

For the rest of this section we impose, in addition to (H), the following
restriction on the feedback function f : R→ R:

(H′)

{ |f | is bounded by some µ > 0;

there are β, σ > 0 such that |f(x)| ≥ σ whenever |x| ≥ β.

Here is the main result of the section.

Proposition 3.3. Suppose that (H) and (H′) hold, and moreover that

−π
2
< f ′(0) < 0 and β <

σ

2 + µ/σ
.

Then (1.1) has at least two distinct slowly oscillating periodic solutions. Each
of these solutions corresponds to a fixed point of P (and so has minimal
period given by the length of a minimal interval containing three consecutive
zeros).

The first step in the proof of Proposition 3.3 is to exhibit the subset
V ⊂ K described above.

Lemma 3.4. Suppose that (H) and (H′) hold, and that

β <
σ

2 + µ/σ
.

Then there is a relatively open convex subset V ⊂ K such that 0 /∈ V and
P (V ) ⊂ V . Accordingly, iK(P, V ) = 1 and P has a fixed point in V ; this
fixed point is a segment of a slowly oscillating periodic solution of (1.1).
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Proof. Note that our conditions on β guarantee that β/σ < 1/2. Choose
γ > 0 small enough that γ + β/σ < 1 and

(3.1) β ≤ σ − (σ + µ)γ

2 + µ/σ
.

Now define the following set:

V := {ϕ ∈ K | ϕ(t) > σt+ σ(1− γ) for t ∈ [−1 + γ,−β/σ]}.
This set is clearly open and convex, and its closure is

V = {ϕ ∈ K | ϕ(t) ≥ σt+ σ(1− γ) for t ∈ [−1 + γ,−β/σ]}.
The members of V are all the members of K whose graphs do not go below
the graph pictured in Figure 1.

σ(1 − γ)− β

−β/σ−1 −1 + γ 0

ϕ(t)

t

Fig. 1. Definition of V

Suppose now that x : [−1,∞) → R is a solution of (1.1) with x0 ∈ V .
Notice that x(0) ≥ σ(1−γ)−β, and that this latter quantity is greater than
β by assumption (3.1). Moreover, x(t) ≥ β for all t ∈ [−1 + (γ + β/σ), 0]
since x0 ∈ V . We claim that in fact x(t) ≥ β for all t ∈ [0, γ + β/σ] as well.
For by the first point of (H′), we have x′(t) ≥ −µ for all t ∈ [0, γ + β/σ],
and so accordingly

x(γ + β/σ) ≥ σ(1− γ)− β − µ(γ + β/σ);

our assumption (3.1) on β guarantees that the quantity on the right is
greater than or equal to β. Therefore, at the first positive time τ such that
x(τ) = β, we see that x(t) ≥ β on the entire interval [τ − 1, τ ].

Hypothesis (H′) and the negative feedback condition now imply that
x′(t) ≤ −σ for all t ∈ [τ, τ + 1]. Thus z1, the first positive zero of x, occurs
in the interval (τ, τ +β/σ]. We therefore see that x′(t) ≤ −σ on the interval

[z1, τ + 1] ⊃ [z1, z1 + 1− β/σ]

and that x′(t) ≤ 0 on [τ + 1, z1 + 1]. It follows that

−xz1+1(s) ≥ σs+ σ > σs+ σ(1− γ) for all s ∈ [−1,−β/σ],

and so, in particular, xz1+1 ∈ −V .
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By taking into account that the assumptions (H′) are symmetric, even
though f is not assumed odd, a symmetric argument shows that xz2+1 ∈ V ,
which is the desired conclusion.

Remark 3.5. Let p : R → R denote the slowly oscillating periodic
solution found in the last result, translated so that p0 ∈ V ⊂ K. By imposing
further conditions on f(x) for |x| ≥ β, one can guarantee that p0 ∈ V is a
stable fixed point of P . One particularly simple such condition is to insist
that f be constant on [β,∞). In this case, the proof of Lemma 3.4 shows
that P is in fact constant on V since, in the notation of the above proof, xτ
can only be continued in one possible way. More generally, by insisting that
f be Lipschitz and have a small enough Lipschitz constant on [β,∞), it is
possible to show, in the spirit of Walther [40], that P is contractive on the
subset V of K.

