On separation of points from additive subgroups of l_{p}^{n} by linear functionals and positive definite functions

by
Wojciech Banaszczyk and Robert Stegliński (Łódź)

Abstract

Let X be a finite-dimensional real normed space, and K a closed additive subgroup of X. Let $a \in X \backslash K$ and let $d_{X}(a, K)$ be the distance from a to K. We say that a linear functional $f \in X^{*}$ separates a from K if $d_{\mathbb{R}}(f(a), f(K))>0$. We say that a continuous positive definite function $\varphi: X \rightarrow \mathbb{C}$ separates a from K if φ is constant on K and $\varphi(a) \neq \varphi(0)$. We consider the following question: how well can a be separated from K by linear functionals and positive definite functions? We introduce certain quantities, denoted by $w d_{X}(a, K)$ and $p d_{X}(a, K)$, which measure the 'distance' from a to K with respect to linear functionals and positive definite functions, respectively. Then we define

$$
\operatorname{wp}(X):=\sup \frac{p d_{X}(a, K)}{w d_{X}(a, K)}, \quad \operatorname{ps}(X):=\sup \frac{d_{X}(a, K)}{p d_{X}(a, K)},
$$

the suprema taken over all closed subgroups $K \subset X$ and all $a \in X \backslash K$. We give some estimates of $\operatorname{wp}(X)$ and $\mathrm{ps}(X)$, mainly for $X=l_{p}^{n}$. In particular we prove that $\operatorname{wp}\left(l_{p}^{n}\right) \asymp_{n}$ $n^{\max \{1 / 2,1 / p\}}$ if $1 \leq p \leq \infty$, and $\mathrm{ps}\left(l_{p}^{n}\right) \asymp_{n} n^{1 / 2}$ if $2 \leq p<\infty$. The results may be treated as finite-dimensional analogs of those obtained in Banaszczyk and Stegliński (2008, Sec. 5) for diagonal operators in l_{p} spaces.

1. Introduction and notation. Let X be a real normed space. Let K be an additive subgroup of X and let $a \in X \backslash K$. We say that a is strongly separated from K if it is separated from K in norm, i.e. $d_{X}(a, K)>0$, where d_{X} is the metric in X.

By a character of X we mean a homomorphism of the additive group of X into the multiplicative group of complex numbers with modulus 1 . We say that a character χ of X separates a from K if $\chi_{\mid K} \equiv 1$ and $\chi(a) \neq 1$. We say that a linear functional $f \in X^{*}$ separates a from K if $f(K)$ is a discrete subgroup of \mathbb{R} and $f(a) \notin f(K)$. We say that a is weakly separated

[^0]from K if it is separated from K by some continuous linear functional. This holds if and only if a is separated from K by some continuous character (there is a one-to-one correspondence between linear functionals $f \in X^{*}$ with $f(K) \subset \mathbb{Z}$ and continuous characters χ of X with $\chi_{\mid K} \equiv 1$, given by $e^{2 \pi i f}=\chi$ (see e.g. [HR, (23.32)]).

A complex-valued function φ on X is called positive definite (p.d. for short) if $\sum_{i, j=1}^{n} \lambda_{i} \bar{\lambda}_{j} \varphi\left(x_{i}-x_{j}\right) \geq 0$ for all $n \geq 1$, all $x_{1}, \ldots, x_{n} \in X$ and all $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$. We say that a p.d. function φ separates a from K if $\varphi(x)=\varphi(0)$ for each $x \in K$, and $\varphi(a) \neq \varphi(0)$. We say that a is \mathcal{P}-separated from K if it can be separated from K by some continuous p.d. function φ; we may of course assume that $\varphi(0)=1$.

If a is weakly separated from K, then it is \mathcal{P}-separated, and consequently strongly separated, from K. If $\operatorname{dim} X=\infty$, the three separation conditions are not equivalent, as was proved in [B1 and [S]. The differences between these conditions can be described in terms of linear operators between Banach spaces; the corresponding classes of operators were investigated in BS .

If $\operatorname{dim} X<\infty$ and a is strongly separated from K, then clearly it is also weakly separated, so that the three separation conditions are equivalent. Nevertheless, also in the finite-dimensional case it is 'easier' to separate a from K in norm than to separate it by a continuous p.d. function. Similarly, it is 'easier' to separate a from K by a continuous p.d. function than by a continuous character (or equivalently by a linear functional). The present paper is an attempt to give to the above vague statements some more precise meaning. To this end we need to define the distances from a to K with respect to linear functionals and p.d. functions, respectively.

From now on all normed spaces occurring are assumed to be real and finite-dimensional.

Let X be a normed space. We denote by $\mathcal{A}(X)$ the family of all closed additive subgroups of X. If $K \in \mathcal{A}(X)$, then K^{*} denotes the dual subgroup: $K^{*}:=\left\{f \in X^{*}: f(K) \subset \mathbb{Z}\right\}$. We use the same symbol to denote the dual space X^{*} and the dual subgroup K^{*}; this should not cause confusion. We denote by $\mathcal{P}(X)$ the family of all continuous p.d. functions φ on X such that $\varphi(0)=1$.

By an open plank in X we mean a set of the form $\left\{x: c_{1}<f(x)<c_{2}\right\}$, where $0 \neq f \in X^{*}$ and $-\infty<c_{1}<c_{2}<\infty$. The width of such a plank is defined as the distance between its boundary hyperplanes; it is equal to $\left(c_{2}-c_{1}\right) /\|f\|$.

Let $K \in \mathcal{A}(X)$ and $a \in X \backslash K$. The weak distance from a to K which we denote by $w d_{X}(a, K)$, is defined as half the maximum of the widths of all those open planks symmetric about a which are disjoint from K. It is easy
to see that

$$
\begin{equation*}
w d_{X}(a, K)=\max _{f} \frac{d(f(a), \mathbb{Z})}{\|f\|} \tag{1.1}
\end{equation*}
$$

where the maximum is taken over all non-zero $f \in K^{*}$. It is clear that

$$
\begin{equation*}
w d_{X}(t a, t K)=t \cdot w d_{X}(a, K), \quad t>0 \tag{1.2}
\end{equation*}
$$

There is apparently no natural way to define the distance from a to K with respect to p.d. functions. Loosely speaking, a can be well separated from K by $\varphi \in \mathcal{P}(X)$ if $\varphi_{\mid K} \equiv 1, \varphi$ is close to 1 in some not too small neighbourhood of 0 , and far from 1 at a. For the purpose of the present paper we adopt the following definition.

