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On 0, 1-laws and asymptotics of definable sets
in geometric Fräıssé classes

by

Cameron Donnay Hill (Middletown, CT)

Abstract. We examine one consequence for the generic theory TC of a geometric
Fräıssé class C when C has the 0, 1-law for first-order logic with convergence to TC itself.
We show that in this scenario, if the asymptotic probability measure in play is not terribly
exotic, then C is “very close” to being a 1-dimensional asymptotic class—so that TC is
supersimple of finite SU -rank.

Introduction. In much of the existing work on 0, 1-laws for Fräıssé
classes C, researchers have focused almost entirely on the most ordinary of
asymptotic probability measures µ = (µN )N—namely, µN is the uniform
probability measure on members of C with universe N = {0, 1, . . . , N − 1}.
When there is a 0, 1-law relative to such µ with Th(µ) = TC (1), one very
often finds that TC was already a very special sort of theory. For example,
if G is the class of all finite graphs, then TG, the theory of the random
graph, is supersimple of SU -rank 1, and one finds something similar when
C is the class of finite bipartite graphs, the class of finite partial orders of
rank 2, finite directed trees of height 2, and so on. There is a sense that if a
class C has the 0, 1-law in a way similar to G, then geometrically speaking,
TC is very much like TG.

This discussion requires an answer to the question, “What does it mean
for C to have the 0, 1-law in a way similar to G?” In this paper, we answer
this question for geometric Fräıssé classes (i.e. TC is a geometric theory) by
focusing on (i) the conditional independence properties of the asymptotic
probability measure µ, and (ii) the requirement that Th(µ) = TC. We find
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that if µ is not too weird, then not only is TC supersimple of finite rank (as
is TG), but up to excluding a neglible part of C, the sizes of definable sets
in members of C are under very tight, uniform control in a sense proposed
in [14, 6, 7], generalizing results of [5] for finite fields (which in turn extend
the better known Lang–Weil estimates [13]). Speaking formally, we prove
the following theorem:

Theorem 2.1. Let C be a geometric Fräıssé class, and suppose that C
has the 0, 1-law for first-order logic with Th(µ) = TC relative to an asymp-
totic probability measure µ that has almost independent sampling. Then C
contains a cofinal superrobust subclass D such that limN→∞ µN [D] = 1 and
which is a 1-dimensional asymptotic class.

Using theorems of [14, 7, 9], we derive Theorem 2.2 below as a corollary.
This theorem can be viewed as the companion of the result of [1], which
states that, for strictly binary languages, for any algebraically trivial ℵ0-
categorical supersimple theory T of SU -rank 1, one can define an asymptotic
probability measure for the age of its countable model whose almost sure
theory is T .

Theorem 2.2. Let C be a geometric Fräıssé class, and suppose that C
has the 0, 1-law for first-order logic with Th(µ) = TC relative to an asymp-
totic probability measure µ that has almost independent sampling. Then TC
is supersimple, and for every definable set X of the generic model M of C,
D(X) is bounded by the algebraic dimension of X.

Regarding certain open questions of the form, “Does a certain geometric
Fräıssé class C have the 0, 1-law relative to some unknown measure?” there
is another moral in this story: An asymptotic probability measure that yields
a 0, 1-law with convergence to an unsimple ℵ0-categorical theory would have
to be profoundly exotic.

Several classes that fall under our rubric here have, for some time, been
known to have subclasses that are superrobust and 1-dimensional asymp-
totic. Among these are the class G of all finite graphs and, more generally,
the class Hr of all finite r-regular hypergraphs (r-hypergraphs). In [14], it is
noted that since the class of Paley graphs is uniformly definable in the class
of finite fields, and since the class of finite fields is a 1-dimensional asymp-
totic class (by way of [5, 13], the motivating example of the definition), the
class of Paley graphs is asymptotic. Moreover, it is known from [3] that
the “eventual theory” of Paley graphs is precisely the theory of the random
graph, and this class is superrobust. However, the class of Paley graphs is of
asymptotic measure 0 within the class of all finite graphs, so Theorem 2.1
is stronger in that it guarantees that G is 1-dimensional asymptotic up to
removing a “null set.” Our proof of Theorem 2.1 also obviates the appeal
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to algebra/number theory implicit in focusing on Paley graphs. In [2], it is
shown that for every r, the generic r-hypergraph is interpretable in any in-
finite pseudo-finite field in a uniform way, and again, appealing to [5, 13], it
follows that Hr contains a cofinal superrobust subclass that is 1-dimensional
asymptotic. As in the Paley graph construction, the members of this subclass
arise from solution sets of a well-chosen symmetric polynomial, so again, this
subclass is “very small” compared to Hr, while Theorem 2.1 guarantees that
Hr is 1-dimensional asymptotic up to removing a “null set” and the proof
is probabilistic instead of algebraic in nature.

Finally, we remark that there seems to be an important connection between
our result here and the work of [12] on pseudo-finite countably categorical
theories. The machinery of disjoint n-amalgamation in [12] appears to provide
a means for generating asymptotic probability measures that have almost
independent sampling, so it is not surprising that both approaches allow one
to conclude that TC is supersimple in many cases. An important divergence
between [12] and our work here is the “filtered” case that allows for certain
unsimple but still pseudo-finite generic theories of equivalence relations.

Outline of the paper. This paper consists of just two main sections
(plus a few concluding thoughts). In the first section, we collect all of the
relevant definitions, recalling the definitions of Fräıssé classes, geometric
theories, superrobust classes, and 1-dimensional asymptotic classes. We also
review the definitions of asymptotic probability measures and 0, 1-laws rel-
ative to them. Finally, we identify what is meant by a non-exotic measure:
an asymptotic probability measure with almost independent sampling. In
the second section, we prove our two main theorems. In the third section,
we note a few open questions related to the results presented here.

