
ANNALES
POLONICI MATHEMATICI

119.1 (2017)

Whitney’s extension theorem in o-minimal structures

Athipat Thamrongthanyalak (Bangkok and Columbus, OH)

Abstract. In 1934, H. Whitney gave a necessary and sufficient condition on a jet
of order m on a closed subset of E of Rn to be the jet of order m of a Cm-function.
Later, K. Kurdyka and W. Pawłucki proposed a subanalytic version of this theorem. In
this paper, we work in an o-minimal expansion of a real closed field and prove a definable
version of Whitney’s Extension Theorem.

Throughout, we fix an o-minimal expansion R of a real closed ordered
field R in a language extending the language of ordered fields. As usual, “de-
finable” means “definable in R possibly with parameters” unless indicated
otherwise. We assume that the reader is familiar with the basic definitions
and facts concerning o-minimal structures (see, e.g., [1, 2]). Whitney’s Ex-
tension Theorem, which can be regarded as a partial converse of Taylor’s
Theorem, was proved by H. Whitney in 1934. (See [9, 12] for the proof, and
[13, 14] for related problems.) It roughly says that a continuous function
on a closed subset of Rn which can be approximated by Taylor polynomi-
als of degree m in a certain uniform way is the restriction of a Cm-function.
A collection of functions which encodes the relevant data for such an approx-
imation is called a Cm-Whitney field. Later, K. Kurdyka and W. Pawłucki
[7] proposed a version of Whitney’s Extension Theorem in the category of
subanalytic functions. The question on Whitney’s Extension Theorem in
o-minimal structures was raised by C. Miller in early 2000s.

In this paper, we prove a definable version of Whitney’s Extension The-
orem:

Theorem A. Suppose E ⊆ Rn is definable and closed. Let m, q ∈ N.
Then every definable Cm-Whitney field on E has a definable Cm-extension
which is Cq outside E.
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Note that this theorem was independently proved by K. Kurdyka and
W. Pawłucki [8]. Due to the differences in the approaches, the author believes
this article is of some interest.

Let us make precise what we mean by a definable Cm-Whitney field and
an extension of such a Whitney field. Let E ⊆ Rn be definable. A (definable)
jet of order m on E is a family F = (Fα)|α|≤m where each Fα : E → R is a
definable continuous function. If F is a jet of order m on E and E′ ⊆ E is
definable, then F �E′ := (Fα�E′)|α|≤m is a jet of order m on E′. If E is open,
then for each definable Cm-function f : E → R, we obtain a jet Jm(f) =
(Dαf)|α|≤m of order m on E. Here, α = (α1, . . . , αn) ranges over Nn, and
we let Dα = ∂α1

∂x
α1
1

· · · ∂αn
∂xαnn

and |α| := α1 + · · · + αn. Now for every x ∈ Rn,
a ∈ E, and F a jet of order m on E, set

Tma F (x) =
∑
|α|≤m

Fα(a)
(x− a)α

α!
,

Rma F (x) = F − Jm(Tma F (x)).
We say that a jet F of order m is a definable Cm-Whitney field on E
(F ∈ Em

def(E)) if, for all x0 ∈ E and |α| ≤ m, we have

(Rmx F )
α(y) = o(‖x− y‖m−|α|) as E 3 x, y → x0;

equivalently, if for all for x0 ∈ E and z ∈ Rn,
|Tmx F (z)− Tmy F (z)| = o(‖x− z‖m + ‖y − z‖m) as E 3 x, y → x0.

(See [9].) Note that if F ∈ Em
def(E) and E′ ⊆ E is definable, then F �E′ ∈

Em
def(E

′). Also, if E is open and f : E → R is a definable Cm-function, then
Jm(f) is a Cm-Whitney field, by Taylor’s Theorem. Given F ∈ Em

def(E),
we say that a definable Cm-function f : Rn → R is an extension of F if
Jm(f)�E = F .

An immediate consequence of the theorem above is the following:

Corollary. Suppose that E is regularly closed (i.e., E equals the clo-
sure of its interior). Let f : E → R be a definable function such that for
each x ∈ E there is an open neighborhood U of x in Rn and an extension of
f�(E∩U) to a definable Cm-function U → R. Then f extends to a definable
Cm-function Rn → R.

One of the key ingredients in the construction of Kurdyka and Pawłucki
[7] is a partition of unity, which is not generally available in o-minimal ex-
pansions of real closed fields. In [11], Pawłucki introduced a new algorithm to
extend Cm-Whitney fields on E ⊆ Rn. However, this new construction does
not preserve definability in a given o-minimal expansion of R, due to its use
of integration. In this paper, we still follow Pawłucki’s five-step strategy from
[11], while combining it with Λm-regular Stratification Theorem from [6, 3].
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Conventions and notation. Throughout this paper, d, k, m, n, and
q will range over the set N = {0, 1, 2, . . . } of natural numbers. Given a map
f : X → Y we write

Γ (f) = {(x, f(x)) : x ∈ X} ⊆ X × Y
for the graph of f . For any set X, we also consider +∞ and −∞ as constant
functions on X. For f, g : X → R∪{±∞}, we write f < g if f(x) < g(x) for
all x ∈ X, and in this case we set

(f, g) := {(x, r) ∈ X ×R : f(x) < r < g(x)}.
Similarly an interval in R is a set of the form

(a, b) := {r ∈ R : a < r < b} where a, b ∈ R ∪ {−∞,+∞} and a < b.

For a set S ⊆ Rn we denote by cl(S) its closure and by ∂S := cl(S) \ S its
frontier. We denote the Euclidean norm on Rn by ‖ · ‖ and the associated
metric by (x, y) 7→ d(x, y) := ‖x− y‖.

Given x ∈ Rn, for a non-empty definable set S ⊆ Rn let d(x, S) :=
infy∈S d(x, y) ∈ R≥0 be the distance between x and S, and d(x, ∅) := +∞.
Given a collection C of subsets of Rn, we let C o := {C ∈ C : C is open}.

1. Preliminaries. The style of the proof of Theorem A will be anal-
ogous to the approach to the Cp-zero set problem (see [2] for more infor-
mation). When dealing with the Cp-zero set problem, we split the domain
into “smaller” or “nicer” pieces and work on each new piece separately; then
we glue them up to obtain the desired extension. In this section, we intro-
duce notation, terminology, and basic facts which will serve the purposes
mentioned above.

