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Lp compactness for Calderón type commutators

by

Ting Mei and Yong Ding (Beijing)

Abstract. We discuss the Lp compactness of Calderón type commutators TA defined
by

TAf(x) = p.v.
�

Rn

Ω(x− y)

|x− y|n+1
R(A;x, y)f(y) dy,

where R(A;x, y) = A(x) − A(y) − ∇A(y) · (x − y) with DβA ∈ BMO(Rn) for all n ≥ 2
and |β| = 1. Moreover, Ω is homogeneous of degree zero and has a vanishing moment of
order one on Sn−1.

We prove that both TA and its maximal operator TA,∗ are compact operators on
Lp(Rn) for all 1 < p <∞ with A satisfying some conditions. Moreover, the compactness
of the fractional operators Iα,A,m and Mα,A,m is proved.

1. Introduction. In 1965, Calderón [Ca] introduced the following com-
mutator on R:

[A,S]f(x) = p.v.
1

π

�

R

A(x)−A(y)

x− y
f(y)

x− y
dy,

where A ∈ Lip(R) and S := d
dx ◦ H, H denoting the Hilbert transform

defined by

Hf(x) = p.v.
1

π

�

R

f(y)

x− y
dy.

Calderón proved that the commutator [A,S] is bounded on Lp(R) for all
1 < p <∞.

In the same paper [Ca], Calderón also gave a generalization of the com-
mutator [A,S] in higher dimensions:
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(1.1) TAf(x) = p.v.
�

Rn

Ω(x− y)

|x− y|n
· A(x)−A(y)

|x− y|
· f(y) dy,

where Ω is the function defined on Rn \ {0} satisfying the homogeneity
condition

(1.2) Ω(λx′) = Ω(x′) for any λ > 0 and x′ ∈ Sn−1,

and the vanishing moment condition of order one:

(1.3)
�

Sn−1

Ω(x′)x′α dσ(x′) = 0 for all α ∈ Zn+ with |α| = 1.

Here and below, α is a multi-index α = (α1, . . . , αn) ∈ Zn+. Moreover,
|α| =

∑n
j=1 αj and xα =

∏n
i=1 x

αi
i for x ∈ Rn. Calderón showed that TA is

bounded on Lp(Rn) for 1 < p <∞ if A ∈ Lip(Rn) and Ω ∈ L log+ L(Sn−1)
satisfies (1.2) and (1.3).

In 1981, Cohen [Co] gave an extension of the Calderón commutator TA
as follows. Let us first recall the definition of BMO space.

Definition 1.1 (BMO function). Suppose that f ∈L1
loc(Rn) and B⊂Rn

is a ball. Denote by fB the mean of f on B, that is, fB = |B|−1
	
B f(x) dx.

For a > 0, let

M(f,B) =
1

|B|

�

B

|f(x)− fB| dx for any ball B ⊂ Rn,

and

Ma(f) = sup
|B|=a

M(f,B).

The function f ∈ L1
loc(Rn) is said to belong to BMO(Rn) if there exists a

constant C > 0 such that ‖f‖∗ := supa>0Ma(f) ≤ C.

Let A be a function on Rn with ∇A ∈ BMO, that is, DβA ∈ BMO(Rn)

for every multi-index β with |β| = 1, where DβA(x) = ∂|β|A

∂x
β1
1 ···∂x

βn
n

(x) is the

partial derivative of A which is assumed to exist in the classical sense almost
everywhere on Rn. For x, y ∈ Rn, set

R(A;x, y) = A(x)−A(y)−∇A(y) · (x− y).(1.4)

Then the Calderón type commutator TA is defined by

TAf(x) = p.v.
�

Rn

Ω(x− y)

|x− y|n+1
R(A;x, y)f(y) dy.(1.5)

Cohen [Co] showed that if Ω ∈ Lip(Sn−1) satisfies (1.2), (1.3), then for A
with ∇A ∈ BMO, TA is a bounded operator on Lp(Rn) for 1 < p <∞.

In 1994, Hofmann [Ho] improved the result of [Co].
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Theorem A ([Ho]). If Ω ∈
⋃
s>1 L

s(Sn−1) satisfies (1.2) and (1.3),
then for A with ∇A ∈ BMO, TA is bounded on Lp(Rn) (1 < p < ∞) with
the bound C

∑
|β|=1 ‖DβA‖∗.

Now let us consider the maximal operator TA,∗ of the Calderón type
commutator TA, which is defined by

(1.6) TA,∗f(x) = sup
ε>0
|TA,εf(x)|,

where TA,ε is the truncated operator of TA defined by

(1.7) TA,εf(x) =
�

|x−y|>ε

Ω(x− y)

|x− y|n+1
R(A;x, y)f(y) dy.

Cohen [Co] stated that if Ω ∈ Lip(Sn−1) satisfies (1.2), (1.3), then for A
with ∇A ∈ BMO, TA,∗ is bounded on Lp(Rn) for 1 < p < ∞. In 2005, Hu
[Hu] improved Cohen’s result above for n ≥ 2. For Ω ∈ Ls(Sn−1) (s ≥ 1),
the Ls integral modulus of continuity ωs of Ω is defined by

ωs(δ) = sup
‖ρ‖<δ

( �

Sn−1

|Ω(ρx′)−Ω(x′)|s dσ(x′)
)1/s

,

where ‖ρ‖ = supx′∈Sn−1 |ρx′ − x′|, and denote ω(δ) = ω1(δ).

Theorem B ([Hu]). Let n ≥ 2. Suppose Ω ∈ L1(Sn−1) satisfies (1.2)
and (1.3). If ω satisfies the following Log-type Dini-condition:

(1.8)

1�

0

ω(δ)

δ
log(2 + 1/δ) dδ <∞,

then for A with ∇A ∈ BMO, TA,∗ is bounded on Lp(Rn) with the bound
C
∑
|β|=1 ‖DβA‖∗ for any 1 < p <∞.

The compact operator is an important concept in analysis. It is well
known that the commutators of many important operators in harmonic
analysis are all compact operators on some suitable Lp spaces and Morrey
spaces (see [U], [BL], [KL1], [KL2], [W] and the recent works [BT], [BDMT],
[CD1]–[CDW3], [DM2], [DMX]). Thus, it is natural to ask whether the Lp-
compactness of the Calderón type commutator TA and its maximal operator
TA,∗ holds or not.