We now turn our attention to our desired open convex subset U ⊂ K
about 0 ∈ K. The lemma below follows from standard results about the
behavior of solutions of (1.1) near the trivial solution x(t) = 0, t ∈ R,
when the latter is locally asymptotically stable by the so-called principle of
linearized stability.

Lemma 3.6. Suppose that (H) holds and that f ′(0) ∈ (−π/2, 0). Then
there is an open convex subset U of K with 0 ∈ U such that the hypotheses
of Corollary 3.2 are satisfied. More precisely, there is an open convex set
U ⊂ K with 0 ∈ U and some n ∈ N such that, for all m ≥ n,

Pm(U) ⊂ U and Fix(P ) ∩ U = Fix(Pm) ∩ U = 0.

Thus iK(P,U) = 1. Moreover, U ⊂ K can be chosen so that U ∩ V = ∅
where V is as in Lemma 3.4.

Proof. Since f ′(0) ∈ (−π/2, 0), 0 ∈ C is a locally exponentially stable
stationary point of the semiflow F . Thus there are numbers ε > 0, κ > 0,
and ω < 0 such that ‖F (t, ϕ)‖ ≤ κeωt whenever ‖ϕ‖ ≤ ε (see, for instance,
[8, Chapter VII]). Set

U := {ϕ ∈ K | ‖ϕ‖ < ε}.
Notice that there is no loss of generality in taking ε > 0 small enough that
U ∩V = ∅ where V is as in Lemma 3.4. Given ϕ ∈ U , we have xϕ(t)→ 0 as
t → ∞; it is therefore clear that no power of P has any fixed points on U
other than 0 ∈ K.

Now choose T > 0 so large that κeωT < ε, and let n be an integer larger
than T/2. We claim that for any ϕ ∈ U we have ‖Pn(ϕ)‖ < ε. In this
situation xϕ has fewer than 2n positive zeros, Pn(ϕ) = 0 by definition. Oth-
erwise, the slowly oscillating behavior of xϕ implies that the 2nth positive
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zero z of xϕ occurs after time 2n− 1 > T − 1, and thus

‖Pn(ϕ)‖ = ‖xϕz+1‖ = ‖F (z + 1, ϕ)‖ ≤ κeω(z+1) < κeωT < ε.

Proposition 3.3 now follows from Lemmas 3.4, 3.6, and the discussion at
the beginning of the section.

Remark 3.7. Under the stronger assumption that 0 > f ′(0) > −1,
it is possible to use much more elementary arguments to exhibit an open
neighborhood U in K about 0 such that P (U) ⊂ U and U ∩ V = ∅. In this
case, we still have iK(P,U) = 1 by property (I) of the index above, and the
rest of the proof of Proposition 3.3 is the same as before. Here is a sketch of
this simpler approach.

Since f is C1 on a neighborhood of 0 and |f ′(0)| < 1, there is an ε > 0
such that 0 < |f ′(ξ)| < 1 for all ξ ∈ [−ε, ε]. Set

U := {ϕ ∈ K | ‖ϕ‖ < ε}.
By shrinking the constant ε if necessary, we can guarantee that U and V
are disjoint.

Now let ϕ ∈ U be given with ϕ 6= 0. We claim that ‖P (ϕ)‖ < ‖ϕ‖. If
J(ϕ) < 2 with J(φ) introduced in Proposition 2.1, P (ϕ) = 0 and the claim
is immediate. Suppose that J(ϕ) ≥ 2 and write z1 = z1(ϕ), z2 = z2(ϕ),
and x = xϕ Since x(0) = ‖ϕ‖ and x is decreasing on [0, z1], we see that
‖xz1‖ ≤ ‖ϕ‖. For all s ∈ [−1, 0], since |f ′(ξ)| < 1 for ξ ∈ [−ε, ε] and
f(0) = 0, we have

|f(xz1(s))| < |xz1(s)| ≤ ‖ϕ‖.
Therefore, 0 > x′(t) > −‖ϕ‖ for all t ∈ (z1, z1 + 1), and ‖xz1+1‖ < ‖ϕ‖.
A symmetric argument shows that ‖P (ϕ)‖ < ‖xz1+1‖ < ‖ϕ‖.