Definition 1.1. For every subset E of Rn, let dim(E) denote the largest
integer k such that, after some permutation of coordinates, the projection
of E onto the first k coordinates has non-empty interior.

Let X ⊆ E be subsets of Rn. We say that X is a small subset of E if
dim(X) < dim(E).

1.1. Λm-stratifications. One of our main tools is the Λm-Stratification
Theorem (see [6] and [3]). To properly introduce this theorem and some of
its modifications, first more definitions will be introduced. In the following,
we assume m ≥ 1.

Definition 1.2. Let f = (f1, . . . , fn) : Ω → Rn be a Cm-map, where Ω
is a non-empty open subset of Rd with d ≥ 1. We say that f is Λm-regular
if there is some L ∈ R>0 such that

‖Dαf(x)‖ ≤ L

d(x, ∂Ω)|α|−1
for all x ∈ Ω and α ∈ Nd with 1 ≤ |α| ≤ m.
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We also define every map R0 → Rn to be Λm-regular.

Notation. Let Ω ⊆ Rd be definable and open. Set

Λm(Ω) := {f : Ω → R : f is definable and Λm-regular},
Λm∞(Ω) := Λm(Ω) ∪ {−∞,+∞},

where +∞ and −∞ are considered as constant functions on Ω.

Definition 1.3. Standard open Λm-regular cells in Rn are defined in-
ductively on n as follows:

(1) n = 0: R0 is the standard open Λm-regular cell in R0;
(2) n ≥ 1: a set of the form (f, g) where f, g ∈ Λm∞(D) with f < g, and

D is a standard open Λm-regular cell in Rn−1.

We say that a subset of Rn is a standard Λm-regular cell in Rn if it is either
a standard open Λm-regular cell in Rn or one of the following:

(1) a singleton; or
(2) the graph of a definable Λm-regular map D → Rn−d, where D is a

standard open Λm-regular cell in Rd with 1 ≤ d < n.

A subset E ⊆ Rn is called a Λm-regular cell in Rn if there is a linear orthog-
onal transformation φ : Rn → Rn such that φ(E) is a standard Λm-regular
cell in Rn.

Remark. Every Λm-regular map on an open Λm-regular cell is Lipschitz.

Definition 1.4. By a Λm-regular stratification of Rn we mean a finite
partition D of Rn into Λm-regular cells such that each ∂D (D ∈ D) is a union
of sets from D . Given E1, . . . , EN ⊆ Rn, the Λm-regular stratification D
of Rn is said to be compatible with E1, . . . , EN if each Ei is a union of sets
from D .

Theorem 1.5 (Kurdyka & Pawłucki [7], Fischer [3]). Let E1, . . . , EN be
definable subset of Rn. There exists a Λm-regular stratification of Rn com-
patible with E1, . . . , EN .

By the same idea as in [3, Proposition 2.1], we obtain the following mod-
ification of the above theorem. For the sake of brevity, we leave the proof to
the reader.

Lemma 1.6. Let f1, . . . , fk : U → R be definable continuous functions
where U is a definable open subset of Rd. There is a Λm-regular stratifica-
tion D of Rd compatible with U and some L ∈ R with the following property:
for each D ∈ D which is contained in U , each fi�D is Cm and

|Dαfi(u)| ≤
L

d(u, ∂D)|α|
sup{|fi(v)| : v ∈ D, ‖u− v‖ < d(u, ∂D)}

for |α| ≤ m and u ∈ D.
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1.2. Separation. The following important definition goes back to Mal-
grange’s regularly situated condition (see [9]). Let X and Y be closed subsets
of Rn. Define δ : Em(X∪Y )→ Em(X)⊕Em(Y ) and π : Em(X)⊕Em(Y )→
Em(X ∩ Y ) by

δ(F ) := (F �X,F �Y ),

π(G,H) := G�X ∩ Y −H�X ∩ Y

for F ∈ Em(X ∪ Y ) and G,H ∈ Em(X ∩ Y ). We say that X and Y are
regularly situated if the sequence

0→ Em(X ∪ Y )
δ−→ Em(X)⊕ Em(Y )

π−→ Em(X ∩ Y )→ 0

is exact. In other words, a Cm-Whitney field on X and another Cm-Whitney
field on Y can be glued whenever they agree on X ∩ Y .

Definition 1.7. Let X,Y, Z ⊆ Rn. We say that X and Y are Z-sepa-
rated if there exists C ∈ R>0 such that

d(x, Y ) ≥ Cd(x, Z) for every x ∈ X.

Equivalently, there is a C ′ > 0 such that

d(x,X) + d(x, Y ) ≥ C ′d(x, Z) for every x ∈ Rn.

In [10], Pawłucki gave a special stratification of Rn providing separability
between each pair of sets in the partition. The proof also works in o-minimal
exansions of real closed fields, and therefore is omitted here.

Definition 1.8. We say that a subset E of Rn of dimension d is a
Λm-pancake if E is a finite disjoint union of graphs of Lipschitz, Λm-regular
maps Ω → Rn−d on a common domain Ω, which is an open Λm-regular cell
in Rd.

Theorem 1.9 (Pawłucki [10]). Let E be a definable closed subset of Rn
of dimension d. There is a finite partition E =M1 ∪ · · · ∪Ms ∪A such that

(1) each Mi is a Λm-pancake of dimension d in a suitable coordinate
system;

(2) A is a small, closed, definable subset of E;
(3) for all i 6= j, cl(Mi) and cl(Mj) are ∂Mi-separated;
(4) for each i, cl(Mi) and A are ∂Mi-separated.

1.3. Hestenes’ Lemma. The classical incarnation of the following the-
orem is one of the keys to the study of Whitney fields. Here, we give an
o-minimal version of Hestenes’ Lemma. (See [5, Lemma 1] for the classical
result.)
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Theorem 1.10 (Definable Hestenes’ Lemma). Let Ω be a definable open
subset of Rn. Let F = (Fα)|α|≤m be a jet of order m on Ω. Let E be a closed
definable subset of Ω such that F �E ∈ Em

def(E) and F �(Ω \E) ∈ Em
def(Ω \E).

Then f := F 0 is Cm on Ω and Dαf = Fα on Ω. In particular, F ∈ Em
def(Ω).