In this paper, we will consider this problem. Let us recall some definitions
and a known result.

Definition 1.2. Suppose X,Y are Banach spaces and U is the unit
ball in X. A linear or sublinear operator S : X → Y is said to be a compact
operator from X to Y if S(U) is precompact in Y .
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Definition 1.3 (VMO function). A function f in BMO(Rn) is said to
belong to VMO(Rn) if

lim
a→0
Ma(f) = 0.

In 1998, Muhly and Xia [MX] considered the compactness of the operator

(1.9) f 7→ χ[−R,R](x) p.v.
�

R

A(x)−A(y)−A′(y)(x−y)

x− y
f(y)χ[−R,R](y)

x− y
dy,

where R > 0.

Theorem C ([MX]). If A ∈ Lip(R) with A′ ∈ VMO(R), then the oper-
ator defined by (1.9) is a compact operator on L2(R) for any R > 0.

In the present paper, our main purpose is to show that the Calderón
type commutator TA and its maximal operator TA,∗ defined respectively by
(1.5) and (1.6) are compact operators on Lp(Rn). Let us first introduce some
notations. For m ∈ N, we write ∇mA ∈ BMO if DβA ∈ BMO(Rn) for every
multi-index β with |β| = m. Moreover, denote

‖A‖m,∗ := ‖∇mA‖∗ =
∑
|β|=m

‖DβA‖∗.

It is easy to check that ‖ · ‖m,∗ is only a seminorm for all m ∈ N. Denote by
Am the closure of C∞c (Rn) in the seminorm ‖ · ‖m,∗,

(1.10) Am = C∞c (Rn)
‖·‖m,∗

,

which means that for any A ∈ Am(Rn) and ε > 0, there exists A0 ∈ C∞c (Rn)
such that

‖A−A0‖m,∗ =
∑
|β|=m

‖DβA−DβA0‖∗ < ε.

Note that C∞c (Rn) ⊂ BMO(Rn), so it is obvious that ∇mA ∈ BMO for all
m ≥ 1 and A ∈ Am. Below we denote A1 by A for simplicity.

Remark 1.4. We would like to show that for m ∈ N, Am contains the
set of all functions with compact support and with all its partial derivatives
of order m in VMO(Rn). In fact, assume that supp(A) ⊂ B and DβA ∈
VMO(Rn), where B is a ball in Rn and |β| = m. By [DM1, Theorem 1.2],
lim|y|→0 ‖τy(DβA) −DβA‖∗ = 0, where τyf(x) = f(x − y) for y ∈ Rn. On
the other hand, the following conclusion was also given in [DM1]:

Lemma 1.1 ([DM1, Lemma 3.2]). Suppose that f ∈ BMO(Rn) with
lim|y|→0 ‖τyf − f‖∗ = 0 and {φk}k∈N ⊂ L1(Rn) satisfies the following con-
ditions: for any k ∈ N,

(i) φk is positive and continuous in Rn;
(ii) supp(φk) ⊂ B(0, 1/k), where B(x, r) denotes the ball centered at x

and radius r;
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(iii)
	
Rn φk(x) dx = 1.

Then limk→∞ ‖f − f ∗ φk‖∗ = 0.

Thus, together with the facts above, we have

lim
k→∞

‖φk ∗DβA−DβA‖∗ = 0 for all |β| = m,

whenever {φk} ⊂ C∞c (Rn) satisfies conditions (i)–(iii) in Lemma 1.1. Let
Ak = φk ∗ A. Since A has compact support, we have {Ak}k∈N ⊂ C∞c (Rn)
and limk→∞ ‖∇mAk −∇mA‖∗ = 0. Therefore, A ∈ Am.

Now we give the main result in this paper.

Theorem 1.2. Let n ≥ 2. Suppose Ω ∈ Ls(Sn−1) (s > 1) satisfies (1.2),
(1.3) and ω satisfies (1.8). If A ∈ A , then TA and TA,∗ are compact operators
on Lp(Rn) for any 1 < p <∞.

Remark 1.5. When n = 1, since Ω satisfies (1.2) and (1.3), without
loss of generality we may assume that Ω(x) = 1 on R \ {0}. Thus,

(1.11) TAf(x) = p.v.
�

R

A(x)−A(y)−A′(y)(x− y)

(x− y)2
f(y) dy.

Using the idea of the proof of Theorem 1.2 and the conclusion of Theorem A
as well as the Lp boundedness of the Hardy–Littlewood maximal operator,
we may show that if A ∈ A (R), then TA defined in (1.11) is a compact
operator on Lp(R) for any 1 < p <∞.

Remark 1.6. Applying the compactness of TA on Lp(R) (1 < p < ∞)
(see Remark 1.5), we can use a totally different approach to show that if
A ∈ A (R), then the operator defined in (1.9) is also compact on Lp(R) for
any 1 < p <∞.

Fix R > 0, and denote by LR the operator defined in (1.9). Moreover,
let MR be the multiplication operator defined by MRf = χ[−R,R]f for all
f ∈ Lp(R) (1 < p < ∞). Obviously, MR is a bounded linear operator on
Lp(R), and the operator family {MR}R>0 is bounded on Lp(R) uniformly
in R > 0. Note that

(1.12) LR = MRTAMR,

and TA is a compact linear operator on Lp(R) (1 < p <∞) when A ∈ A (R)
by Remark 1.5. Hence, if A ∈ A (R), then for any R > 0 the operator LR is
compact on Lp(R) (1 < p < ∞) by (1.12) (see [R, p. 104]). Here we indeed
use a totally different approach to prove Theorem C when A ∈ A (R).

Of course, the function class covered by Theorem C is not contained
in A (R). So the conclusion of Theorem C can be seen as a consequence of
our result when A ∈ A (R) only.
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Remark 1.7. It should be pointed out that when n = 1 the maximal
operator TA,∗ can be defined similarly to (1.6). However, as far as we know,
when n = 1 the boundedness and compactness of TA,∗ are still unclear.

The second purpose of this paper is to prove the compactness of the
fractional variant of the Calderón type commutator TA. Let us recall some
known results. For m ≥ 1, the mth remainder of the Taylor series of A at x
about y is denoted by

(1.13) Rm(A;x, y) = A(x)−
∑
|β|≤m

1

β!
DβA(y)(x− y)β.