4. Solutions of long period. The interest of our next example for
(1.1) with multiple slowly oscillating periodic solutions lies in the fact that
we obtain solutions of “long period” even though f can be taken bounded by
some fixed number: the nonmonotonicity of f is key. A similar example, that
is, (1.1) with a bounded right-hand side f and periodic solutions with arbi-
trarily large periods, was discussed by Nussbaum [31, Theorem 3.1 & Corol-
lary 3.1]. However, in contrast to the example in [31], here we will have both
a slowly oscillating periodic solution of long period and at least one Kaplan–
Yorke solution for (1.1) regardless of the stability of the zero solution.

In order to specify the feedback function f : R → R in detail, we need
positive reals a, c, δ, γ satisfying the following conditions:

(i) c < min(a, δ);
(ii) γ ≥ 4a and γ > δ;

(iii) δ + c
δγ ≤ a.
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The following result is obvious and shows that these conditions are not
vacuous.

Proposition 4.1. Given any a > 0 and any γ > 4a, there is some
δ∗ > 0 such that, for any δ ∈ (0, δ∗), there is a real c∗(δ) > 0 such that all
of conditions (i)–(iii) are satisfied whenever c ∈ (0, c∗(δ)).

Using the reals a, c, γ, δ > 0, we are now able to formulate the additional
assumptions on f : R → R that will be essential throughout the present
section:

(H′′)


f is odd and |f | ≤ γ on [0, 2a];

f(x) =

{−γ for x ∈ [a, 2a− c],
−δ for x ∈ [2a, γ].

Provided that, apart from (H′′), the function f also satisfies the imposed
standard hypothesis (H), equation (1.1) has a slowly oscillating periodic
solution as we now show.

Proposition 4.2. Given reals a, c, γ, δ > 0 satisfying conditions (i)–(iii),
suppose that (H) and (H′′) hold. Then (1.1) has a slowly oscillating periodic
solution with minimal period greater than 4 and given by the length of an
interval containing three consecutive zeros.

Proof. The reader may find it helpful to refer to Figure 2.

−a

a

2a

−2a

−1

τ1

τ2

τ1 + 1

τ2 + 1

τ2 + 1 + a/γ

τ3 t

x(t)

Fig. 2. Proof of Proposition 4.2

1. Let ϕ ∈ C be given with ϕ(0) = −2a and with −γ ≤ ϕ(s) ≤ −2a for
all s ∈ [−1, 0], and let x = xϕ : [−1,∞)→ R denote the uniquely determined
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solution of (1.1) with x0 = ϕ. Then, in view of assumption (H′′), we have
x(t) = −2a + δt for all 0 ≤ t ≤ 1. In particular, x is strictly increasing
on [0, 1].

Now, note that c/δ < 1 by condition (i) and −2a + δ < −a by condi-
tion (iii). Thus x(t) ≥ x(c/δ) = −2a+ c for t ∈ [c/δ, 1] and x(1) = −2a+ δ
< −a. Moreover, for all t ∈ [1, 1 + c/δ], x(t) is increasing with derivative at
most γ. We thus have the estimate

x(1 + c/δ) ≤ x(1) + γ
c

δ
= −2a+ δ + γ

c

δ
,

which together with condition (iii) guarantees that x(t) ∈ [−2a+ c,−a] for
all t ∈ [c/δ, 1 + c/δ].

2. Define τ1 := min{t ≥ 1 + c/δ | x(t) = −a}. Then the last observation
in combination with assumption (H′′) shows that x(τ1 +s) = −a+γ s for all
s ∈ [0, 1]. Set τ2 := τ1+2a/γ. By condition (ii) we have τ2 < τ2+a/γ < τ1+1,
and so we obtain

x(τ2) = a, x(τ2 + a/γ) = 2a, x(τ1 + 1) = −a+ γ.

Thus, as t increases from τ1 to τ1+1, x(t) increases from the value x(τ1) = −a
with constant slope γ, traverses the interval [−a, a], and finishes at the value
x(τ1 + 1) = −a+ γ. Note that −a+ γ ≥ 3a by condition (ii).

3. Now, from the oddness of the map f and the fact that [τ1, τ2] 3
s 7→ x(s) traverses the interval [−a, a] at constant slope γ, it follows that
[0, 2a/γ] 3 s 7→ x(τ1 + 1 + s) traces out a symmetric arc with maximum at
s = a/γ and a maximal value of

x(τ1 + 1 + a/γ) < x(τ1 + 1) + γ
a

γ
= (−a+ γ) + a = γ.