1. Definitions: Asymptotic probability measures, almost inde-
pendent sampling, and superrobustness. As already noted, in this
section, we will introduce all of the definitions that are relevant through-
out the paper. This includes Fräıssé classes, superrobustness, asymptotic
classes, asymptotic probability measures, 0, 1-laws, and almost independent
sampling. Before these definitions, however, we establish a few notational
and terminological conventions as follows.

1.0.1. Notational and terminological conventions. Throughout this
paper, we make certain demands on our languages, and we use a some-
what eccentric notation for finite structures. These are accounted for in the
following two conventions (2).

(2) The presentation here is quite similar to that in [9], and indeed there is some
overlap. There are only so many ways one can review the basic material on Fräıssé classes.
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Convention. Throughout this article, any language L in question is
the first-order language built over a countable signature sig(L ) that has no
function symbols and only finitely many constant symbols.

Given L , L p is the set of partitioned L -formulas, usually written
ϕ(x; y)—an ordinary L -formula with a partition of the free variables under-
stood (allowing that the tuple of parameter variables y may be empty). We
write L qf for the set of quantifier-free L -formulas. Also, if ϕ is a formula,
then ϕ1 = ϕ and ϕ0 = ¬ϕ.

Convention. Fix a language L .

• L -structures that might be infinite are rendered as uppercase calligraphic
letters, M,N , . . . , and their universes are the respective uppercase italic
characters, M,N, . . . , with cardinalities |M |, |N |, . . . .
• If M is an L -structure and A ⊆ M , then M[A] denotes the induced

substructure of M with universe A ∪ {cM : c a constant of sig(L )}. We
write M≤ N to mean that M is an induced substructure of N : M ⊆ N
and N [M ] = M. Extending this notation somewhat, we write M ≤∗ N
to mean that there is an embedding M→N .
• We use lowercase gothic letters, a, b, c, . . . , to denote L -structures that

are certainly finite. The universe of a is ‖a‖, and |a| is the cardinality
of a, i.e. |a| =

∣∣‖a‖∣∣. The notations already mentioned pertain to finite
structures as well.

In order to reduce the amount of qualifying verbiage in our discussions
of classes of finite structures, we establish the following basic qualifications
once and for all.

Convention. To say, “C is a class of finite structures,” we require:

• All members of C are finite structures for the same language L .
• C is closed under isomorphism: If a ∈ C and b ∼= a, then b ∈ C.
• C is infinite modulo isomorphisms.
• For every 0 < n < ω, the set Sqf

n (C) = {qftpa(b) : a ∈ C, b ∈ ‖a‖n} is
finite. Here, qftpa(b) denotes the quantifier-free-complete type of b in the
sense of a.

Given some structure N (possibly finite), we write C(N ) for the set {a ∈ C :
a ≤ N}.

Associated with any class C of finite structures, there is a foundation
rank rkC, which may or may not be useful. (For superrobust classes, the
foundation rank is fundamental; for asymptotic classes in general, the foun-
dation rank does not play any role to speak of.)

Definition 1.1. Let C be a class of finite structures. Then we define
its rank function rkC : C→ ω as follows:
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• rkC(a) ≥ 0 for all a ∈ C.
• rkC(a) ≥ n+ 1 if there is an a0 ∈ C(a) \ {a} and rkC(a) ≥ n.

1.1. Fräıssé and superrobust classes, cofinality of classes of
structures. Our next batch of definitions concerns classes of finite struc-
tures with additional properties that allow them to be canonically pieced
together into a single countably infinite structure. The first examples of such
classes noted in the literature (e.g. [8]) were Fräıssé classes, although related
formulations are now widely studied under various names.

1.1.1. Fräıssé classes and cofinality

Definition 1.2. Let C be a class of finite structures. We say that C is
a Fräıssé class if it has the following three properties:

Joint-embedding (JEP) For any a0, a1 ∈ C, there are b ∈ C and embed-
dings a0 → b and a1 → b.

Amalgamation (AP) For a, b0, b1 ∈ C and embeddings fi : a→ bi (i < 2),
there are c ∈ C and embeddings f ′i : bi → c (i < 2) such that f ′0 ◦ f0 =
f ′1 ◦ f1.

Heredity (HP) a[B] ∈ C whenever a ∈ C and B ⊆ ‖a‖.

Following the terminology of [9], a class that has JEP and AP is a semico-
herent class.

Fräıssé classes, and semicoherent classes more generally, are attractive
precisely because AP and JEP generate the following proposition.

Proposition 1.3 ([10, Chapter 7], essentially). Let C be a semicoher-
ent class in a language L . There is a countably infinite L -structure M
satisfying the following:

(1) (C-Universality) For every a ∈ C, there is an embedding a→M.
(2) (C-Homogeneity) For every a ∈ C such that a ≤ M, and every em-

bedding f : a → M, there is an automorphism g ∈ Aut(M) such that
f ⊆ g.

(3) (C-Closedness) For every A⊂finM , there is a finite substructure b≤M
such that b ∈ C and A ⊆ ‖b‖.

(4) M is the prime model of its own theory.

Furthermore, up to isomorphism, M is the unique countable structure
that satisfies items (1)–(3). Thus, we may speak of the generic model of a
semicoherent class C, and the assignment TC := Th(M) is well-defined.
(Primeness of M follows from the fact that for A ⊂fin M , if M[A] ∈ C,
then any partial isomorphism A→M extends to an automorphism of M.)

Obviously every Fräıssé class is a semicoherent class, so one naturally
asks if there is a characterization of Fräısséness in terms of generic models
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and generic theories. The following proposition provides such a characteri-
zation.