In 2001, Ding and Lu [DL2] introduced the following fractional Calderón
type commutator Iα,A,m and its maximal operator Mα,A,m:

Iα,A,mf(x) =
�

Rn

Ω(x− y)

|x− y|n+m−α
Rm(A;x, y)f(y) dy,(1.14)

Mα,A,mf(x) = sup
r>0

1

rn+m−α

�

|x−y|<r

|Ω(x− y)| |Rm(A;x, y)| |f(y)| dy,(1.15)

where 0 < α < n.
In [DL2], the authors obtained the (Lp, Lq) boundedness of Iα,A,m and

Mα,A,m.

Theorem D ([DL2])). Let 0 < α < n, 1/q = 1/p − α/n and 1 <
p < n/α. Let Ω ∈ Ls(Sn−1) with s > min{p′, q} satisfies (1.2). Assume
∇mA ∈ BMO (m ≥ 1). Then Iα,A,m and Mα,A,m are bounded from Lp to Lq

and there exists a positive constant C such that

‖Iα,A,mf‖q, ‖Mα,A,mf‖q ≤ C‖∇mA‖∗‖f‖p.
The authors of [DL2] indeed established the weighted (Lp, Lq) bounded-

ness for a more general fractional Calderón type commutator and its maxi-
mal operator. Theorem D is a special case of a result in [DL2].

The next result shows that Iα,A,m and Mα,A,m are also compact from
Lp(Rn) to Lq(Rn).

Theorem 1.3. Let 0 < α < n, 1/q = 1/p − α/n and 1 < p < n/α.
Ω ∈ Ls(Sn−1) with s > p′ satisfies (1.2) and ωs satisfies (1.8). If A ∈
Am (m ≥ 1), then Iα,A,m and Mα,A,m are compact operators from Lp(Rn)
to Lq(Rn).

The plan of this paper is as follows: In Section 2, we give the proof of
Theorem 1.2. The proof of the compactness of Iα,A,m and Mα,A,m can be
found in Section 3. In the final section, we show that similar compactness
results hold for higher order Calderón type commutators and multilinear
Calderón type commutators.
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In this paper, C will denote a positive constant that can change its value
in each statement without explicit mention.

2. The proof of Theorem 1.2. Let us begin by recalling some known
results. The first one characterizes strongly precompact sets in Lp(Rn).

Lemma 2.1 (Fréchet–Kolmogorov, see [Y]). A subset G of Lp(Rn) (1 ≤
p < ∞) is strongly precompact if and only if G satisfies the following con-
ditions:

(a) supf∈G ‖f‖p <∞;
(b) lima→∞ ‖fχEa‖p = 0, uniformly for f ∈ G, where Ea = {x ∈ Rn :
|x| > a};

(c) lim|h|→0 ‖f(·+ h)− f(·)‖p = 0, uniformly for f ∈ G.

In order to prove Theorem 1.2, we also need the Lp-boundedness of the
maximal operator MΩ with homogenous kernel, which is defined by

MΩf(x) = sup
r>0

1

rn

�

|y|≤r

|Ω(y)| |f(x− y)| dy.

Lemma 2.2 (see [LDY, Theorem 2.3.3]). Suppose that Ω ∈ L1(Sn−1)
satisfies (1.2). Then MΩ is bounded on Lp(Rn) for 1 < p ≤ ∞.

Lemma 2.3 (see [KW] for β = 0 and [DL1] for 0 < β < n). Suppose
Ω ∈ Ls(Sn−1) (s ≥ 1) satisfies (1.2) and the following Ls-Dini condition:

(2.1)

1�

0

ωs(δ)

δ
dδ <∞.

Then for 0 ≤ β < n, there exists a constant 0 < θ < 1/2 such that when
|x| < θR,( �

R<|y|<2R

∣∣∣∣ Ω(y − x)

|y − x|n−β
− Ω(y)

|y|n−β

∣∣∣∣s dy)1/s

≤ CRn/s−n+β
{
|x|
R

+

|x|/R�

|x|/(2R)

ωs(δ)

δ
dδ

}
,

where the constant C > 0 is independent of R and x.

Lemma 2.4 (see [R, Theorem 4.18]). Let X and Y be Banach spaces. The
compact operators form a closed subspace of B(X,Y ) in its norm topology,
where B(X,Y ) denotes the space of bounded linear operators from X to Y .

2.1. The compactness of TA on Lp(Rn). By Lemma 2.4, we need only
show that if Ω satisfies the conditions of Theorem 1.2 and A ∈ C∞c (Rn),
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then TA is compact on Lp(Rn) for all 1 < p < ∞. In fact, for A ∈ A and
ε > 0, there exists A0 ∈ C∞c (Rn) such that

(2.2) ‖A−A0‖1,∗ =
∑
|β|=1

‖Dβ(A−A0)‖∗ < ε

by (1.10). Thus, by Theorem A and (2.2) we get

‖TA − TA0‖ = sup
‖f‖p≤1

‖TAf − TA0f‖p

= sup
‖f‖p≤1

‖TA−A0f‖p ≤ C
∑
|β|=1

‖Dβ(A−A0)‖∗ < Cε,

which shows that the operator TA can be approximated by the operator
family {TB}B∈C∞c in the operator norm topology.

Now we assume A ∈ C∞c (Rn) and denote F = {TAf : f ∈ B}; here and
below, B denotes the unit ball in Lp(Rn) (1 < p < ∞). Since F ⊂ Lp(Rn)
by Theorem A, to show that TA is compact on Lp(Rn) it suffices to prove
that the set F is strongly precompact in Lp(Rn). Applying Lemma 2.1, we
need only prove that conditions (a)–(c) in Lemma 2.1 hold uniformly for F
with A ∈ C∞c (Rn).

Condition (a) is a direct consequence of Theorem A. For (b), since A ∈
C∞c (Rn), without loss of generality we can assume that supp(A) ⊂ {x ∈ Rn :
|x| ≤ b} with b > 1. Let r = min{p, s} > 1 and for any ε > 0, take a > 2b
such that (a− b)−n/r′ < ε. Note that

R(A;x, y) =
∑
|β|=1

1�

0

DβA(θx+ (1− θ)y)(x− y)β dθ −
∑
|β|=1

DβA(y)(x− y)β,

we have

‖TAfχEa‖p ≤ C
∑
|β|=1

{( �

|x|>a

( �

Rn

|Ω(x− y)|
|x− y|n

|DβA(y)| |f(y)| dy
)p

dx

)1/p

+

1�

0

( �

|x|>a

( �

Rn

|Ω(x− y)|
|x− y|n

|DβA(θx+ (1− θ)y)| |f(y)| dy
)p

dx

)1/p

dθ

}
=: I1 + I2.