Furthermore, we have

x(τ2 + 1) = x(τ1 + 2a/γ + 1) = x(τ1 + 1) = −a+ γ

and so x(t) ∈ [3a, γ] for all t ∈ [τ1 + 1, τ2 + 1].

4. On the interval [a, 2a], f is bounded below by −γ but, by continuity,
is not identically equal to −γ. Accordingly, [0, a/γ] 3 s 7→ x(τ2 + 1 + s) is
decreasing from x(τ2 +1) = γ−a to x(τ2 +1+a/γ) where for this last value
we crudely have

x(τ2 + 1 + a/γ) > x(τ2 + 1)− γ a
γ
≥ −a+ γ − a = γ − 2a,

and so x(τ2 + 1 + a/γ) > 2a by condition (ii). We have established that
x(t) ∈ (2a, γ) for all t ∈ (τ2 + a/γ, τ2 + 1 + a/γ].

5. As t increases from τ2 +a/γ+1, x(t) will decrease with slope −δ until
time

τ3 := min{t > τ2 + a/γ + 1 | x(t) = 2a} > τ2 + 1 + a/γ.
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In particular, we have x(t) ∈ [2a, γ] for all t ∈ [τ3−1, τ3]. Thus −xτ3 satisfies
the same conditions as our initial condition ϕ; by using the oddness of f
and applying the arguments above again, it follows that x(τ3 + t) = −x(t)
and secondly that

x(2τ3 + t) = −x(τ3 + t) = −(−x(t)) = x(t)

for all t ≥ 0. In particular, since x has only a single zero in [0, τ3], the
distance between any two zeros of x in [0,∞) is greater than or equal to
τ3 > 1. Hence, O := {x(t) | 0 ≤ t ≤ 2τ3} is the orbit of a slowly oscillating
periodic solution of (1.1) with period 2τ3.

6. It remains to prove that τ3 > 2. In order to do so, observe that

τ3 − (τ2 + a/γ + 1) ≥ x(τ2 + a/γ + 1)− x(τ3)

δ
>

(γ − 2a)− 2a

δ
=
γ − 4a

δ
.

Hence,

τ3 > τ2 +
a

γ
+ 1 +

γ − 4a

δ
≥ τ1 +

2a

γ
+
a

γ
+ 1 +

γ − 4a

δ
(4.1)

≥ 2 +
c

δ
+

3a

γ
+
γ − 4a

δ
.

This shows that 2τ3 > 4 and completes the proof.

Remark 4.3. Observe that the last step of the proof indicates that,
by choosing appropriate parameters a, c, γ, δ > 0 and adapting the map f
correspondingly, the period 2τ3 of the resulting slowly oscillating periodic
solution can be made as large as desired. For since

τ3 > 2 +
γ − 4a

δ

by estimate (4.1), we can make 2τ3 as large as we like by taking γ > 4a and
then choosing δ (and then c) small enough given parameters a and γ.

Of course, the slowly oscillating periodic solution found in Proposi-
tion 4.2 has a segment in the closed bounded convex set K ⊂ C that is
a nonzero fixed point of the return map P . Moreover, this periodic solu-
tion is so strongly attractive that P is constant in each sufficiently small
neighborhood of this fixed point, as we now show.

Proposition 4.4. Under the hypothesis of Proposition 4.2, there is an
open convex subset V ⊂ K such that 0 6∈ V and P (V ) ⊂ V . Moreover, the
fixed point of P in V is a segment of the slowly oscillating periodic solution
of (1.1) obtained in Proposition 4.2, and P maps all of V to this fixed point.

Proof. We revisit the proof of Proposition 4.2 and use the same notation
in the following. To begin with, define s1 := τ1+a/γ+1 and s2 := τ2+a/γ+1.
We have xs1 ∈ K.
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Now, the proof of Proposition 4.2 shows that there are numbers 4 > 0
and ε > 0 such that x(t) ∈ (2a + ε, γ − ε) for all t ∈ [s2 +4 − 1, s2 +4].
Therefore by continuous dependence on initial conditions there is some open
set V about xs1 such that y0 ∈ V implies that y(s) ∈ (2a, γ) for s ∈
[s2 +4− 1− s1, s2 +4− s1]. The definition of f now allows y to continue
in only one way; in particular, y(s) will coincide with a translate of x for
s ≥ s2 +4− s1.