For $\varphi \in \mathcal{P}(X)$, we denote

$$
r(\varphi):=\sup \{r>0: \operatorname{Re} \varphi(x) \geq 5 / 6 \text { if }\|x\| \leq r\}
$$

In other words, $r(\varphi)$ is the inradius of the set $\{x: \operatorname{Re} \varphi(x) \geq 5 / 6\}$. The \mathcal{P}-distance from a to K is the number

$$
p d_{X}(a, K):=3 \sup _{\varphi} r(\varphi)
$$

where the supremum is taken over all $\varphi \in \mathcal{P}(X)$ with $\varphi_{\mid K} \equiv 1$ and $\operatorname{Re} \varphi(a)$ $\leq 1 / 6$. It is clear that

$$
\begin{equation*}
p d_{X}(t a, t K)=t \cdot p d_{X}(a, K), \quad t>0 \tag{1.3}
\end{equation*}
$$

REMARK. If we replace in the above definition p.d. functions by characters, then we obtain a number which might be called the character distance from a to K. More precisely, let us write

$$
c d_{X}(a, K):=3 \sup _{\chi} r(\chi),
$$

where the supremum is taken over all continuous characters χ of X with $\chi_{\mid K} \equiv 1$ and $\operatorname{Re} \chi(a) \leq 1 / 6$. A standard argument shows that the character distance is equivalent to the weak distance. Direct computations show that

$$
c_{1} \leq \frac{c d_{X}(a, K)}{w d_{X}(a, K)} \leq c_{2}
$$

where $c_{1}=(3 / \pi) \arccos (5 / 6)=0.559 \ldots$ and $c_{2}=3 \arccos (5 / 6) / \arccos (1 / 6)$ $=1.252 \ldots$.

Let X be a normed space. We define

$$
\begin{gathered}
\operatorname{ws}(X):=\sup _{K, a} \frac{d_{X}(a, K)}{w d_{X}(a, K)}, \quad \operatorname{wp}(X):=\sup _{K, a} \frac{p d_{X}(a, K)}{w d_{X}(a, K)}, \\
\operatorname{ps}(X):=\sup _{K, a} \frac{d_{X}(a, K)}{p d_{X}(a, K)},
\end{gathered}
$$

where each supremum is taken over all $K \in \mathcal{A}(X)$ and $a \in X \backslash K$.

As usual, $l_{p}^{n}(1 \leq p \leq \infty)$ is the space \mathbb{R}^{n} endowed with the norm

$$
\|x\|_{p}=\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{1 / p}, \quad x=\left(x_{1}, \ldots, x_{n}\right)
$$

The unit ball in l_{p}^{n} is denoted by B_{p}^{n}. The euclidean inner product of vectors $x, y \in l_{2}^{n}$ is denoted by $x y$. If $X=l_{p}^{n}$, then instead of $d_{X}(a, K), w d_{X}(a, K)$ and $p d_{X}(a, K)$ we write $d_{p}(a, K)$, $w d_{p}(a, K)$ and $p d_{p}(a, K)$, respectively.

Estimates of ws (X) are closely related to the so-called transference theorems in the geometry of numbers (see e.g. [C] Ch. XI, §3.3]). By a lattice in \mathbb{R}^{n} we mean an additive subgroup generated by n linearly independent vectors. Let \mathcal{L}_{n} be the family of all lattices in \mathbb{R}^{n}. If $L \in \mathcal{L}_{n}$, then

$$
L^{*}:=\left\{x \in \mathbb{R}^{n}: x y \in \mathbb{Z} \text { for each } y \in L\right\}
$$

is the dual lattice.
Let \mathcal{C}_{n} be the family of all symmetric convex bodies in \mathbb{R}^{n}. If $U \in \mathcal{C}_{n}$, then

$$
U^{0}:=\left\{x \in \mathbb{R}^{n}:|x y| \leq 1 \text { for each } y \in U\right\}
$$

is the polar body. We denote by $\|\cdot\|_{U}$ the norm on \mathbb{R}^{n} induced by U, and d_{U} is the corresponding metric.

Let $U \in \mathcal{C}_{n}$. We define

$$
\operatorname{kh}(U):=\sup _{L \in \mathcal{L}_{n}} \sup _{\substack{x \in \mathbb{R}^{n} \\ x \notin L}} \sup _{\substack{y \in L^{*} \\ x y \notin \mathbb{Z}}} \frac{d_{U}(x, L) \cdot\|y\|_{U^{0}}}{d(x y, \mathbb{Z})}
$$

It is clear that $\mathrm{kh}(U)$ is an affine invariant of U. A standard approximation argument shows that in the above definition the supremum over all lattices $L \in \mathcal{L}_{n}$ may be replaced by the supremum over all subgroups $L \in \mathcal{A}\left(\mathbb{R}^{n}\right)$ (loosely speaking, every closed additive subgroup of \mathbb{R}^{n} is the limit of a sequence of lattices).

If $U \in \mathcal{C}_{n}$ and if X is the normed space $\left(\mathbb{R}^{n},\|\cdot\|_{U}\right)$, then the dual space X^{*} may be identified with $\left(\mathbb{R}^{n},\|\cdot\|_{U^{0}}\right)$, and from the above definitions it follows directly that $\mathrm{ws}(X)=\operatorname{kh}(U)$.

It was proved in [B2, Cor. 3.4] that

$$
\operatorname{kh}\left(B_{p}^{n}\right) \leq C_{p} n, \quad 1<p<\infty
$$

where C_{p} depends only on p. Next, it was proved in [B3] that

$$
(2 \pi e)^{-1} n<\operatorname{kh}(U) \leq C n(1+\log n)
$$

for any $U \in \mathcal{C}_{n}$, and $\operatorname{kh}(U) \leq C^{\prime} n(1+\log n)^{1 / 2}$ if U is symmetric with respect to the coordinate hyperplanes; here C and C^{\prime} are some universal constants.