Proof. Let e1, . . . , en ∈ Nn be the standard basis of Rn. It is sufficient
to show that f is of class C1 on Ω and, for every a ∈ Ω and i ∈ {1, . . . , n},
∂f
∂xi

(a) = F ei(a), i.e., for every ε > 0, there is δ > 0 such that

(1.1) |f(a+ tei)− (f(a) + F ei(a)t)| ≤ ε|t| for 0 < |t| < δ.

Let a ∈ Ω and i ∈ {1, . . . , n}. Since ∂f
∂xi

= F ei on Ω \ E, we may assume
that a ∈ E. Let ε > 0 be given. For x, y ∈ Rn set

(x, y) := {x+ t(y − x) : t ∈ (0, 1)}.
By the Cell Decomposition Theorem, there exists δ0 > 0 such that either
(a, a+ δ0ei) is contained in E, or in Ω \ E. If (a, a+ δ0ei) ⊆ E, then, since
a ∈ E and F �E ∈ Em

def(E), there is 0 < δ1 < δ0 such that

|f(a+ tei)− (f(a) + F ei(a)t)| ≤ εt for 0 < t < δ1,

so (1.1) holds with δ = δ1. Now suppose (a, a+ δ0ei) ⊆ Ω \E. By continuity
of F ei , we may assume that

|F ei(x)− F ei(a)| < ε for every x ∈ (a, a+ δ0ei).

Let t ∈ (0, δ0). Since f is C1 on Ω \E with ∂f
∂xi

= F ei on Ω \E, by the Mean
Value Theorem we have

|f(a+ tei)−(f(a) + F ei(a)t)|
≤ |(F ei(ξ)− F ei(a))t| for some ξ ∈ (a, a+ tei)

< εt.

Therefore, there is δ1 > 0 such that

|f(a+ tei)− (f(a) + F ei(a)t)| < εt for 0 < t < δ1.

By the same argument, we can also find δ2 > 0 such that

|f(a− tei)− (f(a) + F ei(a)(−t))| < εt for 0 < t < δ2.

Then (1.1) holds with δ = min{δ1, δ2}.

1.4. Pullbacks. Let E⊆Rn, E′⊆Rn′ be definable and ϕ=(ϕ1, . . . , ϕn)
be a definable Cm-map from U ′ to U , where U ⊆ Rn, U ′ ⊆ Rn

′ are open
definable neighborhoods of E, E′, respectively, such that ϕ(E′) ⊆ E. Then ϕ
induces an R-linear map F 7→ ϕ∗F : Em

def(E)→ Em
def(E

′) as follows: Suppose
a′ ∈ E′, a = ϕ(a′) ∈ E, and view

Tma F =
∑
|α|≤m

Fα(a)
(x− a)α

α!
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as an element of the polynomial ring R[x1 − a1, . . . , xn − an]. Then ϕ∗F is
the jet of order m on E′ such that for each a′ ∈ E′, the Taylor polynomial
Tma′ ϕ

∗F can be obtained by substituting Tma′ ϕi ∈ R[x′1 − a′1, . . . , xn′ − a′n′ ]
for xi in the polynomial Tma F and dropping the terms of degree > m in
x′− a′. It is easy to verify that ϕ∗F is a (definable) Cm-Whitney field on E′
(the pullback of F under ϕ).

If f : U → R is a definable Cm-function, then ϕ∗(Jm(f)) = Jm(f ◦ ϕ).
Moreover, if E1 ⊆ E and E′1 ⊆ E′ are definable such that ϕ(E′1) ⊆ E1, then

(ϕ∗F )�E′1 = ϕ∗(F �E1) for all F ∈ Em
def(E).

If ϕ′ : U ′′ → U ′ is another definable Cm-map and E′′ ⊆ U ′′ definable with
ϕ(E′′) ⊆ E′, then (ϕ ◦ ϕ′)∗ = (ϕ′)∗ ◦ ϕ∗.

Given a pair E′ ⊆ E of definable subsets of Rn, we say that a jet F of
orderm on E is flat on E′ if F �E′ = 0, and we let Em

def(E,E
′) be the subspace

of Em
def(E) consisting of the definable Cm-Whitney fields on E which are flat

on E′.

Proposition 1.11 (Kurdyka & Pawłucki [7, Proposition 3], [8, Propo-
sition 3]). Let Ω be a definable open Λm-regular cell in Rn, and E a defin-
able closed subset of Ω such that cl(E) and ∂Ω are (cl(E) ∩ ∂Ω)-separated.
Let ϕ : Ω → Rn be a definable Λm-regular map with continuous extension
ϕ : cl(Ω)→ Rn to cl(Ω). Let E′ be a definable closed subset of Rn contain-
ing ϕ(E) and F = (Fα)|α|≤m be a jet of order m on E′ such that, for every
x′0 ∈ ϕ(∂E′) and |α| ≤ m,

Fα(x) = o(d(x, ∂E′)m−|α|) as E′ 3 x→ x′0.

Then, for any x0 ∈ ∂E and |α| ≤ m,

(ϕ∗F )α(x) = o(d(x, ∂E)m−|α|) as E′ 3 x→ x0.

The following is an immediate consequence of the above proposition. For
the sake of brevity, the proof is omitted.

Corollary 1.12. Let Ω be an open Λm-regular cell in Rd and E :=
Ω × {0} ⊆ Rd+l. Suppose that ϕ : Ω × Rl → Rd+l is a definable Λm-regular
map and ϕ : cl(Ω) × Rl → Rd+l is the continuous extension of ϕ. Assume
further that ϕ(∂E) = ∂(ϕ(E)). Let F ∈ Em

def(cl(ϕ(E)), ∂(ϕ(E))). For each
|α| ≤ m, define Fα : cl(E)→ R by

F
α
(x) :=

{
(ϕ∗F )α(x) if x ∈ E,
0 otherwise.

Let ϕ∗F := (F
α
)|α|≤m. Then ϕ∗F ∈ Em

def(cl(E), ∂E).

From now on, if all conditions in Corollary 1.12 hold, we denote ϕ∗F just
by ϕ∗F for notational simplicity.
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1.5. The sets ∆ε(E). For ε > 0 and definable E,E′ ⊆ Rn with E′ ⊆
cl(E), we let

∆ε(E,E
′) := {x ∈ Rn : d(x,E) < εd(x,E′)},

and we set ∆ε(E) := ∆ε(E, ∂E). The following propositions and lemma are
devoted to useful properties of the sets ∆ε(E).