Proposition 1.4. Let C be a semicoherent class in a language L , and
let M be its generic model. The following are equivalent:

(1) TC is ℵ0-categorical and eliminates quantifiers.
(2) Age(M) = {a : a ≤∗M} ⊇ C (up to isomorphism) is a Fräıssé class.

A Fräıssé class may contain finite structures that are pathological rel-
ative to the other structures in the class. For example, the class G of all
finite graphs contains all of the cycles, but a large “typical” graph—a typ-
ical member of G—is not remotely like a cycle. The following definition of
cofinality for semicoherent classes just gives us a framework for eliminating
pathological members of a class without changing the class in any essential
way.

Definition 1.5. Let C,D be semicoherent classes. We say that C and
D are cofinal if the following are both true:

• For every c ∈ C, there is a d ∈ D such that c ≤ d.
• For every d ∈ D, there is a c ∈ C such that d ≤ c.

(Obviously, a cofinal subclass of C is a subclass C0 ⊆ C such that C and
C0 are cofinal.) We note that if C and D are cofinal semicoherent classes,
then TC = TD, and the converse holds as well.

1.1.2. Superrobustness. In general, first-order properties and first-order
definable sets of the generic model and those of members of a semicoherent
class C need not coincide. (Think of Q and the class of finite linear orders,
say.) In [15], and then in [9], the notion of robustness of a chain or class
of finite structures was introduced; in both cases, one introduces a graded,
approximate form of the elementary substructure relation.

Definition 1.6. Let C be a semicoherent class of finite L -structures.
We say that C is superrobust if there is a function ν : L → ω such that for
all a, b ∈ C, all ϕ(x0, . . . , xn−1) ∈ L , and all a ∈ ‖a‖n, if rkC(a) ≥ ν(ϕ)
and a ≤ b, then a � ϕ(a)⇔ b � ϕ(a).

In [9], a large number of equivalents of superrobustness are examined. In
this paper, we will have need of one of these. (Eventually, we will use it to
transfer the supersimplicity of ultraproducts over a derived 1-dimensional
asymptotic class back to the generic theory of a given Fräıssé class.)

Theorem 1.7. Let C be a Fräıssé class with generic modelM, and let D
be a superrobust cofinal subclass of C. Let d0, d1, . . . be any enumeration of
(representatives of ) isomorphism types in D, and let U be any non-principal
ultrafilter on ω. Then

∏
n dn/U � TC.
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1.2. Geometric theories. The formulation of asymptotic classes (be-
low) asks for both dimension and measure of definable sets in finite struc-
tures. For a general Fräıssé class, it is not at all clear where to find a “canon-
ical” dimension theory. (We note that pseudo-finite dimensions, as in [11],
can vary wildly depending on the ultrafilter chosen.) In this paper, we dis-
pense with this issue by focusing attention on Fräıssé classes in which there
is a natural dimension theory—those classes for which the generic theory is
geometric in the following sense.

Definition 1.8. Let T be a complete theory with infinite models. We
say that T is a geometric theory if both of the following hold:

• T eliminates ∃∞: For every ϕ(x; y), there is a number nϕ such that for all
M � T and b ∈ M |y|, if M � (∃≥nϕx) ϕ(x, b), then ϕ(M, b) is infinite.
(This condition is, of course, immediate for all ℵ0-categorical theories in
countable languages.)
• For everyM � T , aclM is the closure operator of a pre-geometry on M—

meaning that for all C ⊆ M and a, b ∈ M , if a ∈ aclM(bC) \ aclM(C),
then b ∈ aclM(aC).

For our purposes, then, a Fräıssé class C is geometric just in case TC is a
geometric theory, and if C is a geometric Fräıssé class, then we write Calg

for the subclass consisting of those a ∈ C for which there is an embedding
f : a →M, where M � TC, such that aclM(‖fa‖) = ‖fa‖. (By quantifier-
elimination in TC, algebraic closedness is an invariant of the isomorphism
type of a member of C.)

Once a theory is known to be geometric, we also know, as with strongly
minimal theories, that cardinalities of algebraically independent subsets are
invariants, and this provides us with a rudimentary dimension theory that
extends easily to a dimension theory for definable sets as follows.

Definition 1.9. If T is a geometric theory, then every model M � T
admits a dimension function of the form

dima(a/B) = max

{
|S| :

S ⊆ n, |{ai}i∈S | = |S|,
{ai}i∈S is alg. ind. over B

}
for 0 < n < ω, a ∈ Mn, and B ⊆ M . One extends this rudimentary
dimension function to a dimension function on definable sets: for a definable
set X ∈ Def(M),

dima(X) = min

{
max{dima(a/B) : a ∈ X} :

B ⊂fin M,

X is over B

}
.

Everything in what follows is applied more or less exclusively to geomet-
ric Fräıssé classes, so it will be convenient (for succinctness) to establish the
following blanket assumption.
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From now on, unless stated otherwise, C denotes a geometric Fräıssé
class, and M is its generic model.

1.3. Some probability theory. It may be convenient for the reader
if we pause now to recall some notation and ideas from probability the-
ory. We use conditional probabilities in several places, so we recall that if
E0, E1, . . . , En are events in some probability space, then

P(E0 ∧ E1 ∧ · · · ∧ En−1)

= P(E0

∣∣ E1 ∧ · · · ∧ En)·P(E1

∣∣ E2 ∧ · · · ∧ En)· · ·P(En−1

∣∣ En).

When we make calculations using this equation, we will sometimes refer
to the “calculus of conditional probabilities.” Another notation we will use
is “X ∼ Binomial(N, p),” which means that X is a random variable that
follows the binomial distribution with parameters N < ω and p ∈ [0, 1].
More precisely, the range of values of X is {0, 1, . . . , N}, and for each k,

P(X = k) =

(
N

k

)
pk(1− p)N−k

is the probability of getting exactly k successes in N independent trials,
each trial with probability p of success.