Note that the stability of the zero solution of (1.1) has been, so far,
completely irrelevant to our discussion of the current example. On the other
hand, under the assumption of local exponential stability of the zero solution
we can take the same approach as in Lemma 3.6 to show the existence of
multiple slowly oscillating periodic solutions of (1.1). We accordingly omit
the proof of the following proposition.

Proposition 4.5. Under the hypotheses of Proposition 4.2, if moreover
f ′(0) ∈ (−π/2, 0) then (1.1) has at least two distinct slowly oscillating peri-
odic solutions, each with period given by three consecutive zeros.

But also in the situation where f ′(0) < −π/2, and thus the zero solution
of (1.1) is unstable, (1.1) has at least two distinct slowly oscillating periodic
solutions, provided that the conditions of Proposition 4.2 are satisfied and
that (for example) f ′ = 0 outside some open neighborhood of the origin—for
then Theorem 2.5 applies. We therefore have the following result.

Proposition 4.6. Suppose that the assumptions of Proposition 4.2 are
satisfied, that f ′ = 0 outside some open neighborhood of 0 ∈ R, and that
additionally f ′(0) < −π/2. Then (1.1) has at least two distinct slowly oscil-
lating periodic solutions.

More precisely, apart from the slowly oscillating periodic solution with
minimal period greater than 4, equation (1.1) has a slowly oscillating peri-
odic solution x : R → R with minimal period 4 and the symmetry x(t) =
−x(t− 2) for all t ∈ R.

Remark 4.7. The last statement of course remains true if the assump-
tion that f ′ = 0 outside some open neighborhood of the origin is replaced
by any condition that makes Theorem 2.5 hold.

It is now natural to ask whether, at least under additional conditions
on f , one of the slowly oscillating periodic solutions obtained in Proposi-
tion 4.5 (and so in case of a locally asymptotically stable zero solution) may
also be a Kaplan–Yorke solution. In order to address this issue, we should
recall some details of the approach taken in [18] for the proof of the existence
of Kaplan–Yorke solutions for (1.1).

We continue to assume that f satisfies assumptions (H) and (H′′) and
is globally C1-smooth, and that f ′ = 0 outside some neighborhood of the
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origin. As under these conditions we have H(u, v)→∞ as u2 + v2 →∞ for
the Hamiltonian H defined by (2.2), it follows that for each initial condition
of the form (u0, 0) ∈ R2, where u0 > 0, equation (2.1) has a uniquely
determined periodic solution r(·;u0) = (u(·;u0), v(·;u0)) : R → R2 with
r(0;u0) = (u0, 0). Its orbit is given by H−1({α}) for α = −

	u0
0 f(s) ds. Set

now, for each u0 > 0,

(4.2) τ(u0) := min{t > 0 | u(t;u0) = 0},
which is well defined since r(·;u0) traces out a periodic orbit around the
origin. Moreover, in view of r′(0;u0) = (0,−f(u0)) with f(u0) < 0 and the
symmetry of H discussed above, it follows that

r(0;u0) = (u0, 0),

r(τ(u0);u0) = (0, u0),

r(2τ(u0);u0) = (−u0, 0),

r(3τ(u0);u0) = (0,−u0),
r(4τ(u0);u0) = (u0, 0) = r(0;u0).

In particular, the solution r(·;u0) has period 4τ(u0) and this period is mini-
mal. Accordingly, in order to find a periodic solution of (1.1) we seek u0 > 0
such that τ(u0) = 1. The main tool for doing so will be the following lemma
(see [18]).

Lemma 4.8. Assume that f : R → R is C1-smooth, odd, and satisfies
the negative feedback condition, and that f ′ = 0 outside some neighborhood
of the origin. Then the definition (4.2) induces a continuous function τ :
(0,∞)→ (0,∞) with

lim
u→0+

τ(u) = −π
2

1

f ′(0)
and lim

u→∞
τ(u) =∞.