Proposition 1.13. Let Ω be an open cell in Rd. Then, for each ε > 0
and each l,

∆ε(Ω × {0}l) =
{
(x, y) ∈ Ω ×Rl : ‖y‖ ≤ ε√

1− ε2
d(x, ∂Ω)

}
.

We leave the proof of this proposition to the reader.

Proposition 1.14. Let E = Γ (ϕ) where ϕ : Ω → Rl is definable and
Lipschitz and Ω is an open cell in Rd. Then there is ε0 > 0 with ∆ε(E) ⊆
Ω ×Rl for all 0 < ε < ε0.

Proof. For any Lipschitz constant L of ϕ, we set ε0 = 1
1+
√
1+L2

, and the
proof is straightforward.

Lemma 1.15. Let Ω ⊆ Rn be open and E =
⋃N
i=1 Γ (ϕi) where each

ϕi : Ω → Rl is definable and Lipschitz. Set

ϕi+(x, y) := (x, y + ϕi(x)) for (x, y) ∈ Ω ×Rl and i = 1, . . . , N .

Then

ϕi+(∆ε(Ω × {0}l)) ⊆ ∆2ε(E) for all 0 < ε < 1/
√
2 and i ∈ {1, . . . , N}.

Proof. This follows from Proposition 1.13.

Next, Proposition 6.2 in [11], which is a main step in Pawłucki’s version
of Whitney’s Extension Theorem, can be o-minimalized and the idea of the
proof is straightforward.

Proposition 1.16 (Pawłucki [11, Proposition 6.2]). Assume m ≤ q. Let
Ei ⊇ E′i (i = 1, . . . , s) be definable closed subsets of Rn and C > 0 be a
constant such that for any i, j ∈ {1, . . . , s}, i 6= j,

d(x,Ei) + d(x,Ej) ≥ Cd(x,E′i) for all x ∈ Rn.
Set E = E1 ∪ · · · ∪ EN , E′ = E′1 ∪ · · · ∪ E′N , and let F ∈ Em(E,E′) and
ε ∈ (0, C/2). Suppose F �Ei has a definable Cm-extension fi which is m-
flat outside ∆ε(Ei, E

′
i) and Cq outside Ei, for each i = 1, . . . , s. Then f =∑s

i=1 fi is a definable Cm-extension of F which is Cq outside E.

1.6. The functions associated with a standard open Λm-regular
cell. Let Ω⊆Rn be a standard open Λm-regular cell. Kurdyka and Pawłucki
introduced functions ρj : cl(Ω) → R (j = 1, . . . , 2n) corresponding to such
a cell, which we call the functions associated with Ω, and used them in
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the proof of their main theorems (see [7, 11]). These functions also become
useful in our construction of definable Cm-extensions. We define the ρj by
induction on n:

(1) For n = 1 and Ω = (a, b),

ρ1(x) =

{
x− a if a ∈ R,
0 if a = −∞,

ρ2(x) =

{
b− x if b ∈ R,
0 if b = +∞.

(2) Suppose Ω′ is a standard open Λm-regular cell in Rn and f, g : Ω′ →
R±∞ are definable Λm-regular functions with

Ω = {(x, xn+1) ∈ Ω′ ×R : f(x) < xn+1 < g(x)}.

Let σj (j = 1, . . . , 2n) be the functions associated with Ω′. Let
(x, xn+1) ∈ cl(Ω). Set ρj(x, xn+1) = σj(x) for j = 1, . . . , 2n and

ρ2n+1(x, xn+1) =

{
xn+1 − f(x) if f(Ω′) ⊆ R,
0 if f ≡ −∞,

ρ2n+2(x, xn+1) =

{
g(x)− xn+1 if g(Ω′) ⊆ R,
0 if g ≡ +∞.

The proofs of the following facts from [7] (Lemmas 3 and 4) go through in
our setting:

Lemma 1.17. Let Ω be a standard open Λm-regular cell in Rn. As above,
let ρ1, . . . , ρ2n be the functions associated with Ω.

(1) There is a constant C > 0 such that

min
j
ρj(x) ≤ d(x, ∂Ω) ≤ Cmin

j
ρj(x) for every x ∈ Ω.

(2) The ρj are Λm-regular.

Pawłucki’s proof of Whitney’s Extension Theorem in [11] heavily relies on
integration of definable functions with respect to parameters, which generally
takes us outside our given o-minimal structure R, so we cannot immediately
follow his proof in our context. In order to overcome this problem, we need to
find other definable tools which work in o-minimal expansions of real closed
ordered fields.

Lemma 1.18 (Kurdyka & Pawłucki [8, Lemma 5]). Let Ω be a definable
open subset of Rd and ρ : Ω → R be a definable Λm-regular function which
does not vanish on Ω. Then, for |α| ≤ m,

Dα(1/ρ)(x) = O
(
(min{ρ(x), d(x, ∂Ω)})−|α|−1

)
as d(x, ∂Ω)→ 0 and x ∈ Ω.
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Corollary 1.19. Let Ω ⊆ Rd be an open Λm-regular cell, and let A be
an orthogonal isomorphism of Rd such that A(Ω) is a standard open Λm-
regular cell. Let ρ1, . . . , ρ2d : A(Ω)→R be the functions associated with A(Ω).
Then, for |α| ≤ m and j = 1, . . . , 2d,

Dα(1/ρj)(x) = O
(
d(x, ∂A(Ω))−|α|−1

)
as d(x, ∂A(Ω))→ 0 and x ∈ A(Ω).

Thus if we let νj = ρj ◦A, then

Dα(1/νj)(x) = O
(
d(x, ∂Ω)−|α|−1

)
as d(x, ∂Ω)→ 0 and x ∈ Ω.

Proof. Since each ρj is Λm-regular and d(x, ∂Ω) ≤ Cρj(x) for some
C > 0, by the above lemma we are done.

Lemma 1.20. Let Ω be an open subset of Rd, let f : Ω × Rl → R and
ρ : Ω → R be definable Cm functions, and let t : Ω → R>0 be definable.
Suppose there is C > 0 such that

t(x) ≤ d(x, ∂Ω) ≤ Cρ(x) for every x ∈ Ω.