Translated to the language of normed spaces, this means that

$$
\begin{gather*}
\operatorname{ws}\left(l_{p}^{n}\right) \leq C_{p} n, \quad 1<p<\infty \\
(2 \pi e)^{-1} n<\operatorname{ws}(X) \leq C n(1+\log n) \tag{1.4}
\end{gather*}
$$

for any n-dimensional normed space X, and $\operatorname{ws}(X) \leq C^{\prime} n(1+\log n)^{1 / 2}$ if X has a 1-unconditional basis.

The main idea in the proofs of these inequalities is the following. Suppose L is a lattice in X. First we show that if $d_{X}(a, L)$ is large enough, then a can be well separated from L by a certain p.d. function $\varphi \in \mathcal{P}(X)$. Then we represent φ as an integral of characters (with respect to the corresponding purely atomic measure with support in L^{*}) and show that a can be well separated from L by one of these characters. This raises the following questions: 1° If a is well separated from K in norm, how well can it be separated from K by p.d. functions? 2° If a is well separated from K by p.d. functions, how well can it be separated from K by linear functionals?

The aim of the present paper is to give some estimates of $\mathrm{wp}(X)$ and $\mathrm{ps}(X)$, mainly for $X=l_{p}^{n}$. In particular we prove that

$$
\begin{array}{ll}
\operatorname{wp}\left(l_{p}^{n}\right) \asymp_{n} n^{\max \{1 / 2,1 / p\}}, & 1 \leq p \leq \infty \\
\operatorname{ps}\left(l_{p}^{n}\right) \asymp_{n} n^{1 / 2}, & 2 \leq p<\infty
\end{array}
$$

The results of the paper may be treated as finite-dimensional analogs of the results obtained in [BS, Sec. 5] for diagonal operators in l_{p} spaces.

We begin with several lemmas.
Lemma 1.1. Let X be a normed space. Then

$$
\mathrm{ws}(X) \leq \mathrm{wp}(X) \cdot \operatorname{ps}(X)
$$

This is a direct consequence of definitions.
Lemma 1.2. Let Y be a subspace of a normed space X. Then
(i) $\operatorname{ws}(X) \geq \mathrm{ws}(Y), \quad \mathrm{ws}(X) \geq \mathrm{ws}(X / Y)$,
(ii) $\operatorname{wp}(X) \geq \mathrm{wp}(X / Y)$,
(iii) $\operatorname{ps}(X) \geq \operatorname{ps}(Y), \quad \operatorname{ps}(X) \geq \operatorname{ps}(X / Y)$.

Proof. Let $K \in \mathcal{A}(Y)$ and $a \in Y \backslash K$. Obviously, $d_{Y}(a, K)=d_{X}(a, K)$.
If $f \in X^{*}$ separates a from K, then so does $g:=f_{\mid Y} \in Y^{*}$. Obviously, $\|g\| \leq\|f\|$. Hence $w d_{X}(a, K) \leq w d_{Y}(a, K)$ (in fact, $w d_{X}(a, K)=w d_{Y}(a, K)$ due to the Hahn-Banach theorem). Thus ws $(X) \geq \mathrm{ws}(Y)$.

Next, if $\varphi \in \mathcal{P}(X)$ separates a from K, then so does $\psi:=\varphi_{\mid Y} \in \mathcal{P}(Y)$. Obviously, $r(\psi) \geq r(\varphi)$. Hence $p d_{X}(a, K) \leq p d_{Y}(a, K)$. Thus $\operatorname{ps}(X) \geq \operatorname{ps}(Y)$.

Now, let $K \in \mathcal{A}(X / Y)$ and $a \in(X / Y) \backslash K$. Let $T: X \rightarrow X / Y$ be the quotient mapping. Choose some $\widetilde{a} \in X$ with $T \widetilde{a}=a$ and let $\widetilde{K}:=T^{-1}(K)$.

Then it is not hard to see that

$$
d_{X}(\widetilde{a}, \widetilde{K})=d_{X / Y}(a, K), \quad w d_{X}(\widetilde{a}, \widetilde{K})=w d_{X / Y}(a, K)
$$

and $p d_{X}(\widetilde{a}, \widetilde{K})=p d_{X / Y}(a, K)$. This implies that

$$
\mathrm{ws}(X) \geq \mathrm{ws}(X / Y), \quad \mathrm{wp}(X) \geq \mathrm{wp}(X / Y) \quad \text { and } \quad \operatorname{ps}(X) \geq \operatorname{ps}(X / Y)
$$

Lemma 1.3. Let $T: X \rightarrow Y$ be a linear operator between normed spaces, and let $K \in \mathcal{A}(X)$ and $a \in X \backslash K$. Then
(i) $d_{Y}(T(a), T(K)) \leq\|T\| \cdot d_{X}(a, K)$,
(ii) $w d_{Y}(T(a), T(K)) \leq\|T\| \cdot w d_{X}(a, K)$,
(iii) $p d_{Y}(T(a), T(K)) \leq\|T\| \cdot p d_{X}(a, K)$.

Inequality (i) is obvious, while (ii) and (iii) are direct consequences of the corresponding definitions.

The Banach-Mazur distance between normed spaces X and Y is denoted by $d(X, Y)$.

Lemma 1.4. Let X, Y be normed spaces. Then
(i) $\mathrm{ws}(X) \leq \mathrm{ws}(Y) \cdot d(X, Y)$,
(ii) $\operatorname{wp}(X) \leq \operatorname{wp}(Y) \cdot d(X, Y)$,
(iii) $\operatorname{ps}(X) \leq \operatorname{ps}(Y) \cdot d(X, Y)$.