First consider I2. Note that |x−y| ≥ a−b
1−θ since θ ∈ (0, 1), |θx+(1−θ)y| ≤ b

and |x| > a. Combining Hölder’s inequality with Minkowski’s inequality, we
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obtain( �

|x|>a

( �

Rn

|Ω(x− y)|
|x− y|n

|DβA(θx+ (1− θ)y)| |f(y)| dy
)p

dx

)1/p

≤ C
( �

Rn

( �

|y|≥ a−b
1−θ

|Ω(y)|r

|y|nr
|f(x− y)|r dy

)p/r

×
( �

Rn
|DβA(θx+ (1− θ)y)|r′ dy

)p/r′
dx

)1/p

≤ C[b/(1− θ)]n/r′‖DβA‖∞‖f‖p
( �

|y|≥ a−b
1−θ

|Ω(y)|r

|y|nr
dy

)1/r

≤ Cεbn/r′‖Ω‖Ls(Sn−1)‖DβA‖∞‖f‖p.
Similarly,

I1 ≤ Cbn/r
′ ∑
|β|=1

‖DβA‖∞
( �

Rn

( �

|x−y|≥a−b

|Ω(x− y)|r

|x− y|nr
|f(y)|r dy

)p/r
dx

)1/p

≤ Cεbn/r′‖Ω‖Ls(Sn−1)

∑
|β|=1

‖DβA‖∞‖f‖p.

Therefore, condition (b) holds for F uniformly.
It remains to prove (c), that is, we need to verify that for any 0 < ε < 1/4,

if |h| is sufficiently small and depends only on ε, then

(2.3) ‖TAf(·+ h)− TAf(·)‖p < Cε

holds uniformly for f ∈ B. In fact, for any x, h ∈ Rn, we have

(2.4) TAf(x+ h)− TAf(x)

=
�

|x−y|>e1/ε|h|

Ω(x+ h− y)

|x+ h− y|n

[
R(A;x+ h, y)

|x+ h− y|
− R(A;x, y)

|x− y|

]
f(y) dy

+
�

|x−y|>e1/ε|h|

[
Ω(x+ h− y)

|x+ h− y|n
− Ω(x− y)

|x− y|n

]
R(A;x, y)

|x− y|
f(y) dy

−
�

|x−y|≤e1/ε|h|

Ω(x− y)

|x− y|n
R(A;x, y)

|x− y|
f(y) dy

+
�

|x−y|≤e1/ε|h|

Ω(x+ h− y)

|x+ h− y|n
R(A;x+ h, y)

|x+ h− y|
f(y) dy

=: J1 + J2 − J3 + J4.
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In the following, we estimate J1, J2, J3 and J4. Since |x − y| > e1/ε|h| and
0 < ε < 1/4, we have |x− y| ∼ |x+ h− y| and

(2.5) |R(A;x, y)| ≤ C
∑
|β|=1

‖DβA‖∞|x− y|.

Applying (2.5), it is easy to see that

(2.6)

∣∣∣∣R(A;x+ h, y)

|x+ h− y|
− R(A;x, y)

|x− y|

∣∣∣∣
≤ C |R(A;x+ h, y)−R(A;x, y)|

|x− y|
+ C|R(A;x, y)| |h|

|x− y|2

≤ C
∑
|β|=1

‖DβA‖∞
|h|
|x− y|

.

Thus, by (2.6) we get

|J1| ≤ C|h|
∑
|β|=1

‖DβA‖∞
�

|x−y|>e1/ε|h|

|Ω(x− y)|
|x− y|n+1

|f(y)| dy(2.7)

≤ Ce−1/ε
∑
|β|=1

‖DβA‖∞MΩf(x).

As Ls(Sn−1) ⊂ L1(Sn−1) for any s > 1, (2.7) and Lemma 2.2 give

‖J1‖p ≤ C
∑
|β|=1

‖DβA‖∞e−1/ε‖f‖p.

For J2, combining (2.5) with Minkowski’s inequality, we have

‖J2‖p ≤ C
( �

Rn

( �

|x−y|>e1/ε|h|

∣∣∣∣Ω(x+ h− y)

|x+ h− y|n
− Ω(x− y)

|x− y|n

∣∣∣∣ |f(y)| dy
)p

dx

)1/p

×
∑
|β|=1

‖DβA‖∞

≤ C
∑
|β|=1

‖DβA‖∞‖f‖p
�

|y|>e1/ε|h|

∣∣∣∣Ω(y + h)

|y + h|n
− Ω(y)

|y|n

∣∣∣∣ dy.



Lp compactness for Calderón type commutators 11

By Lemma 2.3 and (1.8), we have

�

|y|>e1/ε|h|

∣∣∣∣Ω(y + h)

|y + h|n
− Ω(y)

|y|n

∣∣∣∣ dy
≤

∞∑
k=0

�

2ke1/ε|h|<|y|≤2k+1e1/ε|h|

∣∣∣∣Ω(y + h)

|y + h|n
− Ω(y)

|y|n

∣∣∣∣ dy
≤ C

∞∑
k=0

{
|h|

2ke1/ε|h|
+

|h|/2ke1/ε|h|�

|h|/2k+1e1/ε|h|

ω(δ)

δ
dδ

}

≤ C
∞∑
k=0

{
1

2ke1/ε
+

1

k + 1/ε

2−ke−1/ε�

2−(k+1)e−1/ε

ω(δ)

δ
log

(
2 +

1

δ

)
dδ

}
≤ C(e−1/ε + ε).

Thus, ‖J2‖p ≤ C
∑
|β|=1 ‖DβA‖∞‖f‖p(e−1/ε + ε). As for J3, note that

(2.8) R(A;x, y) =
∑
|β|=2

1

β!
DβA(tx+ (1− t)y)(x− y)β for some t ∈ (0, 1).