Proof. Since the proof of the continuity of τ in [18] is somewhat cursory,
we give a fuller argument. Let u0 > 0 and ε > 0 be given. Set τ0 := τ(u0)
with τ(u0) defined by (4.2). As r(τ0;u0) = (0, u0) and r(·;u0) intersects each
half-axis transversally, there clearly is some 0 < τ1 < min{τ0, ε/2} such that
u(τ0 + t;u0) < 0 < u(τ0 − t;u0) for all 0 < t ≤ τ1. Fix now any 0 < ε1 < ε
satisfying both

ε1 < min{|u(τ0 − τ1;u0)|, |u(τ0 + τ1;u0)|}
and

ε1 < min{‖r(t;u0)‖R2 | 0 ≤ t ≤ t+ τ1}
where ‖ · ‖R2 denotes the Euclidean norm in R2. Then by elementary results
on continuous dependence of solutions to ordinary differential equations we
find some δ > 0 such that for each ũ > 0 with |ũ− u0| < δ and all 0 ≤ t ≤
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τ0 + τ1 we have

max{|u(t; ũ)− u(t;u0)|, |v(t; ũ)− v(t;u0)|} ≤ ‖r(t;u0)− r(t, ũ)‖R2 < ε1.

Consider now any ũ > 0 with |ũ−u0| < δ and observe that on the one hand
we have

u(τ0 + τ1; ũ) = u(τ0 + τ1; ũ)− u(τ0 + τ1;u0) + u(τ0 + τ1;u0)

≤ ‖r(τ0 + τ1; ũ)− r(τ0 + τ1;u0)‖R2 + u(τ0 + τ1;u0)

< ε1 + u(τ0 + τ1;u0) ≤ ε1 − ε1 = 0

and on the other hand

u(τ0 − τ1; ũ) = u(τ0 − τ1; ũ)− u(τ0 − τ1;u0) + u(τ0 − τ1;u0)
> ε1 − |u(τ0 − τ1; ũ)− u(τ0 − τ1;u0)| ≥ ε1 − ε1 = 0.

Hence, continuity of the solution r(·; ũ) and so of its first component u(·; ũ)
implies the existence of some τ0 − τ1 < T (ũ) < τ0 + τ1 with u(T (ũ); ũ) = 0.

Suppose now that T (ũ) 6= min{t > 0 | u(t; ũ) = 0}; that is, suppose that
there is some 0 < ξ < T (ũ) with u(ξ; ũ) = 0. Then our discussion about
the solutions of (2.1) would imply the existence of some 0 < ζ < T (ũ) with
r(ζ; ũ) = (0,−ũ). But in view of

ε21 > ‖r(ζ;u0)− r(ζ; ũ)‖2R2

= (u(ζ;u0)− u(ζ; ũ))2 + (v(ζ;u0)− v(ζ; ũ))2

= (u(ζ;u0))
2 + (v(ζ;u0) + ũ)2 ≥ ‖r(ζ;u0)‖2R2 + ũ2 ≥ ε21 + ũ2

that is impossible. Therefore, we have T (ũ) = τ(ũ) where the right-hand
side is defined by (4.2). Moreover, it follows that

|τ(u0)− τ(ũ)| = |τ0 − T (ũ)| < τ1 <
ε

2
< ε,

and this proves the continuity of τ : (0,∞)→ (0,∞) defined by (4.2).
The assertions about the behavior of τ for t→ 0+ and t→∞ are proven

in [18, Theorem 1].

Remark 4.9. Under the assumptions of the last statement it is possible
to prove that τ : (0,∞) → (0,∞) is not only continuous but continuously
differentiable. This follows from straightforward application of elementary
results about smooth dependence of solutions of ordinary differential equa-
tions on initial conditions, along with the implicit function theorem.

Now note that if the assumptions on f from the last lemma are satisfied,
and if moreover f ′(0) < −π/2 and so the zero solution of (1.1) is unstable,
then τ(u) < 1 for all sufficiently small u > 0 whereas τ(u) > 1 for all
sufficiently large u > 0. Thus, the intermediate value theorem implies the
existence of some 0 < u0 <∞ with τ(u0) = 1, and so (1.1) has at least one
Kaplan–Yorke solution. However, the same reasoning does not work in the