Convention. For a, b ∈ [0,∞) and 0 < ε < 1, we write a ∈ (1± ε)b as
shorthand for

(1− ε)b < a < (1 + ε)b.

Also, if X is some set and 0 < n < ω, then X(n) is the set of x ∈ Xn such
that xi 6= xj for all i < j < n.

1.4. Asymptotic probability measures, 0, 1-laws, and almost in-
dependent sampling. In this subsection, we finally formalize the notions
of asymptotic probability measures and 0, 1-laws relative to them for ge-
ometric Fräıssé classes. The first definition below accounts for asymptotic
probability measures for geometric Fräıssé classes, and in the subsequent
definition, we identify a few notational tricks that are needed for our formu-
lation of 0, 1-laws for first-order logic which is given in Definition 1.13. We
note that our definitions do not require that L ’s signature is finite, only
that CN is finite for every N .

Definition 1.10. For every 0 < N < ω, CN is the set {a ∈ C :
‖a‖ = N}. Now, an asymptotic probability measure for C is a sequence
µ = (µN )N such that:

• For every 0 < N < ω, µN : CN → [0, 1] is an isomorphism-invariant
probability mass function.
• For all N < N1 < ω and all a ∈ CN ∩Calg, µN (a) =

∑
b∈CN1

: a≤b µN1(b).

For X ⊆ CN , we write µNX or µN [X] as shorthand for
∑

a∈X µN (a).



0, 1-laws and asymptotics of definable sets 209

Definition 1.11. Let µ be an asymptotic probability measure for C,
and let 0 < N < ω.

• For a sentence ϕ ∈ Sent(L (N)), where L (N) is the expansion of L by
new constants 0, 1, . . . , N − 1, we define

µN [ϕ] =
∑

a∈CN : a�ϕ

µN (a) = µN{a ∈ C : a � ϕ}

where “a � ϕ” is given its natural meaning.
• Suppose θ = θ(b) and ϕ = ϕ(a, b) are sentences in L (N), and suppose
µN [θ] > 0. Then

µN [ϕ|θ] =
µN [ϕ ∧ θ]
µN [θ]

.

Furthermore, we define a partial function µ∞ : Sent(L (ω)) ⇀ [0, 1] by

µ∞[ϕ] =

{
limN→∞ µN [ϕ] if the limit exists,

↑ otherwise.

Observation 1.12. Let µ be an asymptotic probability measure for C.

• If θ is a quantifier-free sentence in L (ω), then µ∞[θ] exists.
• Suppose θ = θ(b) and ϕ = ϕ(a, b) are quantifier-free sentences in L (ω),

and µ∞[θ] > 0. Then the limit µ∞[ϕ|θ] = limN→∞ µN [ϕ|θ] exists, and
µ∞[ϕ|θ] = µ∞[ϕ ∧ θ]

/
µ∞[θ].

The second item is explained as follows: In the special case where ϕ and θ
are quantifier-free diagrams (or at least, isolated single isomorphism types of
structures modulo C), the claim follows by the marginalization condition in
the definition of an asymptotic probability measure; then, the general case
follows by the calculus of marginal and conditional probabilities.

Definition 1.13. Let µ be an asymptotic probability measure for C.
We define

Th(µ) = {ϕ ∈ Sent(L ) : µ∞[ϕ]↓ = 1}.
Ordinarily, C would be said to have the 0, 1-law for first-order logic relative
to µ just in case Th(µ) is a complete theory, but in this paper, it will be
more convenient to fix a stronger definition. We say that C has the 0, 1-law
for first-order logic relative to µ if Th(µ) = TC.

We must note that our last requirement in the specification of a 0, 1-
law—that Th(µ) = TC—is not a triviality; the class of finite triangle-free
graphs provides a good example.

Remark 1.14. Let C be the class of finite triangle-free graphs in the
language whose signature consists of a single binary relation symbol, and let
µ = (µN )N be such that for every N , µN is the uniform distribution on CN .
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Then Th(µ) is a complete theory (the theory of the generic bipartite graph),
but Th(µ) 6= TC.

Now, we turn to the idea of almost independent sampling, to which we will
appeal in identifying measures of definable sets (relative to their algebraic
dimensions). To motivate the definition, first recall that G denotes the class
of all finite graphs. Then, we note that in generating a random member of
GN by independent unbiased coin flips, the event of any particular vertex
i ∈ N \ C satisfying the requirements of an extension axiom (over some
clump C of vertices) is independent of the event of any other vertex j ∈
N \C satisfying the same extension axiom. In [17] (presented more tractably
in [4]), this observation is mined to prove that typical finite graphs satisfy
strong extension axioms, which are very similar to the conclusion established
in our Proposition 2.3 below.

G is a geometric Fräıssé class, but the algebraic closure operation in TG is
trivial. To extend the idea of independent sampling to an arbitrary geometric
Fräıssé class, we need to tailor the discussion a little more carefully. The
basic objects, then, are d, n-extension problems, which are used both in the
formulation of almost independent sampling and heavily in the rest of the
paper.

Definition 1.15. We define a d, n-extension problem of C to be a pair
(ϕ, θ) where θ(y) ∈ Sqf

m(TC), ϕ(x; y) ∈ Sqf
d+m(TC), and together these satisfy:

• θ(y) �
∧
i<j<m yi 6= yj .

• ϕ(x; y) � θ(y) ∧
∧
i<j<d xi 6= xj .

• If M � ϕ(a, b), where M is the generic model of C, then a ∩ acl(b) = ∅
and {a0, . . . , ad−1} is algebraically independent over b.

As it is slightly easier to typeset (and slightly more illustrative), we often
write ϕ/θ in place of (ϕ, θ) for a d, n-extension problem of C.