Proof. Choose a linear isomorphism $T: X \rightarrow Y$ with $\|T\| \cdot\left\|T^{-1}\right\|=$ $d(X, Y)$. Let $K \in \mathcal{A}(X)$ and $a \in X \backslash K$. By Lemma 1.3(i) applied to the operator $T^{-1}: Y \rightarrow X$, we have

$$
\begin{equation*}
d_{X}(a, K) \leq\left\|T^{-1}\right\| \cdot d_{Y}(T(a), T(K)) \tag{1.5}
\end{equation*}
$$

and Lemma 1.3 (ii) says that

$$
\begin{equation*}
w d_{X}(a, K) \geq\|T\|^{-1} \cdot w d_{Y}(T(a), T(K)) \tag{1.6}
\end{equation*}
$$

Similarly, by Lemma 1.3 (iii) we have

$$
\begin{align*}
& p d_{X}(a, K) \leq\left\|T^{-1}\right\| \cdot p d_{Y}(T(a), T(K)) \tag{1.7}\\
& p d_{X}(a, K) \geq\|T\|^{-1} \cdot p d_{Y}(T(a), T(K)) \tag{1.8}
\end{align*}
$$

Thus

$$
\begin{aligned}
\mathrm{ws}(X) & \stackrel{\text { def }}{=} \sup _{\substack{K \in \mathcal{A}(X) \\
a \in X \backslash K}} \frac{d_{X}(a, K)}{w d_{X}(a, K)} \stackrel{\sqrt{1.55}, \sqrt{1.6}}{\leq} \sup _{\substack{K \in \mathcal{A}(X) \\
a \in X \backslash K}} \frac{\left\|T^{-1}\right\| \cdot d_{Y}(T(a), T(K))}{\|T\|^{-1} \cdot w d_{Y}(T(a), T(K))} \\
& =\|T\| \cdot\left\|T^{-1}\right\| \cdot \sup _{\substack{L \in \mathcal{A}(Y) \\
b \in Y \backslash L}} \frac{d_{Y}(b, L)}{w d_{Y}(b, L)}=d(X, Y) \cdot \mathrm{ws}(Y),
\end{aligned}
$$

which proves (i). Next,

$$
\begin{aligned}
\operatorname{wp}(X) & \stackrel{\text { def }}{=} \sup _{\substack{K \in \mathcal{A}(X) \\
a \in X \backslash K}} \frac{p d_{X}(a, K)}{w d_{X}(a, K)} \stackrel{\sqrt{1.7}, \sqrt{1.6}}{\leq} \sup _{\substack{K \in \mathcal{A}(X) \\
a \in X \backslash K}} \frac{\left\|T^{-1}\right\| \cdot p d_{Y}(T(a), T(K))}{\|T\|^{-1} \cdot w d_{Y}(T(a), T(K))} \\
& =\|T\| \cdot\left\|T^{-1}\right\| \cdot \sup _{\substack{L \in \mathcal{A}(Y) \\
b \in Y \backslash L}} \frac{p d_{Y}(b, L)}{w d_{Y}(b, L)}=d(X, Y) \cdot \mathrm{wp}(Y),
\end{aligned}
$$

which proves (ii). Finally,

$$
\begin{aligned}
\operatorname{ps}(X) & \stackrel{\text { def }}{=} \sup _{\substack{K \in \mathcal{A}(X) \\
a \in X \backslash K}} \frac{d_{X}(a, K)}{p d_{X}(a, K)} \stackrel{1.5, \sqrt{1.8}}{\leq} \sup _{\substack{K \in \mathcal{A}(X) \\
a \in X \backslash K}} \frac{\left\|T^{-1}\right\| \cdot d_{Y}(T(a), T(K))}{\|T\|^{-1} \cdot p d_{Y}(T(a), T(K))} \\
& =\|T\| \cdot\left\|T^{-1}\right\| \cdot \sup _{\substack{L \in \mathcal{A}(Y) \\
b \in Y \backslash L}} \frac{d_{Y}(b, L)}{p d_{Y}(b, L)}=d(X, Y) \cdot \operatorname{ps}(Y),
\end{aligned}
$$

which proves (iii).
We will need the following standard facts about Banach-Mazur distances between l_{p}^{n} spaces:

$$
\begin{array}{ll}
d\left(l_{p}^{n}, l_{2}^{n}\right)=n^{1 / p-1 / 2}, & 1 \leq p \leq 2 \\
d\left(l_{p}^{n}, l_{1}^{n}\right)=n^{1-1 / p}, & 1 \leq p \leq 2 \\
d\left(l_{p}^{n}, l_{1}^{n}\right) \leq 3 n^{1 / 2}, & 2<p \leq \infty \tag{1.11}
\end{array}
$$

(see e.g. [JL, pp. 43-44]).
2. Estimates of $\operatorname{wp}\left(l_{p}^{n}\right)$. Let μ be a Radon probability measure on \mathbb{R}^{n}. The Fourier transform of μ is defined by

$$
\widehat{\mu}(x)=\int_{\mathbb{R}^{n}} e^{2 \pi i x y} d \mu(y), \quad x \in \mathbb{R}^{n}
$$

Lemma 2.1. Let μ be a Radon probability measure on \mathbb{R}^{n}. Suppose that for some $0<\varepsilon<1 / 2$,

$$
\begin{equation*}
\operatorname{Re} \widehat{\mu}(x) \geq 1-\varepsilon \quad \text { for all } x \in B_{\infty}^{n} \tag{2.1}
\end{equation*}
$$

Then $\mu\left(\left\{y \in \mathbb{R}^{n}:\|y\|_{2}>1 / 3\right\}\right)<2 \varepsilon$.
Proof. Let $V=\left\{y \in \mathbb{R}^{n}:\|y\|_{2}>1 / 3\right\}$ and $U=\mathbb{R}^{n} \backslash V$. Let ν be the probability measure uniformly distributed on B_{∞}^{n}. Naturally, $\widehat{\nu}$ is real-valued and we may write

$$
\begin{aligned}
\vartheta & :=\int_{B_{\infty}^{n}} \operatorname{Re} \widehat{\mu}(x) d \nu(x)=\operatorname{Re} \int_{\mathbb{R}^{n}} \widehat{\mu}(x) d \nu(x) \\
& =\operatorname{Re} \int_{\mathbb{R}^{n}} \widehat{\nu}(y) d \mu(y)=\int_{\mathbb{R}^{n}} \widehat{\nu}(y) d \mu(y)=\left(\int_{U}+\int_{V}\right) \widehat{\nu}(y) d \mu(y) .
\end{aligned}
$$