Multiple slowly oscillating periodic solutions 133

situation −π/2 < f ′(0) < 0, that is, when the zero solution of (1.1) is locally
asymptotically stable. Indeed, in this case Lemma 4.8 implies that τ(u) > 1
for all sufficiently small as well as for all sufficiently large u > 0, and so a
straightforward application of the intermediate value theorem fails. In our
next result we will give conditions on f , similar to those Proposition 4.6
but without any restrictions on f ′(0) < 0, such that the intermediate value
theorem will be applicable regardless of the stability properties of the zero
solution of (1.1). In doing so, we shall refer to Figure 3, which describes the
value of the vector field for (2.1) with f satisfying (H′′) in various regions of
the first quadrant of the real plane.

a

a u

v

2a− c

2a− c

(f(v), γ)

(−γ,−f(u)) (−γ, γ)

(−δ, δ)

2a

2a

(f(v), δ)

(−δ,−f(u))

(−γ, δ)

(−δ, γ)

Fig. 3. Value of the vector field for (2.1) in various regions for u, v ≥ 0

Proposition 4.10. Given reals a, c, γ, δ>0 satisfying conditions (i)–(iii),
assume that f is C1-smooth and satisfies both (H) and (H′′), and that f ′ = 0
outside some open neighborhood of 0 ∈ R. If

(4.3)
1

γ

a�

0

|f(s)| ds < a− c

then τ(2a− c) < 1 with τ(2a− c) defined by (4.2).
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Proof. Under the given assumptions, consider the periodic solution
r(·; 2a− c) : R→ R2 of (2.1) with initial condition r(0; 2a− c) = (2a− c, 0).
We have

r′(0; 2a− c) =

(
u′(0; 2a− c)
v′(0; 2a− c)

)
=

(
f(0)

−f(2a− c)

)
=

(
0

γ

)
and u′(t; 2a − c) < 0 for all sufficiently small t > 0. Hence, as t moves
forward, as long as a ≤ u(t) ≤ 2a− c and 0 ≤ v(t) ≤ a, we will have(

u′(t; 2a− c)
v′(t; 2a− c)

)
=

(
f(v(t; 2a− c))

γ

)
.

Thus, for all such t, we actually have v(t; 2a− c) = γt and

u(t; 2a− c) = u(0; 2a− c) +

t�

0

f(γs) ds = 2a− c+
1

γ

γt�

0

f(s) ds.

Now condition (4.3) implies that a ≤ u(t; 2a−c) ≤ 2a−c for all 0 ≤ t ≤ a/γ,
and so at precisely t = a/γ we have

u(t; 2a− c) = 2a− c+
1

γ

a�

0

f(s) ds ∈ [a, 2a− c] and v(t; 2a− c) = a.

We see that the solution r(·; 2a − c) will move diagonally across the “box”
[a, 2a− c]× [a, 2a− c], with constant velocity

r′(t; 2a− c) =

(
u′(t; 2a− c)
v′(t; 2a− c)

)
=

(−γ
γ

)
.

This traversal will clearly take fewer than (a − c)/γ time units. Then, by
symmetry, the solution r(·; 2a − c) will take another a/γ units to reach
r(t; 2a− c) = (0, 2a− c). Therefore

τ(2a− c) < a+ (a− c) + a

γ
<

3a

γ
< 1

by condition (ii).

A direct consequence of the last result is now the following corollary.

Corollary 4.11. If the hypotheses on f described in Proposition 4.10
(condition (4.3) included) hold, then (1.1) has a Kaplan–Yorke solution with
maximal value larger than 2a− c.

If furthermore f ′(0) > −π/2, then (1.1) also has a Kaplan–Yorke solu-
tion with maximum value less than 2a− c.

Proof. Under the given conditions, Lemma 4.8 together with the last
proposition show that for the continuous map τ : (0,∞) → (0,∞) defined
by (4.2) we have τ(2a − c) < 1 whereas τ(u) > 1 for all sufficiently large
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u > 2a−c. Hence, there clearly exists some 2a−c < u0 <∞ with τ(u0) = 1
such that x : R → R with x(t) := u(t;u0) for t ∈ R forms a Kaplan–Yorke
solution of (1.1) with maxt∈R x(t) = u0 > 2a− c, as claimed.

Under the additional assumption f ′(0) > −π/2, Lemma 4.8 also proves
that τ(u) > 1 for all sufficiently small u > 0. Hence, apart from 2a − c <
u0 <∞, there is some 0 < ũ0 < 2a− c with τ(ũ0) = 1. Therefore x̃ : R→ R
defined by x̃(t) := u(t; ũ0) for all t ∈ R is a Kaplan–Yorke solution of (1.1)
as well, but with maximum value maxt∈R x̃(t) = ũ0 < 2a− c.