By (2.8) we have

|J3| ≤ C
∑
|β|=2

‖DβA‖∞
�

|x−y|≤e1/ε|h|

|Ω(x− y)|
|x− y|n−1

|f(y)| dy

≤ Ce1/ε|h|
∑
|β|=2

‖DβA‖∞MΩf(x).

In a similar way, we can obtain the following estimate for J4:

|J4| ≤ C(e1/ε + 1)|h|
∑
|β|=2

‖DβA‖∞MΩf(x+ h).

Using Lemma 2.2 again, we get

‖J3‖p + ‖J4‖p ≤ C
∑
|β|=2

‖DβA‖∞‖f‖p(e1/ε + 1)|h|.

Choosing |h| < ε/(e1/ε + 1) < ε, we can see that condition (c) holds for F
uniformly, and the compactness of TA on Lp(Rn) follows.

2.2. The compactness of TA,∗ on Lp(Rn). The proof of the compact-
ness of TA,∗ uses the following obvious fact; we omit its proof here.

Lemma 2.5. Suppose that A, V ∈ A . Then for 1 < p <∞,

(i) |TA,∗f(x)− TV,∗f(x)| ≤ TA−V,∗f(x);
(ii) ‖TA,∗fχEa‖p ≤ ‖TV,∗fχEa‖p + ‖TA−V,∗f‖p;

(iii) ‖TA,∗f(·+h)−TA,∗f(·)‖p ≤ ‖TV,∗f(·+h)−TV,∗f(·)‖p+2‖TA−V,∗f‖p.
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Now denote G := {TA,∗f : f ∈ B}. Then G ⊂ Lp(Rn) by Theorem B.
By Lemma 2.5, to prove the compactness of TA,∗ we need only show that
conditions (a)–(c) in Lemma 2.1 hold uniformly for G with A ∈ C∞c (Rn).

The verification of (a) is obvious by Theorem B. Using the same approach
as in verifying (b) for F in Subsection 2.1, we can show that (b) holds
uniformly for G. So, to complete the proof of of the compactness of TA,∗, it
remains to verify that (c) holds uniformly for G.

For δ > 0, denote Kδ(x, y) = Ω(x−y)
|x−y|n χ{|x−y|>δ}. Similarly to the decom-

position (2.4), for any 0 < ε < 1/4 and h ∈ Rn, where |h| is sufficiently
small and depends only on ε, we see that |TA,∗f(x+ h)− TA,∗f(x)| can be
controlled by the sum of the following four terms:

L1 = sup
δ>0

∣∣∣∣ �

|x−y|>e1/ε|h|

Kδ(x+ h, y)

[
R(A;x+ h, y)

|x+ h− y|
− R(A;x, y)

|x− y|

]
f(y) dy

∣∣∣∣,
L2 = sup

δ>0

∣∣∣∣ �

|x−y|>e1/ε|h|

[Kδ(x+ h, y)−Kδ(x, y)]
R(A;x, y)

|x− y|
f(y) dy

∣∣∣∣,
L3 = sup

δ>0

∣∣∣∣ �

|x−y|≤e1/ε|h|

Kδ(x, y)
R(A;x, y)

|x− y|
f(y) dy

∣∣∣∣,
L4 = sup

δ>0

∣∣∣∣ �

|x−y|≤e1/ε|h|

Kδ(x+ h, y)
R(A;x+ h, y)

|x+ h− y|
f(y) dy

∣∣∣∣.
Applying (2.5), (2.6) and Lemma 2.2, we estimate L1, L3 and L4 in the
same way as for J1, J3 and J4 in Subsection 2.1. Hence, we only estimate L2.
Notice that

L2 ≤ sup
δ>0

∣∣∣∣ �

|x−y|>e1/ε|h|
|x+h−y|>δ

[
Ω(x+ h− y)

|x+ h− y|n
− Ω(x− y)

|x− y|n

]
R(A;x, y)

|x− y|
f(y) dy

∣∣∣∣(2.9)

+ sup
δ>0

∣∣∣∣ �

|x−y|>e1/ε|h|
|x+h−y|>δ
|x−y|≤δ

Ω(x− y)

|x− y|n
R(A;x, y)

|x− y|
f(y) dy

∣∣∣∣

+ sup
δ>0

∣∣∣∣ �

|x−y|>e1/ε|h|
|x+h−y|≤δ
|x−y|>δ

Ω(x− y)

|x− y|n
R(A;x, y)

|x− y|
f(y) dy

∣∣∣∣
=: L21 + L22 + L23.

The estimation of L21 is the same as for J2 in Subsection 2.1. As the esti-
mation of L23 is similar to that for L22, we only estimate L22. Notice that
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|x− y| > e1/ε|h| and 0 < ε < 1/4, then

(2.10)
1

1 + e−1/ε
|x+ h− y| ≤ |x− y| ≤ 1

1− e−1/ε
|x+ h− y|.

For any 1 < p0 < p, by (2.5) and Hölder’s inequality, we have

L22 ≤ C
∑
|β|=1

‖DβA‖∞ sup
δ>0

�

δ

1+e−1/ε
≤|x−y|≤δ

|Ω(x− y)|
|x− y|n

|f(y)| dy

≤ C
∑
|β|=1

‖DβA‖∞ sup
δ>0

( �

δ

1+e−1/ε
≤|x−y|≤δ

|Ω(x− y)|
|x− y|n

|f(y)|p0 dy
)1/p0

×
( �

δ

1+e−1/ε
≤|y|≤δ

|Ω(y)|
|y|n

dy

)1/p′0

≤ C
∑
|β|=1

‖DβA‖∞‖Ω‖
1/p′0
Ls(Sn−1)

(log(1 + e−1/ε))1/p
′
0MΩ(fp0)(x)1/p0 .

By Lemma 2.2, we see that (c) holds uniformly for G, which completes the
proof of Theorem 1.2.

3. The proof of Theorem 1.3. Before giving the proof, let us recall
some known facts. The first one is the classical Hardy–Littlewood–Sobolev
theorem on the Riesz potential Iα, which is defined by

(3.1) Iαf(x) = cn
�

Rn

f(y)

|x− y|n−α
dy, 0 < α < n.

Lemma 3.1 (Hardy–Littlewood-Sobolev, see [S]). If 0 < α < n, 1 <
p < n/α and 1/q = 1/p− α/n, then Iα is bounded from Lp(Rn) to Lq(Rn).