Standard calculations show that if $y=\left(y_{1}, \ldots, y_{n}\right) \in V$, then

$$
\widehat{\nu}(y)=\prod_{k=1}^{n} \frac{\sin \left(2 \pi y_{k}\right)}{2 \pi y_{k}}<\frac{1}{2} .
$$

Consequently,

$$
\vartheta \leq \int_{U} d \mu(y)+\frac{1}{2} \int_{V} d \mu(y)=\mu(U)+\mu(V) / 2=1-\mu(V) / 2
$$

On the other hand, 2.1) implies that $\vartheta>1-\varepsilon$. Hence $\mu(V)<2 \varepsilon$.
Lemma 2.2. Let $K \in \mathcal{A}\left(\mathbb{R}^{n}\right)$ and $a \in \mathbb{R}^{n} \backslash K$. If $p d_{\infty}(a, K) \geq 1$, then $w d_{2}(a, K) \geq 1 / 9$.

Proof. In view of (1.2) and (1.3) it is enough to show that $p d_{\infty}(a, K)>3$ implies $w d_{2}(a, K) \geq 1 / 3$. So, assume that $p d_{\infty}(a, K)>3$. Then there is some $\varphi \in \mathcal{P}\left(\mathbb{R}^{n}\right)$ with $\varphi_{\mid K} \equiv 1$ such that $\operatorname{Re} \varphi(a) \leq 1 / 6$ and $\operatorname{Re} \varphi(x) \geq 5 / 6$ for $x \in B_{\infty}^{n}$. According to the Bochner theorem, there is a (unique) Radon probability measure μ on \mathbb{R}^{n} with $\widehat{\mu}=\varphi$. Since $\varphi_{\mid K} \equiv 1$, the measure μ is concentrated on the dual subgroup

$$
K^{*}:=\left\{x \in \mathbb{R}^{n}: x y \in \mathbb{Z} \text { for each } y \in K\right\}
$$

i.e. $\mu\left(\mathbb{R}^{n} \backslash K^{*}\right)=0$. Let $U=\left\{y \in \mathbb{R}^{n}:\|y\|_{2} \leq 1 / 3\right\}$ and $V=\mathbb{R}^{n} \backslash U$. Setting $\varepsilon=1 / 6$ in Lemma 2.1, we get $\mu(V)<1 / 3$, so that $\mu\left(K^{*} \cap U\right)=\mu(U)>2 / 3$.

If $\cos (2 \pi a y)>3 / 4$ for all $y \in K^{*} \cap U$, then

$$
\begin{aligned}
\frac{1}{6} \geq \operatorname{Re} \varphi(a) & =\int_{K^{*}} \cos (2 \pi a y) d \mu(y)=\left(\int_{K^{*} \cap U}+\int_{K^{*} \cap V}\right) \cos (2 \pi a y) d \mu(y) \\
& >\frac{3}{4} \mu\left(K^{*} \cap U\right)-\mu\left(K^{*} \cap V\right)>\frac{3}{4} \cdot \frac{2}{3}-\frac{1}{3}=\frac{1}{6}
\end{aligned}
$$

which is impossible. So, there must be some $y_{0} \in K^{*} \cap U$ with $\cos \left(2 \pi a y_{0}\right)$ $\leq 3 / 4$. Then $d\left(a y_{0}, \mathbb{Z}\right) \geq(2 \pi)^{-1} \arccos (3 / 4)>1 / 9$ and

$$
w d_{2}(a, K)=\max _{\substack{y \in K^{*} \\ y \neq 0}} \frac{d(a y, \mathbb{Z})}{\|y\|_{2}} \geq \frac{d\left(a y_{0}, \mathbb{Z}\right)}{\left\|y_{0}\right\|_{2}}>\frac{1 / 9}{1 / 3}=\frac{1}{3}
$$

The first equality above follows from (1.1) (we identify here $\left(l_{2}^{n}\right)^{*}$ with l_{2}^{n} in the usual way).

Lemma 2.3. One has $\mathrm{wp}\left(l_{1}^{n}\right) \geq \frac{3}{5} n$ for all $n \geq 1$.
Proof. Fix n and consider the function $\psi: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\psi(x)=1-\frac{5}{3} n d\left(x, n^{-1} \mathbb{Z}\right), \quad-\infty<x<\infty
$$

Clearly, ψ is a piecewise-linear, continuous and positive definite periodic function on \mathbb{R}, with period n^{-1}; direct calculations show that

$$
\psi(x)=\frac{7}{12}+\frac{10}{3 \pi^{2}} \sum_{k=0}^{\infty} \frac{\cos [(2 k+1) 2 \pi n x]}{(2 k+1)^{2}}, \quad-\infty<x<\infty
$$

Thus $\psi \in \mathcal{P}(\mathbb{R})$. We have $\psi\left(\frac{1}{2} n^{-1}\right)=1 / 6$ and

$$
\begin{equation*}
\psi(x) \geq 1-\frac{5}{3} n|x|, \quad-\infty<x<\infty \tag{2.2}
\end{equation*}
$$

Let $K=n^{-1} \mathbb{Z}^{n} \subset \mathbb{R}^{n}$ and $a=\left(a_{1}, \ldots, a_{n}\right)$, where $a_{k}=\frac{1}{2} n^{-1}$ for $k=1, \ldots, n$. Let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by

$$
\varphi(x)=\frac{1}{n} \sum_{k=1}^{n} \psi\left(x_{k}\right), \quad x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

Since $\psi \in \mathcal{P}(\mathbb{R})$, it follows that $\varphi \in \mathcal{P}\left(\mathbb{R}^{n}\right)$. It is clear that $\varphi_{\mid K} \equiv 1$ and $\varphi(a)=1 / 6$. By 2.2 , for each $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ we have

$$
\varphi(x) \geq \frac{1}{n} \sum_{k=1}^{n}\left(1-\frac{5}{3} n\left|x_{k}\right|\right)=1-\frac{5}{3}\|x\|_{1}
$$

So, if $\|x\|_{1} \leq r:=1 / 10$, then $\varphi(x) \geq 5 / 6$. This means that $p d_{1}(a, K) \geq$ $3 r=3 / 10$.