Let ε > 0. Assume, for every x0 ∈ ∂Ω and α ∈ Nd with |α| ≤ m,

Dα(1/ρ) = O(t(x)−|α|−1) as x→ x0,

and for x0 ∈ ∂Ω and κ ∈ Nd+l, |κ| ≤ m,

Dκf(x, y) = o(t(x)m−|κ|) as ∆ε(Ω × {0}l) 3 (x, y)→ (x0, 0).

Fix i ∈ {1, . . . , l}. For every definable Cn-function ξ : R→ R, where n ≤ m,
set

gξ(x, y) := ξ

(
yi
ρ(x)

)
f(x, y) for (x, y) ∈ Ω ×Rl.

Then for every such ξ and n we have, for |κ| ≤ n and x0 ∈ ∂Ω,

Dκgξ(x, y) = o(t(x)n−|κ|) as ∆ε(Ω × {0}l) 3 (x, y)→ (x0, 0).

Proof. Write h0(x, y) = yi/ρ(x) and hξ = ξ ◦h0. By the Leibniz formula,
it is enough to check that

Dλhξ(x, y) = O(t(x)−|λ|) as ∆ε(Ω × {0}l) 3 (x, y)→ (x0, 0).

We proceed by induction on |λ|. Suppose |λ| = 0. For (x, y) ∈ ∆ε(Ω×{0}l),

|yi| ≤ d((x, y), Ω × {0}l) < εd(x, ∂Ω) ≤ εCρ(x);

so |h0(x, y)| ≤ εC. Thus ξ([−εC, εC]) contains hξ(∆ε(Ω × {0}l)). Since ξ is
continuous, the former set is bounded, and hence so is the latter. Therefore
hξ(x, y) = O(1) as ∆ε(Ω × {0}l) 3 (x, y)→ (x0, 0).

Assume the claim holds true for some value of |λ| ≤ n− 1, where n ≥ 1.
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By induction hypothesis,

Dλ+ejhξ(x, y) =

[
Dλ

(
∂hξ
∂xj

)]
(x, y)

=
∑
µ≤λ

(
λ

µ

)
[Dµ(ξ′ ◦ h0)](x, y)

[
Dλ−µ

(
∂h0
∂xj

)]
(x, y)

=
∑
µ≤λ

(
λ

µ

)
[Dµhξ′ ](x, y)

[
Dλ−µ

(
∂h0
∂xj

)]
(x, y)

=
∑
µ≤λ

O(t(x)−|µ|)O(t(x)−|λ|+|µ|),

and so Dλ+ejhξ(x, y) = O(t(x)−|λ|) as ∆ε(Ω × {0}l) 3 (x, y)→ (x0, 0).

In the rest of this section, we let 0 < ε < 1/
√
2 and m ≤ q, and we

let Ω be a standard open Λq-regular cell in Rd, with associated functions
ρ1, . . . , ρ2d. We also let F ∈ Em

def(cl(Ω)× {0}l, ∂Ω × {0}l).

Definition 1.21. Let ξ : R → R be a semialgebraic Cq-function which
is 1 in a neighborhood of 0, and 0 outside (−1, 1). Define rε : Rd+l → R by

rε(x, y) =

l∏
i=1

2d∏
j=1

ξ

(
Qε

yi
ρj(x)

)
where Qε is a constant (depending on Ω, ε, d, and l) large enough so that rε
is m-flat outside ∆ε(Ω × {0}l).

Lemma 1.22. Let h : Ω×Rl → R be definable and Cq. Suppose that, for
κ ∈ Nd+l with |κ| ≤ m and x0 ∈ ∂Ω,

Dκh(x, 0) = F κ(x, 0) for all x ∈ Ω

and

Dκh(x, y) = o(d(x, ∂Ω)m−|κ|) as ∆ε(Ω × {0}l) 3 (x, y)→ (x0, 0).

Define fε : Rd+l → R by

fε(x, y) =

{
rε(x, y)h(x, y) if x ∈ Ω,
0 otherwise.

Then fε is a definable Cm-extension of F which ism-flat outside ∆ε(Ω×{0}l)
and Cq outside cl(Ω)× {0}l.

Proof. Obviously, fε�(Ω×Rl) is m-flat outside ∆ε(Ω×{0}l) and fε is Cq
outside ∂Ω × {0}l. First, we will show that fε extends F . Let x ∈ Ω. Then

fε(x, 0) = rε(x, 0)h(x, 0) = F 0(x, 0).
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By the Leibniz formula,

Dκfε(x, y) = Dκ(rε(x, y)h(x, y)) =
∑
σ≤κ

(
κ

σ

)
(Dκ−σrε(x, y))(D

σh(x, y)).

Since Dγrε(x, 0) = 0 if |γ| > 0 and rε(x, 0) = 1, we obtain
Dκfε(x, 0) = Dκh(x, 0) = F κ(x, 0).

It remains to show that fε is actually Cm on Rd+l. Let y 6= 0 ∈ Rl. It is
enough to find δ > 0 such that (x, y) /∈ ∆ε(Ω × {0}l) for all x ∈ Ω with
d(x, ∂Ω) < δ. Since

(x, y) /∈ ∆ε(Ω × {0}l) ⇔ |y| ≥ ε√
1− ε2

d(x, ∂Ω),

it suffices to pick δ = |y|/2. Therefore, fε is Cm on Rd+l \ (∂Ω × {0}l). Let
x0 ∈ ∂Ω. By Corollary 1.19 and Lemma 1.20, Dκfε(x, y) = o(d(x, ∂Ω)m−|κ|)
as ∆ε(Ω × {0}l) 3 (x, y)→ (x0, 0). Since fε is m-flat outside ∆ε(Ω × {0}l),
fε is Cm at (x0, 0).

Corollary 1.23. For β ∈ Nl with |β| ≤ m, suppose

hβ : Ω ×Rl → R, hβ(x, y) = F (0,β)(x, 0)yβ,

is Cq and, for κ ∈ Nd+l with |κ| ≤ m and x0 ∈ ∂Ω,

Dκhβ(x, y) = o(d(x, ∂Ω)m−|κ|) as ∆ε(Ω × {0}l) 3 (x, y)→ (x0, 0).