Definition 1.16. Let µ be an asymptotic probability measure for C.
We say that µ has almost independent sampling if for every 1, n-extension
problem ϕ/θ of C, there are numbers 0 ≤ ε < 1 and 0 < δ < 1 such that for
all but finitely many N ∈ ω, for every b ∈ N (n), for any {i0 < · · · < it−1} ⊆
N \ b where t = dδNe, for every s : t→ 2,

µN

[∧
j<t

ϕ(ij ; b)
s(j)

∣∣∣ θ(b)] ∈ (1± ε)
∏
j<t

µN [ϕ(ij ; b)
s(j) | θ(b)].

1.5. Asymptotic classes. The last definition required for this paper is
that of an asymptotic class. These were introduced in [14, 6, 7], generalizing
the situation for finite fields as proved in [5].

Definition 1.17. Let D be a class of finite structures in a countable
language L . We say that D is a 1-dimensional asymptotic class if there is
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a function

A : L p → Pfin(L×ω×[0,∞)) : ϕ(x; y) 7→ A(ϕ)

such that for all ϕ(x; y) ∈ L p:

• A(ϕ) 6= ∅, and for every (θ, d,m) ∈ A(ϕ), θ is of the form θ(y).
•
∨

(θ,d,m)∈A(ϕ) θ(y) ≡ True modulo D.

• For (θ1, d1,m1) and (θ2, d2,m2) in A(ϕ), if θ1∧θ2 6≡ False modulo D, then
d1 = d2 and m1 = m2.
• For every ε > 0, there is an Nϕ,ε < ω such that for all a ∈ D, all

(θ, d,m) ∈ A(ϕ), and all b ∈ ‖a‖|y|, if a � θ(b) and |a| ≥ Nϕ,ε, then∣∣|ϕ(a; b)| −m|a|d
∣∣ < ε|a|d.

(Clearly, it follows that if (θ, d,m) ∈ A(ϕ(x0, . . . , xr−1; y)), then d ≤ r.)
For any number 0 < K < ω, we recover the notion of a K-dimensional
asymptotic class by simply replacing ω in the range of A by {k/K : k < ω} ⊆
Q ∩ [0,∞). Thus, for a K-dimensional asymptotic class, if (θ, k/K,m) ∈
A(ϕ(x0, . . . , xr−1; y)), then k ≤ Kr.

We conclude this section by noting an important theorem showing that
the infinitary model theory of ultraproducts over an asymptotic class is quite
tame. We will also use this theorem to derive Theorem 2.2 from Theorem 2.1.

Theorem 1.18 ([6]). Let D be a class of finite structures in a countable
language L . If D is a K-dimensional asymptotic class, then the theory of
any infinite ultraproduct M of members of D is supersimple, and if M is
geometric, then D(X) ≤ K· ari(X) for any definable set X ∈ Def(M).

2. Demonstrations. In this section, of course, we prove the two main
theorems of this paper. In the first, we show that a geometric Fräıssé class
that has the 0, 1-law for first-order logic relative to a “non-exotic” asymp-
totic probability measure is necessarily very close to being an asymptotic
class. An important step in the proof of Theorem 2.1 is the “tail inequality”
encoded as Proposition 2.3; we use the lower bounds resulting from Propo-
sition 2.3 to identify measures of definable sets relative to their dimensions.
Using Theorem 2.1, it is then a fairly simple matter to prove Theorem 2.2
using Theorems 1.18 and 1.7.

Theorem 2.1. Let C be a geometric Fräıssé class, and suppose that
C has the 0, 1-law for first-order logic relative to an asymptotic probability
measure µ that has almost independent sampling. Then C contains a cofinal
superrobust subclass D, which is a 1-dimensional asymptotic class via A,
with

A(ϕ(x; y)) ⊂fin

{(
qftp(a),dima(ϕ(M; a)),m

)
: a ∈M |y|, m ∈ [0,∞)

}
.
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Theorem 2.2. Let C be a geometric Fräıssé class, and suppose that
C has the 0, 1-law for first-order logic relative to an asymptotic probability
measure µ that has almost independent sampling. Then TC is supersimple,
and D(X) ≤ dima(X) for every definable set X of the generic model M
of C.

2.1. A tail inequality. The focus of this subsection is to prove Propo-
sition 2.3 below. Our proof draws heavily on a related argument given in [4].
The starting point for our proof (and theirs) is the following standard result
from discrete probability theory.

Fact (Chernoff bound, see [16, Chapter 4]). For any 0 < p, α < 1,
there exists 0 < c < 1 such that for any N < ω, if X ∼ Binomial(N, p), then
P[X ≤ αpN ] ≤ cN .

An alternative statement, which is a little more convenient for us, is the
following: There is a function ξ : (0, 1)×(0, 1) → (0, 1) such that for any
0 < p, α < 1 and any N < ω, if X ∼ Binomial(N, p), then P[X ≤ αpN ] ≤
ξ(p, α)N .

Proposition 2.3. Let C be a geometric Fräıssé class, and let µ be an
asymptotic probability measure for C that has almost independent sampling.
Then, for every d, n-extension problem ϕ/θ of C, there is a number 0 <
β < 1 such that

µN{a : (∃b ∈ θ(a)) |ϕ(a; b)| ≤ β|a|d} ∈ O(NkcN )

for some 0 < c < 1 and k ≥ 0.