Set $K^{*}=\left\{f \in\left(l_{1}^{n}\right)^{*}: f(K) \subset \mathbb{Z}\right\}$. We may identify $\left(l_{1}^{n}\right)^{*}$ with l_{∞}^{n}, and K^{*} with $n \mathbb{Z}^{n}$. If $f \in K^{*}$ and $f \neq 0$, then $\|f\| \geq n$. Thus

$$
w d_{1}(a, K) \stackrel{(1.1)}{=} \max _{\substack{f \in K^{*} \\ f \neq 0}} \frac{d(f(a), \mathbb{Z})}{\|f\|} \leq \frac{1}{2 n}
$$

Consequently,

$$
\operatorname{wp}\left(l_{1}^{n}\right) \geq \frac{p d_{1}(a, K)}{w d_{1}(a, K)} \geq \frac{3 / 10}{1 /(2 n)}=\frac{3}{5} n
$$

Theorem 2.4. For all $n \geq 1$ one has
(i) $\frac{3}{5} n^{1 / p} \leq \operatorname{wp}\left(l_{p}^{n}\right) \leq 9 n^{1 / p}, \quad 1 \leq p \leq 2$,
(ii) $\frac{1}{5} n^{1 / 2} \leq \mathrm{wp}\left(l_{p}^{n}\right) \leq 9 n^{1 / 2}, \quad 2<p \leq \infty$.

Proof. By Lemmas 2.3 and 1.4 (ii) we have

$$
\frac{3}{5} n \leq \mathrm{wp}\left(l_{1}^{n}\right) \leq \mathrm{wp}\left(l_{p}^{n}\right) \cdot d\left(l_{1}^{n}, l_{p}^{n}\right), \quad 1 \leq p \leq \infty
$$

Hence

$$
\begin{array}{ll}
\mathrm{wp}\left(l_{p}^{n}\right) \geq \frac{3}{5} n d\left(l_{1}^{n}, l_{p}^{n}\right)^{-1} \stackrel{\sqrt{1.10}}{\geq} \frac{3}{5} n \cdot n^{1 / p-1}=\frac{3}{5} n^{1 / p}, & 1 \leq p \leq 2 \\
\operatorname{wp}\left(l_{p}^{n}\right) \geq \frac{3}{5} n d\left(l_{1}^{n}, l_{p}^{n}\right)^{-1} \stackrel{\sqrt{1.11}}{\geq} \frac{3}{5} n \cdot \frac{1}{3} n^{-1 / 2}=\frac{1}{5} n^{1 / 2}, & 2<p \leq \infty
\end{array}
$$

This yields the lower estimates in (i) and (ii).

To obtain the upper estimates, suppose first that $p \geq 2$. Let $K \in \mathcal{A}\left(\mathbb{R}^{n}\right)$ and $a \in \mathbb{R}^{n} \backslash K$. We want to show that

$$
\begin{equation*}
\frac{p d_{p}(a, K)}{w d_{p}(a, K)} \leq 9 n^{1 / 2} \tag{2.3}
\end{equation*}
$$

In view of (1.2) and (1.3) we may assume that $p d_{p}(a, K)=n^{1 / p}$. Then $p d_{\infty}(a, K) \geq 1$, because $\|\cdot\|_{\infty} /\|\cdot\|_{p} \geq n^{-1 / p}$. Hence $w d_{2}(a, K) \geq 1 / 9$ due to Lemma 2.2. Since $\|\cdot\|_{p} /\|\cdot\|_{2} \geq n^{1 / p-1 / 2}$, it follows that

$$
w d_{p}(a, K) \geq n^{1 / p-1 / 2} w d_{2}(a, K) \geq \frac{1}{9} n^{1 / p-1 / 2}
$$

which proves 2.3 .
We have thus proved that $\operatorname{wp}\left(l_{p}^{n}\right) \leq 9 n^{1 / 2}$ for $p \geq 2$, in particular for $p=2$. Hence, by Lemma 1.4(ii), for $p<2$ we obtain

$$
\mathrm{wp}\left(l_{p}^{n}\right) \leq \operatorname{wp}\left(l_{2}^{n}\right) \cdot d\left(l_{p}^{n}, l_{2}^{n}\right) \stackrel{\sqrt{1.9}}{\leq} 9 n^{1 / 2} \cdot n^{1 / p-1 / 2}=9 n^{1 / p}
$$

Remark. Let X be an n-dimensional normed space. By Dvoretzky's theorem, there exists a subspace Y of X such that $m:=\operatorname{dim}(X / Y) \geq c_{0} \log n$ and $d\left(X / Y, l_{2}^{m}\right) \leq 2$, where $c_{0}>0$ is some universal constant. Hence, by Lemmas 1.2(ii), 1.4(ii) and Theorem 2.4(i), we get

$$
\operatorname{wp}(X) \geq \operatorname{wp}(X / Y) \geq \frac{1}{2} \operatorname{wp}\left(l_{2}^{m}\right) \geq \frac{3}{10} m^{1 / 2} \geq \frac{3}{10} c_{0}^{1 / 2}(\log n)^{1 / 2}
$$

For some special classes of spaces the estimate $m \geq c_{0} \log n$ can be much improved, which leads to the corresponding improvement of the lower estimate of $\operatorname{wp}(X)$. Conjecture: there is a universal constant $c>0$ such that $\operatorname{wp}(X) \geq c n^{1 / 2}$ for any n-dimensional normed space X.

3. Estimates of $\mathrm{ps}\left(l_{p}^{n}\right)$

THEOREM 3.1. There is a universal constant $c>0$ such that $\operatorname{ps}(X) \geq$ $c n^{1 / 2}$ for any n-dimensional normed space X.