Define fε : Rd+l → R by

fε(x, y) =


rε(x, y)

∑
|β|≤m

hβ(x, y)

β!
if x ∈ Ω,

0 otherwise.

Then fε is a definable Cm-extension of F which ism-flat outside ∆ε(Ω×{0}l)
and Cq outside cl(Ω)× {0}l.

Proof. Clearly,

Dκ

( ∑
|β|≤m

hβ(x, 0)

β!

)
= F κ(x, 0).

By Lemma 1.22, we are done.

2. The first four steps. In this section, we assume m ≤ q. Pawłucki’s
construction of an extension operator for Cm-Whitney fields from [11] can
be divided into five steps, depending on the nature of the Whitney field F
and its domain E:

Step 1: E = Rd × {0}n−d;
Step 2: E = cl(Ω) × {0}n−d where Ω is an open Λq-regular cell and F is

flat on ∂Ω × {0}n−d;
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Step 3: E = cl(E0) where E0 is the graph of a Lipschitz Λq-regular map
on an open Λq-regular cell and F is flat on ∂E0;

Step 4: E = cl(E0) where E0 is a Λq-regular pancake and F is flat on ∂E0;
Step 5: E is any closed definable set.

In this section, we work on the first four steps under the following assump-
tion:

(∗) For every closed definable set E ⊆ Rn with dim(E) < d, every F
in Em

def(E) has a definable Cm-extension which is Cq on Rn \ E.
Thus, in the rest of this section we assume that condition (∗) holds.

2.1. Step 1

Lemma 2.1. Let F ∈ Em
def(R

d × {0}n−d). Then F has a definable Cm-
extension which is Cq outside Rd × {0}n−d.

Proof. For β ∈ Nn−d, define Fβ := (F̃ (σ,δ))|(σ,δ)|≤m where

F̃ (σ,δ) :=

{
F (σ,β) if β = δ,

0 otherwise.

By the definition of Cm-Whitney fields, we can easily see that Fβ ∈
Em
def(R

d × {0}n−d) for every |β| ≤ m. Obviously, F =
∑
|β|≤m Fβ . Hence,

we may assume that F = Fβ . By Smooth Cell Decomposition, there is a cell
decomposition C of Rd such that, for each C ∈ C and |(α, β)| ≤ m, the
function F (α,β)�(C × {0}n−d) is Cq. By (∗), we may assume the F is flat on⋃
C∈C \C o C ×{0}n−d. Note that for each C1 and C2 in Co, C1×{0}n−d and

C2 × {0}n−d are (∂Ci × {0}n−d)-separated for i = 1, 2.
Let C ∈ C o. By Proposition 1.16, it is sufficient to find a definable Cm-

extension fC of F �(cl(C)×{0}n−d) which is m-flat outside ∆ε(C×{0}n−d),
for some ε > 0 small enough, and Cq outside cl(C) × {0}n−d. Therefore,
we may assume that F is flat on (Rd \ C) × {0}n−d and F (α,β) is Cq for
every |(α, β)| ≤ m. By Lemma 1.6, we may write cl(C) = D1 ∪ · · · ∪Ds ∪B
where the Di’s are open Λq-regular cells and B = ∂D1∪· · ·∪∂Ds, such that,
defining, for |α| ≤ m,

gα : Rd → R, gα(x) = Fα(x, 0),

there is L > 0 such that for κ ∈ Nd with |κ| ≤ q and u ∈ Di, each gα�Di

is Cq and

(2.1) |Dκgα(u)| ≤ L

d(u, ∂Di)|κ|
sup{|gα(v)| : v ∈ Di, ‖u− v‖ < d(u, ∂Di)}

for u ∈ Di.

By (∗), let f0 : Rn → R be a definable Cm-extension of F �(B × {0}n−d)



62 A. Thamrongthanyalak

which is Cq outside B × {0}n−d, and set

F̃ := F − Jm(f0)�(Rd × {0}n−d) ∈ Em
def(R

d × {0}n−d).
Clearly,

Fi := F̃ �(cl(Di)× {0}n−d) ∈ Em
def(cl(Di)× {0}n−d, ∂Di × {0}n−d).

By Proposition 1.16, it is sufficient to find a definable Cm-extension fi for
each Fi which ism-flat outside∆ε(Di×{0}n−d), for some ε > 0 small enough,
and Cq outside cl(Di)× {0}n−d. Fix some i ∈ {1, . . . , s}, and let

hi(x, y) :=
1

β!
F (0,β)(x, 0)yβ − f0(x, y).

Obviously, Dκhi(x, 0) = F̃ κ(x, 0) for all x ∈ Di and |κ| ≤ m. Therefore, by
Lemma 1.22, it is enough to show the following claim:

Claim. For κ = (σ, τ) ∈ Nd × Nn−d with |κ| ≤ m, and x0 ∈ ∂Di,

Dκhi(x, y) = o(d(x, ∂Di)
m−|κ|) as ∆ε(Di × {0}n−d) 3 (x, y)→ (x0, 0).

If x0 ∈ C, by Taylor’s formula we are done. Assume x0 ∈ ∂C. We use
induction on m− |κ|. First assume |κ| = m. Clearly,

|Dκhi(x, y)| ≤
∣∣∣∣Dκ

(
1

β!
F (0,β)(x, 0)yβ

)∣∣∣∣+ |Dκf0(x, y)|.

Since f0 is m-flat at (x0, 0), we have Dκf0(x, y) → 0 as (x, y) → (x0, 0).
Suppose τ ≤ β (otherwise, Dκ

(
1
β!f

(0,β)
0 (x, 0)yβ

)
= 0). Then

Dκ

(
1

β!
f
(0,β)
0 (x, 0)yβ

)
=

1

(β − τ)!
Dγ(f

(α,β)
0 (x, 0)yβ−τ )

where σ = α+ γ and |α|+ |β| = m. We have

|β| − |τ | − |γ| = |β| − |τ | − |σ|+ |α| = m− |τ | − |σ| = m− |κ| = 0.

Since F (α,β)(x0, 0) = 0,

s(z) := sup{|F (α,β)(x, 0)| : x ∈ Di, |x− z| < d(z, ∂Di)} → 0

as Di 3 z → x0.