Proof. First, we will observe that the full proposition for d, n-extension
problems reduces to the proposition for just 1, n-extension problems (n
arbitrary). Let ϕ(x; y)/θ(y) be a d, n-extension problem where d > 1. If
M is the generic model of C, let a ∈ Md and b ∈ Mn be such that
M � ϕ(a; b)—soM � θ(b). For k = 0, 1, . . . , d−2, let θk(xk+1, . . . , xd−1, y) =
qftpM(ak+1, . . . , ad−1, b), and let ϕk(xk;xk+1, . . . , xd−1, y) be the natural
partitioning of the type qftpM(ak, ak+1, . . . , ad−1, b). Also, let θd−1 = θ and
ϕd−1(xd−1; y) = qftpM(ad−1, b). For each k, ϕk/θk is a 1, n+(d − k − 1)-
extension problem. Now, if the proposition holds for 1, n-extension problems
for all n, then by the calculus of conditional probabilities, the proposition
holds for d, n-extension problems for all d, n.

Next, we prove the statement when d = 1. That is, we prove just that for
every 1, n-extension problem ϕ/θ of C, there are numbers 0 < β ≤ 1, 0 <
c < 1, and k ≥ 0 such that µN{a : (∃b ∈ θ(a)) |ϕ(a; b)| ≤ β|a|} ∈ O(NkcN ).

Claim. Let ϕ/θ be a 1,m-extension problem of C. There is a constant
0 < c < 1 such that for sufficiently large N , and each b ∈ N (n),
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µN
[
|ϕ(∗; b)| ≤ 1

2p δN
∣∣ θ(b)] ≤ cN

where p = (1 − ε)µN [ϕ(n; 0, . . . , n − 1) | θ(0, . . . , n − 1)] for ε and δ as
in Definition 1.16, and µN

[
|ϕ(∗; b)| ≤ 1

2pδN
∣∣ θ(b)] is shorthand for the

conditional probability

µN
{
a : a � θ(b) ∧ |ϕ(a, b)| ≤ 1

2p δN
}

µN [θ(b)]
.

To prove the claim, it is helpful to isolate one straightforward observation
on ensembles of {0, 1}-valued random variables.

Observation. Suppose 0 < p < 1 and 0 < α < 1, and for some K0 < ω,
let Y0 ∼ Binomial(K0, p). Let K0 ≤ K < ω, and let q : {0, 1}K → [0, 1] be
a probability mass function that is invariant under permutations of coordi-
nates and such that for all ` ≤ K0 and {i0 < · · · < i`−1} ⊆ K,

Pq
{
x ∈ {0, 1}K :

∑
j<`

xij ≥ `
}
≥
(
K0

`

)
p`(1− p)K0−`.

Then

Pq
{
x ∈ {0, 1}K :

∑
i<K0

xi ≤ αpK0

}
≤ P[Y0 ≤ αpK0].

Proof of Claim. Let K = N −n and K0 = dδNe (so for large enough N ,
K0 < K), and define q : {0, 1}K → [0, 1] by

q(x) = µN

[ ∧
i<K

ϕ(n+i; 0, . . . , n− 1)xi
∣∣∣ θ(0, . . . , n− 1)

]
.

Also, let X ∼ Binomial(K0, p). Then, for each b ∈ N (n) individually,

µN
[
|ϕ(∗; b)| ≤ 1

2p δN
∣∣ θ(b)] = Pq

{
x ∈ {0, 1}K :

∑
j<K0

xi ≤ 1
2pK0

}
≤ P

[
X ≤ 1

2pK0

]
≤ ξ(p, δ/2)δN ,

so we set c = ξ(p, δ/2)δ.

The proof of the proposition now concludes with just a little more cal-
culation:

µN

[ ∨
b∈N(n)

θ(b) ∧ |ϕ(∗; b)| ≤ 1
2pδN

]
≤

∑
b∈N(n)

µN
[
θ(b) ∧ |ϕ(∗; b)| ≤ 1

2p δN
]

=
∑

b∈N(n)

µN
[
|ϕ(∗; b)| ≤ 1

2p δN
∣∣ θ(b)]µN [θ(b)]
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= µN [θ(0, . . . , n− 1)]
∑

b∈N(n)

µN
[
|ϕ(∗; b)| ≤ 1

2p δN
∣∣ θ(b)]

≤
(
µN [θ(0, . . . , n− 1)]n!

(
N

n

))
cN .

We observe that Proposition 2.3 does not actually require the 0, 1-law
as a hypothesis. As it directly pertains only to quantifier-free types, the
assumption that µ has almost independent sampling is sufficient. Its perti-
nence to 0, 1-laws for a geometric Fräıssé class C arises from the fact that TC
eliminates quantifiers, so that with probability tending to 1, each definable
set in a member of C is (uniformly) quantifier-free definable.

2.2. Proof of Theorems 2.1 and 2.2. From this point, the remaining
work in proving Theorem 2.1 consists in the following:

• Identify what the dimension-relative measures of definable sets should be
in the 1-dimensional asymptotic subclass that we eventually extract.
• Extract that subclass.

In Definition 2.4 and Lemma 2.5, we use Proposition 2.3 to recover measures
for d, n-extension problems, and in Definition 2.6, we state how one can
form measures for arbitrary definable sets using those of extension problems
(we take it as clear that this method works as advertised), completing the
specification A for the 1-dimensional asymptotic class.

Definition 2.4. Let ϕ/θ be a d, n-extension problem of C for some
0 < d < ω and n < ω. Then we define

U(ϕ/θ) =
{
β ∈ [0, 1] : (∃α ∈ (0, 1))(a.e. N)(∀b ∈ N (n))

µN [|ϕ(∗; b)| ≥ βNd | θ(b)] ≤ αN
}
,

β(ϕ/θ) = sup U(ϕ/θ).

Now, for n < ω, 0 < d < ω, and θ(y) ∈ Sqf
n (TC), let Jd(θ) be the set of all

d, n-extension problems of C of the form ϕ/θ. Then for each ϕ/θ ∈ Jd(θ),
we define

γ(ϕ/θ) =
1

2

(
β(ϕ/θ) +

(
1−

∑
ψ/θ∈Jd(θ):ψ 6≡ϕ

β(ψ/θ)
))
.