Proof. According to the quotient of subspace theorem of Milman (see e.g. [LM, Th. 3.1.1] or [GM, Th. 5.3.1]), there are subspaces $Z \subset Y \subset X$ such that $m:=\operatorname{dim}(Y / Z) \geq n / 2$ and $d\left(Y / Z, l_{2}^{m}\right) \leq C$, where C is some universal constant. From Lemmas 1.2 (iii) and 1.4 (iii) we obtain

$$
\begin{equation*}
\operatorname{ps}(X) \geq \operatorname{ps}(Y) \geq \operatorname{ps}(Y / Z) \geq d\left(Y / Z, l_{2}^{m}\right)^{-1} \cdot \operatorname{ps}\left(l_{2}^{m}\right) \geq C^{-1} \operatorname{ps}\left(l_{2}^{m}\right) \tag{3.1}
\end{equation*}
$$

From Theorem 2.4(i) and Lemma 1.1 it follows that

$$
9 m^{1 / 2} \cdot \operatorname{ps}\left(l_{2}^{m}\right) \geq \mathrm{wp}\left(l_{2}^{m}\right) \cdot \operatorname{ps}\left(l_{2}^{m}\right) \geq \mathrm{ws}\left(l_{2}^{m}\right)
$$

Next, we have $\operatorname{ws}\left(l_{2}^{m}\right)>(2 \pi e)^{-1} m$ (see 1.4$)$. Hence $\operatorname{ps}\left(l_{2}^{m}\right) \geq c_{1} m^{1 / 2}$, where $c_{1}=(18 \pi e)^{-1}$. As $m \geq n / 2$, it follows that $\operatorname{ps}\left(l_{2}^{m}\right) \geq 2^{-1 / 2} c_{1} n^{1 / 2}$. From this and (3.1) we obtain $\operatorname{ps}(X) \geq 2^{-1 / 2} c_{1} C^{-1} n^{1 / 2}$.

Let $K \in \mathcal{A}\left(\mathbb{R}^{n}\right)$. Let m be the dimension of the components of K and let λ_{K} be the m-dimensional Lebesgue measure on K. We define

$$
\varphi_{K}(x)=\int_{K} e^{-\pi\|x-y\|_{2}^{2}} d \lambda_{K}(y) / \int_{K} e^{-\pi\|y\|_{2}^{2}} d \lambda_{K}(y), \quad x \in \mathbb{R}^{n}
$$

It is not hard to see that $\varphi_{K} \in \mathcal{P}\left(\mathbb{R}^{n}\right)$ (see [B4, Lemma 4.4]). For a convex body $U \in \mathcal{C}_{n}$ we define

$$
\beta(U)=\sup _{L \in \mathcal{L}_{n}} \sup _{x \in \mathbb{R}^{n}}\left(\sum_{y \in(L+x) \backslash U} e^{-\pi\|y\|_{2}^{2}} / \sum_{y \in L} e^{-\pi\|y\|_{2}^{2}}\right) .
$$

Lemma 3.2. Let $K \in \mathcal{A}\left(\mathbb{R}^{n}\right), a \in \mathbb{R}^{n}$ and $U \in \mathcal{C}_{n}$. If $(U+a) \cap K=\emptyset$, then $\varphi_{K}(a) \leq \beta(U)$.

This is a direct consequence of [B2, Lemma 1.3].
Lemma 3.3. For all $n \geq 1$ one has
(i) $\beta\left(r B_{p}^{n}\right)<p n \pi^{-p / 2} \Gamma\left(\frac{1}{2} p\right) r^{-p}, \quad p \geq 1, r>0$,
(ii) $\beta\left(r B_{2}^{n}\right)<2(2 \pi e)^{n / 2} n^{-n / 2} r^{n} e^{-\pi r^{2}}, \quad r \geq(n / 2 \pi)^{1 / 2}$,
(iii) $\beta\left(r B_{\infty}^{n}\right)<2 n e^{-\pi r^{2}}, \quad r>0$.

This was proved in [B2, Lemmas 2.8-2.10].
Theorem 3.4. For all $n \geq 1$ one has
(i) $\mathrm{ps}\left(l_{p}^{n}\right)<\frac{7}{5} n^{1 / p}, \quad 1 \leq p \leq 2$,
(ii) $\mathrm{ps}\left(l_{p}^{n}\right) \leq 2 p^{1 / 2} n^{1 / 2}, \quad 2<p<\infty$,
(iii) $\operatorname{ps}\left(l_{\infty}^{n}\right) \leq n^{1 / 2}(3+\log n)^{1 / 2}$.

Proof. (i) Suppose first that $p=2$. Fix $n \geq 1$. Next, take $K \in \mathcal{A}\left(\mathbb{R}^{n}\right)$ and $a \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
d_{2}(a, K)>n^{1 / 2} \tag{3.2}
\end{equation*}
$$

We will prove that

$$
\begin{equation*}
\varphi_{K}(a) \leq 1 / 6 . \tag{3.3}
\end{equation*}
$$

Suppose first that $n=1$. If $K=\{0\}$, then $\varphi_{K}(x)=e^{-\pi x^{2}}$ for $x \in \mathbb{R}$, so that $\varphi_{K}(a)=e^{-\pi a^{2}} \leq e^{-\pi}<1 / 6$. If $K \neq\{0\}$, then $K=\vartheta \mathbb{Z}$ for some $\vartheta>0$, and

$$
\varphi_{K}(x)=\sum_{k \in \mathbb{Z}} e^{-\pi(x+k \vartheta)^{2}} / \sum_{k \in \mathbb{Z}} e^{-\pi k^{2} \vartheta^{2}}, \quad x \in \mathbb{R} .
$$

As $d(a, \vartheta \mathbb{Z}) \geq 1$, we have $\vartheta \geq 2$ and it is not hard to see that

$$
\varphi_{K}(a)<\sum_{k \in \mathbb{Z}} e^{-\pi(a+k \vartheta)^{2}} \leq 2\left(e^{-\pi}+e^{-9 \pi}+e^{-25 \pi}+\cdots\right)<1 / 6 .
$$