By (2.1),∣∣∣∣Dκ

(
1

β!
f
(0,β)
0 (x, 0)yβ

)∣∣∣∣ ≤ L

d(x, ∂Di)|γ|
s(z)

(
ε√

1− ε2
d(x, ∂Di)

)|β|−|τ |
= L

(
ε√

1− ε2

)|β|−|τ |
s(z)

→ 0 as ∆ε(Di × {0}n−d) 3 (x, y)→ (x0, 0).
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Next, assume that |κ| < m and for every |λ| > |κ|,

Dλhi(x, y) = o(d(x, ∂Di)
m−|λ|) as ∆ε(Di × {0}n−d) 3 (x, y)→ (x0, 0).

Let (x, y) ∈ ∆ε(Di × {0}n−d). Let z ∈ ∂Di with |x − z| = d(x, ∂Di) and S
be the line segment connecting (x, y) and (z, 0). By Proposition 1.13, we see
that S ⊆ ∆ε(Di × {0}n−d) and d((x, y), (z, 0)) ≤

(
1 + ε√

1−ε2
)
d(x, ∂Di). Let

C := sup{|Dκ+λhi(u,w)| : |λ| = 1, (u,w) ∈ S} and

t(x) := sup{|Dκ+λhi(u,w)| : |λ| = 1, (u,w) ∈ ∆ε(Di × {0}n−d),
d(u, ∂Di) < 2d(x, ∂Di)}.

Observe that C ≤ t(x). By the Mean Value Theorem, we have

|Dκh(x, y)| ≤
√
nC
√
|x− z|2 + |y|2

≤
√
n t(x)

(
1 +

ε√
1− ε2

)
d(x, ∂Di)

Inductively, we have t(x) = o(d(x, ∂Di)
m−|κ|−1) as ∆ε(Di × {0}n−d) 3

(x, y)→ (x0, 0). Therefore,

Dκhi(x, y) = o(d(x, ∂Di)
m−|κ|−1)d(x, ∂Di)

= o(d(x, ∂Di)
m−|κ|) as ∆ε(Di × {0}n−d) 3 (x, y)→ (x0, 0).

2.2. Step 2

Lemma 2.2. Let Ω be an open Λq-regular cell in Rd, and F ∈
Em
def(cl(Ω) × {0}n−d, ∂Ω × {0}n−d). Then, for every ε > 0, F has a defin-

able Cm-extension which is m-flat outside ∆ε(Ω × {0}n−d) and Cq outside
cl(Ω)× {0}n−d.

Proof. First, we extend F to F̃ ∈ Em
def(R

d × {0}n−d) as follows:

F̃α(x, 0) =

{
Fα(x, 0) if x ∈ Ω,
0 otherwise.

By the above lemma, we can find a definable Cm-extension f̃ of F̃ . However,
f̃ is possibly not m-flat outside ∆ε(Ω ×{0}n−d). In order to guarantee this,
we have to slightly modify f̃ . Define

fε(x, y) =

{
rε(x, y)f̃(x, y) if x ∈ Ω,
0 otherwise.

Here, rε is as introduced in Definition 1.21. Clearly, fε is m-flat outside
∆ε(Ω × {0}n−d). Moreover, since f̃ is Cq outside Rd × {0}n−d and rε is Cq

on Ω × Rn−d, fε is Cq outside cl(Ω) × {0}n−d. Since f̃ is Cm on Rd+l, by
Corollaries 1.19 and 1.20, fε is Cm on Rd+l.
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2.3. Step 3. Let ϕ : Ω → Rn−d be a definable Lipschitz Λq-regular
map and Ω be an open Λq-regular cell in Rd. Let ϕ : cl(Ω) → Rn−d be the
continuous extension of ϕ, and

ϕ+ : cl(Ω)×Rn−d → Rn, ϕ+(x, y) := (x, y + ϕ(x)),

ϕ− : cl(Ω)×Rn−d → Rn, ϕ−(x, y) := (x, y − ϕ(x)).
To apply Step 2 to E = cl(Γ (ϕ)), we first show that for each Cm-Whitney
field on E, there is a corresponding Cm-Whitney field on cl(Ω)× {0}n−d.

Let E0 := Γ (ϕ), E := cl(E0) = Γ (ϕ), and F ∈ Em
def(E, ∂E0). Obviously,

ϕ+(cl(Ω)× {0}n−d) = E, ϕ+(∂Ω × {0}n−d) = ∂E0.

By Corollary 1.12,

ϕ∗+F ∈ Em
def(cl(Ω)× {0}n−d, ∂Ω × {0}n−d).

Now we show:

Lemma 2.3. Let E0 :=Γ (ϕ), E := cl(E0)=Γ (ϕ), and F ∈Em
def(E, ∂E0).

Then, for every ε > 0, F has a definable Cm-extension which is m-flat
outside ϕ+(∆ε(Ω × {0}n−d)) and Cq outside E.

Proof. By Proposition 1.14, there is ε0 > 0 such that ∆δ(E) ⊆ Ω×Rn−d
for all 0 < δ < ε0. Let ε > 0. We may assume ε < ε0. By Lemma 2.2, take a
definable Cm-extension f−ϕ of ϕ∗+F which ism-flat outside∆ε/2(Ω×{0}n−d)
and Cq outside cl(Ω)× {0}n−d. Define f : Rn → R by

f(x, y) :=

{
f−ϕ(ϕ−(x, y)) if x ∈ Ω,
0 otherwise.

Since Jm(f)�E = ϕ∗−(ϕ
∗
+F ) = (ϕ+ ◦ ϕ−)∗F and ϕ+ ◦ ϕ− = idcl(Ω)×Rn−d we

have Jm(f)�E = F . Therefore, f is a Cm-extension of F which is m-flat
outside ϕ+(∆ε/2(Ω × {0}n−d)) and Cq outside E.

2.4. Step 4

Lemma 2.4. Let E0 be a Λq-pancake of dimension d with common do-
main Ω ⊆ Rd, let E = cl(E0), and F ∈ Em

def(E, ∂E0). Then, for every ε > 0,
F has a definable Cm-extension which is m-flat outside ∆ε(E0) and Cq out-
side E.