The second fact is the (Lp, Lq)-boundedness of the fractional integral
operator IΩ,α with the homogenous kernel defined by

(3.2) IΩ,αf(x) =
�

Rn

Ω(x− y)

|x− y|n−α
f(y) dy, 0 < α < n,

where Ω ∈ Ln/(n−α)(Sn−1) satisfies (1.2).

Lemma 3.2 ([LDY, Theorem 3.3.1]). Suppose that 0 < α < n and Ω ∈
Ln/n−α(Sn−1) satisfies (1.2). For 1 < p < n/α and 1/q = 1/p − α/n, IΩ,α
is bounded from Lp(Rn) to Lq(Rn).

3.1. The compactness of Iα,A,m from Lp(Rn) to Lq(Rn). As stated in
Section 2, by Lemma 2.4 we need only show that if Ω satisfies the conditions
of Theorem 1.3 and A ∈ C∞c (Rn), then the operator Iα,A,m is compact from
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Lp(Rn) to Lq(Rn). By Lemma 2.1, it suffices to verify that conditions (a)–(c)
of Lemma 2.1 hold uniformly for

J := {Iα,A,mf : f ∈ B} where A ∈ C∞c (Rn).

Condition (a) comes from Theorem D and the fact C∞c ⊂ BMO. For (b),
we assume that supp(A) ⊂ {x ∈ Rn : |x| ≤ b} with b > 1. As s′ < p, there
exists p1 such that s′ < p1 < p. For any ε > 0, we take a > 2b such that

(a− b)−n(1/p′1−1/s) < ε.

Using Taylor’s extension with remainder in integral form (see [RS]), we have

(3.3) |Rm(A;x, y)|

≤
∑
|β|=m

Cβ

1�

0

(1− θ)m−1|DβA(θx+ (1− θ)y)(x− y)β| dθ

+ C
∑
|β|=m

|DβA(y)(x− y)β|.

Thus,

(3.4) |Iα,A,mf(x)| ≤ C
∑
|β|=m

�

Rn

|Ω(x− y)|
|x− y|n−α

|DβA(y)| |f(y)| dy

+ C
∑
|β|=m

1�

0

(1− θ)m−1
�

Rn

|Ω(x− y)|
|x− y|n−α

|DβA(θx+ (1− θ)y)| |f(y)| dy dθ

=: N1 +N2.

Note that |x − y| ≥ a−b
1−θ , since θ ∈ (0, 1), |θx + (1 − θ)y| ≤ b and |x| > a.

Applying Hölder’s inequality with exponents p1, s,
sp′1
s−p′1

, we get

N2 ≤ C
∑
|β|=m

1�

0

(1− θ)m−1
�

|x−y|> a−b
1−θ

|Ω(x− y)|
|x− y|n−α

|DβA(θx+ (1− θ)y)|(3.5)

× |f(y)| dy dθ

≤ C
∑
|β|=m

1�

0

(1− θ)m−1
( �

Rn
|DβA(θx+ (1− θ)y)|

sp′1
s−p′1 dy

) s−p′1
sp′1

×
( �

|x−y|> a−b
1−θ

|Ω(x− y)|s

|x− y|ns/p′1
dy

)1/s( �

Rn

|f(y)|p1
|x− y|n−αp1

dy

)1/p1

dθ

≤ Cεbn(1/p′1−1/s)‖Ω‖Ls(Sn−1)

∑
|β|=m

‖DβA‖∞Iαp1(|f |p1)(x)1/p1 .
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Analogously, for |x| > a,

N1 ≤ C
∑
|β|=m

�

|x−y|>a−b

|Ω(x− y)|
|x− y|n−α

|DβA(y)| |f(y)| dy(3.6)

≤ Cε‖Ω‖Ls(Sn−1)

∑
|β|=m

‖DβA‖∞Iαp1(|f |p1)(x)1/p1 .

Notice that p1 < p. Combining (3.5), (3.6) with Lemma 3.1, we get

‖Iα,A,mfχEa‖q ≤ Cε‖Ω‖Ls(Sn−1)

∑
|β|=m

‖DβA‖∞‖f‖p.

Thus, (b) holds uniformly for J .

Finally, let us verify (c). For any 0 < ε < 1/4 and h ∈ Rn, where |h| is
sufficiently small and depends only on ε, we have the decomposition

(3.7) Iα,A,mf(x+ h)− Iα,A,mf(x)

=
�

|x−y|>e1/ε|h|

Ω(x+ h− y)

|x+ h− y|n−α

[
Rm(A;x+ h, y)

|x+ h− y|m
− Rm(A;x, y)

|x− y|m

]
f(y) dy

+
�

|x−y|>e1/ε|h|

[
Ω(x+ h− y)

|x+ h− y|n−α
− Ω(x− y)

|x− y|n−α

]
Rm(A;x, y)

|x− y|m
f(y) dy

−
�

|x−y|≤e1/ε|h|

Ω(x− y)

|x− y|n−α
Rm(A;x, y)

|x− y|m
f(y) dy

+
�

|x−y|≤e1/ε|h|

Ω(x+ h− y)

|x+ h− y|n−α
Rm(A;x+ h, y)

|x+ h− y|m
f(y) dy

=: O1 +O2 +O3 +O4.

For O1, notice that

|Rm(A;x, y)| ≤ C
∑
|β|=m

‖DβA‖∞|x− y|m(3.8)

and

(3.9) |Rm(A;x+ h, y)−Rm(A;x, y)|

≤ C|h|
∑

1≤|β|≤m

‖DβA‖∞|x− y||β|−1.
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It is easy to see that

(3.10)

∣∣∣∣Rm(A;x+ h, y)

|x+ h− y|m
− Rm(A;x, y)

|x− y|m

∣∣∣∣
≤ C 1

|x− y|m
∣∣Rm(A;x+ h, y)−Rm(A;x, y)

∣∣+ C|Rm(A;x, y)| |h|
|x− y|m+1

≤ C
∑

1≤|β|≤m

‖DβA‖∞
|h|

|x− y|m−|β|+1
.

Hence

|O1| ≤ C
∑

1≤|β|≤m

‖DβA‖∞|h|
�

|x−y|>e1/ε|h|

|Ω(x+ h− y)|
|x+h−y|n−α|x−y|m−|β|+1

|f(y)| dy

≤ C
∑

1≤|β|≤m

‖DβA‖∞(e1/ε|h|)−(m−|β|+1)|h|I|Ω|,α(|f |)(x+ h).