Let us consider an example. We take f as described before Proposition
4.2, with γ = 4, a = 1, δ = 2/3, and c = 1/20. Note that conditions (i)–(iii)
are satisfied. In addition to hypotheses (H′′), we also take f(x) = −2x on
[−a+c, a−c] (so the zero solution is unstable). Now, Proposition 4.10 shows
that (1.1) will have a Kaplan–Yorke solution q with maximum value greater
than 2a − c. On the other hand, in this case a solution r = (u, v) of (2.1)
with initial condition (3a, 0) = (3, 0) will have period strictly greater than 4.
Referring once more to Figure 3, we see that as long as (u(t), v(t)) is in the
“box” bounded by the lines y = 0, y = a − c, x = 2a, and x = γ, we will
have v′(t) = δ and v(t) = δt = 2t/3, and

u′(t) = f(v(t)) = −2v(t) = −2δt, u(t) = 3− δt2 = 3− 2

3
t2.

Since c = 1/20, we see that r(1) is still in the above-described “box”, and
hence r has period strictly greater than 4. We conclude that our Kaplan–
Yorke solution q has a trace in the (x(t), x(t− 1)) plane going through the
points (α, 0) and (0, α), where 2a− c < α < 3a.

−1 5 10 t

Fig. 4. Graphs of p and q

On the other hand, the proof of Proposition 4.2 shows that the slowly
oscillating periodic solution p found there satisfies |p′(z)| = γ and |p(z− 1)|
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∈ [a, 2a − c] whenever p(z) = 0, and attains a maximum value of more
than 3a. Thus the trace of p in the (x(t), x(t − 1)) plane is a simple closed
curve going through the points (α2, 0) and (0, α1), where α1 < α < α2.
Thus the traces of q and p intersect in the (x(t), x(t − 1)) plane; such an
intersection of the traces of two SOP solutions is not possible when f is
monotonic (again, see Mallet-Paret and Sell [25]).

Figures 4 and 5 display numerical approximations of two solutions q
and p as described just above. The first figure shows the graphs of the two
solutions; the second shows the traces of the solutions in the plane. (In
making the approximations, we have taken f linear on the intervals [a−c, a]
and [2a− c, 2a], and so there are isolated points where f is not smooth.)

1

1

−1

−1

−3

−3 3

3

x(t)

x(t− 1)

Fig. 5. Traces of p and q in the (x(t), x(t− 1)) plane

5. Third example: many SOP solutions. An idea similar to that
in this section is described at the end of Vas’s paper [36] dealing with SOP
solutions for a delay equation with negative feedback and instantaneous
damping term.
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Observe that, other than the differentiability of f at 0 and the nega-
tive feedback condition itself, the only restriction on f in [0, 2a] required in
Proposition 4.2 is that f(x) ∈ [−γ, 0) for all x ∈ (0, 2a]. This observation
now allows us to specify f at different “scales”, and so create an equation
with as many periodic solutions as we wish.

Let γn, n ∈ N, be a sequence of positive reals satisfying γn+1 < γn/4.
Then, for each γn, let us take (for example)

an = γn/4, δn = γn/8, cn = γn/64.

Then γn, an, δn, cn together satisfy conditions (i)–(iii) above. Given any
M ∈ N∪{∞}, with M > 1, there exists a bounded, odd, continuous function
f satisfying both the negative feedback condition and the following version
of (H′′) for all n < M :

(5.1)


f is odd and |f | ≤ γn on [0, 2an];

f(x) =

{−γn for x ∈ [an, 2an − cn],

−δn for x ∈ [2an, γn].

If M < ∞, we can moreover take f to be differentiable at 0. According
to our work in Section 4, for such f equation (1.1) has M − 1 stable SOP
solutions whose segments are fixed points of P .

Suppose γ1 = 5 and γ2 = 1, and an, cn, δn are as described above for
n ∈ {1, 2}. We take f piecewise linear. The two stable periodic solutions are
readily seen in numerical approximation; see Figure 6.

−1 5 10 t

Fig. 6. Two stable periodic solutions
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