Lemma 2.5. Let ϕ/θ be a d, n-extension problem of C for some 0 <
d < ω and n < ω. Then for every 0 < ε < 1, there is a number 0 ≤
c(θ, ε) < 1 such that for every large enough N and every b ∈ N (n),

µN
[∣∣|ϕ(∗; b)| − γ(ϕ/θ)Nd

∣∣ > εNd
∣∣ θ(b)] ≤ c(θ, ε)N .

Proof. In the first place, we note that if Jd(θ) = {ϕ/θ} is a singleton,
then β(ϕ/θ) = 1, so γ(ϕ/θ) = 1, and the claim of the lemma is immediate.
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So, let us assume that

Jd(θ) = {ϕ0/θ=ϕ/θ, ϕ1/θ, . . . , ϕr−1/θ}
for some r > 1.

Let 0 < ε < 1 be given. Towards a contradiction, suppose that for every
0 < c < 1, there are infinitely many N such that

µN [|ϕ0(∗; b)| − γ(ϕ0/θ)N
d > εNd | θ(b)] > cN

where b ∈ ω(n) is fixed arbitrarily. (Since we are thinking about infinitely
many N ’s, and θ(b) implies that b is algebraically closed, the definition of an
asymptotic probability measure ensures both that we can choose such b and
that it does not matter which bwe use.) Hence, for some 0<ε′<1 and every k,

µN

[ ∣∣∣ ∨
0<i<r

ϕi(∗; b)
∣∣∣ < ε′

( ∑
0<i<r

β(ϕi/θ)
)
Nd

∣∣∣ θ(b)] > (1− 2−k)N

for infinitely many N . By the Pigeonhole Principle, we may assume that
there is a single 0 < i < r such that for all k,

µN [|ϕi(∗; b)| < ε′β(ϕi/θ)N
d | θ(b)] > (1− 2−k)N

for infinitely many N . Since ε′β(ϕi/θ) < β(ϕi/θ), this contradicts the defi-
nition of β(ϕi/θ). Thus, there is a number 0 < c+(θ, ε) < 1 such that

µN [|ϕ0(∗; b)| − γ(ϕ0/θ)N
d ≤ εNd | θ(b)] ≤ c+(θ/ε)N

for almost all N . Arguing in largely the same way (in this case it is ϕi(∗; b)
for some i > 0 that is carrying excess “mass” instead of ϕ0(∗; b)), we also
recover a number 0 < c−(θ, ε) < 1 such that

µN [γ(ϕ0/θ)N
d − |ϕ0(∗; b)| ≤ εNd | θ(b)] ≤ c−(θ/ε)N

for all but finitely many N , and we set c(θ, ε) = max{c+(θ, ε), c−(θ, ε)} to
complete the proof.

Definition 2.6. Let ψ(x0, . . . , xk−1; y0, . . . , yn−1) ∈ L p.

• Let ψqf(x; y) be the disjunction of all quantifier-free-complete types q(x; y)

∈ Sqf
k+n(TC) such that TC � q(x; y)→ ψ(x; y).

• Let d ≤ k, and let θ(y) ∈ Sqf
n (TC) be such that ψ(x; y)∧ θ(y) is consistent

with TC. Then K+
d (ψ/θ) is the set of pairs (ϕ′(x; y), ϕ/θ), where ϕ =

ϕ(xi0 , . . . , xid−1
; y), such that if M � ϕ(ai0 , . . . , aid−1

; b), then:

– ϕ′ is a quantifier-free-complete type, and TC � ϕ′(x; y) → ψ(x; y) ∧
ϕ(xi0 , . . . , xid−1

; y).
– ϕ/θ is a d, n-extension problem.
– If M � ϕ′(a; b), then i0 = min{t < k : at /∈ acl(b)}, and for 0 < ` < d,
i` = min

{
t : i`−1 < t < k ∧ at /∈ acl(b ∪ {ai0 , . . . , ai`−1

})
}

.

We then define Kd(ψ/θ) = {ϕ/θ : (ϕ′, ϕ/θ) ∈ K+
d (ψ/θ)}.
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• Let θ(y) ∈ Sqf
n (TC) be such that ψ(x; y) ∧ θ(y) is consistent with TC. Let

d = dima(ψ(M; b)) where b ∈ θ(M). If d > 0, then we define

γ(ψ/θ) =
∑

ϕ∈Kd(ψ/θ)

γ(ϕ/θ),

and if d = 0—so that ψ(M, b) is finite—then we set γ(ψ/θ) = |ψ(M; b)|.
• We may then define

A(ψ) =

{
(θ, d, γ(ψ/θ)) :

b ∈Mn, θ = qftp(b),

d = dima(ψ(M; b))

}
.

We now have the data A for a 1-dimensional asymptotic class, and our
next (and last) task in proving Theorem 2.1 is to pair down the original class
to a cofinal subclass D that is superrobust and 1-dimensional asymptotic
via A. The construction is in stages in which we reduce C to more and more
A-asymptotic subclasses. The definitions needed for this process are listed
in Definition 2.7, and the process itself immediately follows Lemma 2.8.

Definition 2.7. Let Fm ⊂fin TC ∪ L p for each m < ω such that⋃
m Fm = TC ∪ L p. Then for each m, we define C(m) to be the subclass

consisting of all a ∈ C such that:

• Th(a) ∩ TC � ψ ↔ ψqf if ψ ∈ Fm ∩L p, where ψqf is as in Definition 2.6;
• a � Fm ∩ TC.

For m and 0 < δ < 1, we define Cδ(m) to be the subclass consisting of those
a ∈ C(m) such that for each d, n-extension problem ϕ/θ, if ϕ ∈ Fm, then∣∣|ϕ(a; b)| − γ(ϕ/θ)|a|d

∣∣ ≤ δ|a|d for every b ∈ θ(a).