If $n \geq 2$, then, by Lemma 3.3(ii),

$$
\beta\left(n^{1 / 2} B_{2}^{n}\right)<2(2 \pi e)^{n / 2} e^{-\pi n}=2\left(2 \pi e^{1-2 \pi}\right)^{n / 2}<1 / 6
$$

and (3.3) follows from Lemma 3.2.
By [B4, Lemma 4.4(ii)] we have $\varphi_{K}(x) \geq e^{-\pi\|x\|_{2}^{2}}$ for all $x \in \mathbb{R}^{n}$. This means that $\varphi_{K}(x) \geq 5 / 6$ whenever $\|x\|_{2} \leq c_{0}:=\left(\frac{1}{\pi} \log \frac{6}{5}\right)^{1 / 2}$. Hence, by 3.3),

$$
\begin{equation*}
p d_{2}(a, K) \geq 3 c_{0} \tag{3.4}
\end{equation*}
$$

We have thus shown that (3.2) implies (3.4), for all K and a. In view of (1.3), this means that

$$
\begin{equation*}
\operatorname{ps}\left(l_{2}^{n}\right) \stackrel{\text { def }}{=} \sup _{K, a} \frac{d_{2}(a, K)}{p d_{2}(a, K)} \leq \frac{n^{1 / 2}}{3 c_{0}}<\frac{7}{5} n^{1 / 2} \tag{3.5}
\end{equation*}
$$

If $p<2$, then from Lemma 1.4 (iii) we obtain

$$
\operatorname{ps}\left(l_{p}^{n}\right) \leq \operatorname{ps}\left(l_{2}^{n}\right) \cdot d\left(l_{p}^{n}, l_{2}^{n}\right) \stackrel{\sqrt[3.5]{\infty}, \sqrt{1.9}}{<} \frac{7}{5} n^{1 / 2} \cdot n^{1 / p-1 / 2}=\frac{7}{5} n^{1 / p} .
$$

(ii) Fix $n \geq 1$ and $p>2$. Let $r:=\frac{7}{5} p^{1 / 2} n^{1 / 2}$. From Lemma 3.3(i), after easy computations based on Stirling's formula, we get

$$
\begin{equation*}
\beta\left(r B_{p}^{n}\right)<1 / 6 \tag{3.6}
\end{equation*}
$$

Take $K \in \mathcal{A}\left(\mathbb{R}^{n}\right)$ and $a \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
d_{p}(a, K) \geq r \tag{3.7}
\end{equation*}
$$

Then from (3.6) and Lemma 3.2 we get (3.3). Hence, as before, we obtain (3.4). As $\|\cdot\|_{p} /\|\cdot\|_{2} \geq n^{1 / p-1 / 2}$, it follows that

$$
\begin{equation*}
p d_{p}(a, K) \geq 3 c_{0} n^{1 / p-1 / 2} \tag{3.8}
\end{equation*}
$$

We have thus shown that (3.7) implies (3.8), for all K and a. In view of (1.3), this yields

$$
\operatorname{ps}\left(l_{p}^{n}\right) \stackrel{\text { def }}{=} \sup _{K, a} \frac{d_{p}(a, K)}{p d_{p}(a, K)} \leq \frac{r}{3 c_{0} n^{1 / p-1 / 2}}=\frac{7}{15 c_{0}} p^{1 / 2} n^{1 / 2}<2 p^{1 / 2} n^{1 / 2}
$$

The proof of (iii) is analogous, only Lemma 3.3(i) should be replaced by Lemma 3.3(iii).

References

[B1] W. Banaszczyk, On the existence of exotic Banach-Lie groups, Math. Ann. 264 (1983), 485-493.
[B2] W. Banaszczyk, Inequalities for convex bodies and polar reciprocal lattices in \mathbb{R}^{n}, Discrete Comput. Geom. 13 (1995), 217-231.
[B3] W. Banaszczyk, Inequalities for convex bodies and polar reciprocal lattices in \mathbb{R}^{n} II: Application of K-convexity, Discrete Comput. Geom. 16 (1996), 305-311.
[B4] W. Banaszczyk, Theorems of Bochner and Lévy for nuclear groups, in: Nuclear Groups and Lie Groups (Madrid, 1999), Res. Exp. Math. 24, Heldermann, 2001, 31-44.
[BS] W. Banaszczyk and R. Stegliński, On separation of points from additive subgroups of Banach spaces by continuous characters and positive definite functions, Positivity 12 (2008), 241-268.
[C] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Springer, Berlin, 1997.
[GM] A. A. Giannopoulos and V. D. Milman, Euclidean structure in finite dimensional normed spaces, in: Handbook of the Geometry of Banach Spaces, Vol. 1, W. B. Johnson and J. Lindenstrauss (eds.), North-Holland, Amsterdam, 2001, 707-779.
[HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Springer, Berlin, 1963.
[JL] W. B. Johnson and J. Lindenstrauss, Basic concepts in the geometry of Banach spaces, in: Handbook of the Geometry of Banach Spaces, Vol. 1, W. B. Johnson and J. Lindenstrauss (eds.), North-Holland, Amsterdam, 2001, 1-84.
[LM] J. Lindenstrauss and V. D. Milman, The local theory of normed spaces and its application to convexity, in: Handbook of Convex Geometry, Vol. B, P. M. Gruber and J. M. Wills (eds.), North-Holland, Amsterdam, 1993, 1149-1220.
[S] R. Stegliński, Quotient groups of non-nuclear spaces for which the Bochner theorem fails completely, Studia Math. 170 (2005), 283-295.

Wojciech Banaszczyk
Faculty of Mathematics
and Computer Science
University of Łódź
90-238 Łódź, Poland
E-mail: wbanasz@math.uni.lodz.pl

Robert Stegliński
Institute of Mathematics Faculty of Technical Physics

Information Technology
and Applied Mathematics
Łódź University of Technology
90-924 Łódź, Poland
E-mail: robert.steglinski@p.lodz.pl

[^0]: 2010 Mathematics Subject Classification: Primary 46B20; Secondary 43A35.
 Key words and phrases: additive subgroups of normed spaces, continuous characters, positive definite functions.
 Received 8 March 2016; revised 29 September 2016.
 Published online 27 January 2017.