Proof. Suppose E = cl(E1 ∪ · · · ∪ Es) where Ei = Γ (ϕi) with ϕi : Ω →
Rn−d a definable Λq-regular Lipschitz map. For each i ∈ {1, . . . , s}, let
ϕi : cl(Ω)→ Rn−d be the continuous extension of ϕ, and

ϕi+ : cl(Ω)×Rn−d → Rn, ϕi+(x, y) := (x, y + ϕi(x)),

ϕi− : cl(Ω)×Rn−d → Rn, ϕi−(x, y) := (x, y − ϕi(x)).
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By Lemma 1.15, it is enough to prove that, for 0 < ε < 1/
√
2, there exists a

definableCm-extension ofF which ism-flat outside
⋃s
i=1 ϕi+(∆ε(Ω×{0}n−d))

and Cq outside
⋃s
i=1 cl(Ei). We proceed by induction on s. The case s = 1

follows immediately from Lemmas 1.15 and 2.3. Suppose s > 1, and the
statement is true for s − 1 in place of s. Let 0 < ε < 1/

√
2. Then

we can find a definable Cm-extension f̃ε of F �
⋃s−1
i=1 cl(Ei) which is m-flat

outside
⋃s−1
i=1 ϕi+(∆ε(Ω × {0}n−d)) and Cq outside

⋃s−1
i=1 cl(Ei). Note that⋃s−1

i=1 ϕi+(∆ε(Ω × {0}n−d)) and ∂Ω × Rn−d are disjoint. After replacing F
by F − Jm(f̃ε)�E, we may assume that

F ∈ Em
def

( s⋃
i=1

cl(Ei),

s−1⋃
i=1

cl(Ei) ∪ ∂Es
)
.

Next, consider ϕ∗s+(F �cl(Es)) ∈ Em
def(cl(Ω) × {0}n−d, ∂Ω × {0}n−d) (by

Corollary 1.12.) By Lemma 2.2, let f be a Cm-extension of ϕ∗s+(F �cl(Es))
which is m-flat outside ∆ε(Ω ×{0}n−d) and Cq outside cl(Ω)×{0}n−d. For
i = 1, . . . , s−1 and x ∈ Ω, we define ri(x) := ‖ϕi(x)−ϕs(x)‖. Each function
ri : Ω → R>0 is Λm-regular. Let ξ : R→ R be any semialgebraic Cq-function
which is 1 in a neighborhood of 0 and 0 outside (−1, 1). Then, define

g(x, y) =


s−1∏
i=1

n−d∏
j=1

ξ

(√
l
yj
ri(x)

)
f(x, y) if x ∈ Ω,

0 otherwise.

Since f is Cm, by Lemma 1.18 and 1.20, g is a Cm-extension of ϕ∗s+(F �cl(Es))
which is m-flat outside ∆ε(Ω×{0}n−d). Moreover, by the choice of ri and ξ,
we also see that g is m-flat on ϕs−(Ei) for all i = 1, . . . , s − 1. Define
fε : R

n → R by

fε(x, y) :=

{
g(ϕs−(x)) if x ∈ Ω,
0 otherwise.

Obviously, cl(Ei) = ϕs+(ϕs−(cl(Ei))) for all i ∈ {1, . . . , s}. Thus,
fε is a Cm-extension of F �cl(Es) which is m-flat on cl(Ei) and out-
side ϕs+(∆ε(Ω × {0}n−d)). Therefore, fε is a Cm-extension of F which
is m-flat outside

⋃s
i=1 ϕi+(∆ε(Ω × {0}n−d)). In addition, fε is Cq outside⋃s

i=1 cl(Ei).

3. Proof of Theorem A. Suppose m ≤ q. We prove by induction
on d that every F ∈ Em

def(E), where E is a definable closed subset of Rn of
dimension d, has a definable Cm-extension which is Cq on Rn \ E. When
d = 0, E is just a finite subset of Rn, and this case is easy. Suppose d > 0,
and the statement is true for all smaller values of d; that is, condition (∗)
from the previous section holds. Let E be a definable closed subset of Rn
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of dimension d and F ∈ Em
def(E). By the Λm-regular Separation Theorem,

decompose E =M1 ∪ · · · ∪Ms ∪A where

(1) each Mi is a Λq-pancake of dimension d in a suitable coordinate
system;

(2) A is a small, closed, definable subset of E;
(3) for all i 6= j, cl(Mi), cl(Mj) are ∂Mi-separated; and
(4) for each i, cl(Mi), A are ∂Mi-separated.

By (∗), take a definable Cm-extension fA of F �A. By replacing F by F −
Jm(fA)�E, we may assume that F is flat on

⋃s
i=1 ∂Mi. Now, by separability,

Proposition 1.16, and Lemma 2.4, we obtain a Cm-extension of F which
is Cq outside E.

As usual in the o-minimal context, there is a certain uniformity inherent
in the above constructions; this can be exhibited by redoing these construc-
tions “uniformly in parameters,” or perhaps more elegantly, by using the
Compactness Theorem of first-order logic:

Theorem 3.1. Assume R is o-minimal. Let (Fa)a∈A, where A ⊆ RN , be
a definable family of definable Cm-Whitney fields Fa on a closed definable set
Ea ⊆ Rn. Then there is a definable family (fa)a∈A of definable Cm-functions
fa : R

n → R such that fa is an extension of Fa for each a ∈ A.

Proof. Let L be the language of R, assumed to include a name for each
element of R, so that every definable set in R is definable by an L -formula.
For each α ∈ Nn with |α| ≤ m, let φα(x, y, z) be a formula in L where
the lengths of x, y, and z are n, 1, and k, respectively, such that for each
a ∈ A, φα(x, y, a) defines the graph of (Fa)α. For each formula ψ(x, y, z), let
χψ(z) be a formula such that, for each a ∈ RN , χψ(a) holds in R precisely
when ψ(x, y, a) defines the graph of a Cm-extension of Fa. Next, add N fresh
constants c1, . . . , cN to L and call the resulting language L ′. For notational
convenience, we write c = (c1, . . . , cN ). By our main theorem, the L ′-theory

Th(R) ∪ {¬χψ(c) : ψ = ψ(x, y, z) is an L -formula}

is inconsistent. Therefore, by the Compactness Theorem, there are formulas

ψ1(x, y, z), . . . , ψM (x, y, z)

such that, for each a ∈ A, one of ψi(x, y, a) defines the graph of a Cm-
extension of Fa in R. We can now easily construct a single formula ψ(x, y, z)
which works for every a ∈ A, i.e., for each a ∈ A, ψ(x, y, a) defines the graph
of a Cm-extension of Fa.
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