Note that s > p′ > n
n−α . Applying Lemma 3.2, we obtain

‖O1‖q ≤ C
∑

1≤|β|≤m

‖DβA‖∞(e1/ε|h|)−(m−|β|+1)|h| ‖f‖p.

As for O2, denote rk = 2ke1/ε|h| and Bk = B(0, rk). Then by (3.8) and
Lemma 2.3, we have

O2 ≤ C
∑
|β|=m

‖DβA‖∞
�

|y|>e1/ε|h|

∣∣∣∣ Ω(y + h)

|y + h|n−α
− Ω(y)

|y|n−α

∣∣∣∣ |f(x− y)| dy

≤ C
∑
|β|=m

‖DβA‖∞
∞∑
k=0

�

Bk+1\Bk

∣∣∣∣ Ω(y + h)

|y + h|n−α
− Ω(y)

|y|n−α

∣∣∣∣ |f(x− y)| dy

≤ C
∑
|β|=m

‖DβA‖∞
∞∑
k=0

( �

Bk+1\Bk

∣∣∣∣ Ω(y + h)

|y + h|n−α
− Ω(y)

|y|n−α

∣∣∣∣s dy)1/s

×
( �

Bk+1\Bk

|f(x− y)|s′ dy
)1/s′

≤ C
∑
|β|=m

‖DβA‖∞
∞∑
k=0

{
|h|
rk

+

|h|/rk�

|h|/rk+1

ωs(δ)

δ
dδ

}
r
n/s−n+α
k

×
( �

Bk+1\Bk

|f(x− y)|s′ dy
)1/s′
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≤ C
∑
|β|=m

‖DβA‖∞Iαs′(|f |s
′
)(x)1/s

′

×
∞∑
k=0

{
1

2ke1/ε
+

1

k + 1/ε

2−ke−1/ε�

2−k−1e−1/ε

ωs(δ)

δ
log

(
2 +

1

δ

)
dδ

}

≤ C
∑
|β|=m

‖DβA‖∞(e−1/ε + ε)Iαs′(|f |s
′
)(x)1/s

′
.

Thus, noting that s′ < p and 1
q/s′ = 1

p/s′ −
αs′

n , by Lemma 3.1 we have

‖O2‖q ≤ Cε
∑
|β|=m

‖DβA‖∞‖f‖p.

Finally, let us estimate O3 and O4. Note that

(3.11) Rm(A;x, y) =
∑

|β|=m+1

1

β!
DβA(ux+ (1− u)y)(x− y)β

for some u ∈ (0, 1). Thus,

|O3| ≤ C
∑

|β|=m+1

‖DβA‖∞
�

|x−y|≤e1/ε|h|

|Ω(x− y)|
|x− y|n−α−1

|f(y)| dy

≤ C
∑

|β|=m+1

‖DβA‖∞e1/ε|h|I|Ω|,α(|f |)(x).

In the same way, we can obtain the following estimate for O4:

(3.12) |O4| ≤ C
∑

|β|=m+1

‖DβA‖∞(e1/ε + 1)|h|I|Ω|,α(|f |)(x+ h).

Then by Lemma 3.2, it is easy to see

‖O3‖q + ‖O4‖q ≤ C(e1/ε + 1)|h|
∑

|β|=m+1

‖DβA‖∞‖f‖p.

Therefore, if we choose |h| = e
− 2m−1

2(m−1)ε when m > 1 or |h| = ε
e1/ε+1

when

m = 1, then condition (c) holds for J uniformly. Hence we have proved that
the fractional Calderón type commutator Iα,A,m is a compact operator from
Lp(Rn) to Lq(Rn).

3.2. Compactness of Mα,A,m from Lp(Rn) to Lq(Rn). We first notice
that Lemma 2.5 also holds if we use Mα,A,m instead of TA,∗. Let L :=
{Mα,A,mf : f ∈ B}. We need only show that conditions (a)–(c) of Lemma
2.1 hold uniformly for L with A ∈ C∞c (Rn).
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Condition (a) is a direct consequence of Theorem D. Notice that

Mα,A,mf(x) = sup
r>0

1

rn+m−α

�

|x−y|<r

|Ω(x− y)| |Rm(A;x, y)| |f(y)| dy

≤
�

Rn

|Ω(x− y)|
|x− y|n+m−α

|Rm(A;x, y)| |f(y)| dy.

Thus, using the same approach as in verifying condition (b) in Theorem 1.3,
we may show that (b) also holds uniformly for L. It remains to verify (c).

For any 0 < ε < 1/4 and h ∈ Rn, where |h| is sufficiently small and
depends only on ε, denote

K̃r(x, y) = r−n−m+α|Ω(x− y)|χ{|x−y|<r}.

We can control |Mα,A,mf(x+ h)−Mα,A,mf(x)| by the sum of the following
four terms:

P1 = sup
r>0

�

|x−y|>e1/ε|h|

K̃r(x+ h, y)|Rm(A;x+ h, y)−Rm(A;x, y)| |f(y)| dy,

P2 = sup
r>0

�

|x−y|>e1/ε|h|

|K̃r(x+ h, y)− K̃r(x, y)| |Rm(A;x, y)| |f(y)| dy,

P3 = sup
r>0

�

|x−y|≤e1/ε|h|

K̃r(x, y)|Rm(A;x, y)| |f(y)| dy,

P4 = sup
r>0

�

|x−y|≤e1/ε|h|

K̃r(x+ h, y)|Rm(A;x+ h, y)| |f(y)| dy.

By (3.9), we can give the following estimate for P1 analogous to that for O1:

P1 ≤ C
∑

1≤|β|≤m

‖DβA‖∞
|h|

(e1/ε|h|)m−|β|+1

�

|x−y|>e1/ε|h|

|Ω(x+ h− y)|
|x+ h− y|n−α

|f(y)| dy

≤ C
∑

1≤|β|≤m

‖DβA‖∞
|h|

(e1/ε|h|)m−|β|+1
I|Ω|,α(|f |)(x+ h).