Lemma 2.8. For all 0 < m < ω and 0< δ < 1,

lim
N→∞

µN [Cδ(m) ∩CN ] = 1.

Proof. Let 0 < m < ω and 0 < δ < 1 be given. Then let F ′m ⊂fin TC be
the finite set of sentences

(Fm ∩ TC) ∪ {(∀x)(∀ y) (ψ(x; y)↔ ψqf(x; y)) : ψ(x; y) ∈ Fm ∩L p}.
Since by hypothesis C has the 0, 1-law with respect to µ and Th(µ) = TC,
we know that limN→∞ µN [

∧
F ′m] = 1. Since P(A∩B) ≥ (1−P(¬A)−P(¬B))

in general, Lemma 2.5 implies that limN→∞ µN [Cδ(m) ∩CN ] = 1.

Now, we choose a fast growing, strictly increasing function f : ω → ω
and a decreasing function δ : ω → (0, 1) : k 7→ δk such that limk→∞ δk = 0.
Then, we proceed as follows:

• D0 = C.
• If k > 0, then Dk = {a ∈ Dk−1 : |a| ≥ f(k)⇒ a ∈ Cδk(k)}.
In the “end,” we set D =

⋂
k<ω Dk.
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Proof of Theorem 2.1. At this point, the proof of the theorem amounts
to three very straightforward observations as follows.

Observation. By construction, limN→∞ µN [D ∩CN ] = 1.

Observation. For each a ∈ C, there is a number ma such that a ≤ b∗

whenever m ≥ ma and b ∈ C(m). From this, it follows that D is a cofinal
subclass of C.

Observation. D is a 1-dimensional asymptotic class via A as defined
above.

To see this, let ψ(x; y) ∈ L p, 0 < ε < 1, and (θ(y), d, γ(ψ/θ)) ∈ A(ψ).
Then we may choose k < ω such that δk ≤ ε. By construction, for any
a ∈ D, if |a| ≥ f(k), then∣∣|ψ(a; b)

∣∣− γ(ψ/θ)|a|d
∣∣ ≤ δk|a|d ≤ ε|a|d.

This completes the proof of the theorem.

The last task of this paper is to prove Theorem 2.2. As already noted, it
follows quickly as a corollary of Theorems 1.7, 1.18, and 2.1.

Proof of Theorem 2.2. By Theorem 2.1, let D be a superrobust cofinal
subclass of C that is 1-dimensional asymptotic. Let d0, d1, . . . be pairwise
non-isomorphic members of D that exhaust all isomorphism types in D, and
let U be a non-principal ultrafilter on ω. Since D is a cofinal superrobust
subclass of C, by Theorem 1.7 we have Th(

∏
n dn/U ) = TD = TC. Since

D is 1-dimensional asymptotic, by Theorem 1.18, TC = Th(
∏
n dn/U ) is

supersimple, and D(X) ≤ dima(X) for every definable set X of
∏
n dn/U

(which elementarily embedsM)—and this completes the proof of the theo-
rem.

3. Concluding remarks. To conclude this paper, we make two con-
jectures which may help to motivate some future work in this area. For the
first conjecture, we observe that the 1-dimensionality of the 1-dimensional
asymptotic class recovered in Theorem 2.1 seems to come from the role of
dδNe in the formulation of almost independent sampling. To account for
K-dimensional asymptotic classes with K > 1, it seems that we would per-
haps need a yet more relaxed version of independent samplings as follows.

Definition 3.1. Let µ be an asymptotic probability measure for C. We
say that µ has broadly almost independent sampling if there is an integer
0 < K < ω such that for every 1, n-extension problem ϕ/θ of C, there are
numbers 0 ≤ ε < 1, 0 < δ ≤ 1, and k ≤ K such that for all but finitely
many N , for every b ∈ N (n), for any {i0 < · · · < it−1} ⊆ N \ b where
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t = dδNk/Ke, for every s : t→ 2,

µN

[∧
j<t

ϕ(ij ; b)
s(j)

∣∣∣ θ(b)] ∈ (1± ε)
∏
j<t

µN [ϕ(ij ; b)
s(j) | θ(b)].

Conjecture 3.2. Let C be a geometric Fräıssé class with generic
model M, and suppose that C has the 0, 1-law for first-order logic relative
to an asymptotic probability measure µ that has broadly almost independent
sampling. Then for some K, C contains a cofinal superrobust subclass D,
which is a K-dimensional asymptotic class via A, with

A(ϕ(x; y)) ⊂fin {(qftp(a), k/K,m) : a ∈M |y|,
k ≤ Kdima(ϕ(M; a)), m ∈ [0,∞)}.

Consequently, TC is supersimple, and D(X) ≤ Kdima(X) for any definable
set X in M � T .

Unfortunately, there is a new asymmetry in broadly almost independent
sampling: while t = bδNk/Kc is adequate, this does not always preclude, say,
t′ = bδ′N (2k+1)/(2K)c from also being adequate. Thus, the techniques used
in this paper are not alone sufficient to prove something like Conjecture 3.2.

On the other hand, it is not easy (if at all possible) to come up with a
geometric Fräıssé class that has the 0, 1-law for first-order logic, is supersim-
ple, and so forth, without building a 1-dimensional asymptotic class along
the way. It would be quite interesting, if not totally unexpected (especially
given the results of [1]), if the following were found to be true.

Conjecture 3.3. Suppose C has the 0, 1-law for first-order logic rela-
tive to some asymptotic probability measure µ. Further, suppose that TC is
geometric, supersimple, and for every definable set X of the generic model
M of C, D(X) is bounded by the algebraic dimension of X. Then there
is an asymptotic probability measure µ′ with almost independent sampling,
relative to which C has the 0, 1-law for first-order logic.
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