The estimation ofP3 andP4 is the same as forO3 andO4 in Subsection 3.1. We
only estimate P2. Similarly to the idea of dealing with L2 in Subsection 2.2,
we obtain
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P2 ≤ sup
r>0

1

rn+m−α

�

|x−y|>e1/ε|h|
|x+h−y|<r

|Ω(x+h−y)−Ω(x−y)| |Rm(A;x, y)| |f(y)| dy

(3.13)

+ sup
r>0

1

rn+m−α

�

|x−y|>e1/ε|h|
|x+h−y|≥r
|x−y|<r

|Ω(x− y)| |Rm(A;x, y)| |f(y)| dy

+ sup
r>0

1

rn+m−α

�

|x−y|>e1/ε|h|
|x+h−y|<r
|x−y|≥r

|Ω(x− y)| |Rm(A;x, y)| |f(y)| dy

=: P21 + P22 + P23.

For P21, note that |x+h−y| ∼ |x−y| (see (2.10)). Also denote rk = 2ke1/ε|h|
and Bk = B(0, rk). By (3.8), we have

P21 ≤ C
∑
|β|=m

‖DβA‖∞
∞∑
k=0

�

Bk+1\Bk

|Ω(y + h)−Ω(y)|
|y|n−α

|f(x− y)| dy

≤ C
∑
|β|=m

‖DβA‖∞Iαs′(|f |s
′
)(x)1/s

′
∞∑
k=0

( �

Bk+1\Bk

|Ω(y + h)−Ω(y)|s

|y|n
dy

)1/s

.

By the monotonicity of ωs, we have

∞∑
k=0

( �

Bk+1\Bk

|Ω(y + h)−Ω(y)|s

|y|n
dy

)1/s

≤
∞∑
k=0

( rk+1�

rk

�

Sn−1

|Ω(ρy′ + h)−Ω(y′)|s dσ(y′)
dρ

ρ

)1/s

≤ C
∞∑
k=0

( rk+1�

rk

ωs

(
|h|
ρ

)
dρ

ρ

)1/s

≤ C
∞∑
k=0

2−k+1e−1/ε�

2−ke−1/ε

ωs(δ)

δ
dδ

≤ C
∞∑
k=0

1

k − 1 + 1/ε

2−k+1e−1/ε�

2−ke−1/ε

ωs(δ)

δ
log

(
2 +

1

δ

)
dδ ≤ Cε.

Thus, since s′ < p and 1
q/s′ = 1

p/s′ −
αs′

n , Lemma 3.1 gives

(3.14) ‖P21‖q ≤ Cε
∑
|β|=m

‖DβA‖∞‖f‖p.
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Notice that |x− y| > e1/ε|h| and 0 < ε < 1/4. Similar to estimating L22

with I|Ω|,αp0 instead of MΩ, where 1 < p0 < min{p, n/(αs′)}, applying (3.8)
and (2.10) we obtain

P22 ≤ C
∑
|β|=m

‖DβA‖∞ sup
δ>0

�

δ

1+e−1/ε
≤|x−y|≤δ

|Ω(x− y)|
|x− y|n−α

|f(y)| dy

≤ C
∑
|β|=m

‖DβA‖∞ sup
δ>0

( �

δ

1+e−1/ε
≤|x−y|≤δ

|Ω(x− y)|
|x− y|n−αp0

|f(y)|p0 dy
)1/p0

×
( �

δ

1+e−1/ε
≤|y|≤δ

|Ω(y)|
|y|n

dy

)1/p′0

≤ C
∑
|β|=m

‖DβA‖∞‖Ω‖
1/p′0
Ls(Sn−1)

(log(1 + e−1/ε))1/p
′
0I|Ω|,αp0(|f |p0)(x)1/p0 .

Since s > n
n−αp0 , using Lemma 3.2 we get

(3.15) ‖P22‖q ≤ Cε1/p
′
0

∑
|β|=m

‖DβA‖∞‖f‖p.

Analogously, we obtain the same estimate for P23. Thus, (c) holds uniformly
for L. Hence, the maximal operator Mα,A,m is also compact from Lp(Rn) to
Lq(Rn), which completes the proof of Theorem 1.3.

4. Final remarks

Remark 4.1. The higher order Calderón type commutator TmA and the
corresponding maximal operator TmA,∗ (see [CG1] and [CG2]) are defined
by

TmA f(x) = p.v.
�

Rn

Ω(x− y)

|x− y|n+m
Rm(A;x, y)f(y) dy,

TmA,∗f(x) = sup
ε>0
|TmA,εf(x)|

= sup
ε>0

∣∣∣∣ �

|x−y|>ε

Ω(x− y)

|x− y|n+m
Rm(A;x, y)f(y) dy

∣∣∣∣.
Using the idea of the proof of Theorem 1.2, we can show that TmA and TmA,∗
are compact on Lp(Rn) (1 < p < ∞) when Ω ∈ Ls(Sn−1) (s > 1) satis-
fies (1.2) and has vanishing moments up to order m and ω satisfies (1.8),
and A ∈ Am. The proofs have no essential difficulties but more complicated
computations.
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Remark 4.2. For m = m1 + · · · + mk (mi ≥ 1) and Ai ∈ Ami (i =
1, . . . , k), one may define the following Calderón type commutators:

TmA1,...,Ak
f(x) = p.v.

�

Rn

Ω(x− y)

|x− y|n+m
k∏
i=1

Rmi(Ai;x, y)f(y) dy,

TmA1,...,Ak,∗f(x) = sup
ε>0

∣∣∣∣ �

|x−y|>ε

Ω(x− y)

|x− y|n+m
k∏
i=1

Rmi(Ai;x, y)f(y) dy

∣∣∣∣,
and for 0 < α < n,

Iα,A1,...,Ak,mf(x) =
�

Rn

Ω(x− y)

|x− y|n+m−α
k∏
i=1

Rmi(Ai;x, y)f(y) dy,

Mα,A1,...,Ak,mf(x)

= sup
r>0

r−(n+m−α)
�

|x−y|<r

|Ω(x− y)|
k∏
i=1

|Rmi(Ai;x, y)| |f(y)| dy.

Using the method of this paper, one can prove that the conclusions of Theo-
rems 1.2 and 1.3 also hold for the operators TmA1,...,Ak

, TmA1,...,Ak,∗, Iα,A1,...,Ak,m

and Mα,A1,...,Ak,m with Ω, p and q satisfying the corresponding conditions.
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