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Separable Lindenstrauss spaces whose duals lack the
weak∗ fixed point property for nonexpansive mappings

by

Emanuele Casini (Como), Enrico Miglierina (Milano) and
Łukasz Piasecki (Lublin)

Abstract. We study the w∗-fixed point property for nonexpansive mappings. First
we show that the dual space X∗ lacks the w∗-fixed point property whenever X contains an
isometric copy of c. Then, the main result of our paper provides several characterizations
of weak-star topologies that fail the fixed point property for nonexpansive mappings in `1.
This result allows us to obtain a characterization of all separable Lindenstrauss spaces X
with X∗ failing the w∗-fixed point property.

1. Introduction. Let X be an infinite-dimensional real Banach space
and BX its closed unit ball. A nonempty bounded closed and convex subset
C of X has the fixed point property (briefly, FPP) if each nonexpansive
mapping (i.e., a mapping T : C → C such that ‖T (x)− T (y)‖ ≤ ‖x− y‖ for
all x, y ∈ C) has a fixed point. The space X∗ is said to have the σ(X∗, X)-
fixed point property (σ(X∗, X)-FPP) if every nonempty, convex, σ(X∗, X)-
compact subset C ofX∗ has the FPP. The study of the σ(X∗, X)-FPP proves
to be of special interest whenever a dual space has different preduals. Indeed,
the behaviour with respect to the σ(X∗, X)-FPP of a given dual space can
be completely different if we consider two different preduals. For instance,
this occurs when we consider the space `1 and its preduals c0 and c where
it is well-known (see [7]) that `1 has the σ(`1, c0)-FPP whereas it lacks the
σ(`1, c)-FPP.

The main aim of this paper is to study some structural features of a
separable space X linked to the σ(X∗, X)-FPP on its dual.

At the beginning of Section 3, we state a sufficient condition for the
failure of the σ(X∗, X)-FPP. Indeed, Theorem 3.2 shows that the pres-
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ence of an isometric copy of c in a separable space X implies the failure
of the σ(X∗, X)-FPP. This extends a result of Smyth [10, Theorem 1]).
Moreover, it allows us to show that every separable Lindenstrauss space X
(i.e., a space whose dual is L1(µ) for some measure µ) with nonsepara-
ble dual lacks the σ(X∗, X)-FPP. Taking into account these facts, it seems
natural to investigate whether the presence of an isometric copy of c in
X is also a necessary condition for the failure of the σ(X∗, X)-FPP. The
simple example of X = `1 shows that the answer is negative in general.
Moreover, by considering a suitable class of hyperplanes of c, we are able
to show that the answer remains negative even if we add the assumption
that X is a separable Lindenstrauss space. This class of hyperplanes of
c with duals isometric to `1 and failing the w∗-FPP will play an impor-
tant role in this paper, and subsequently members of this class will be
referred to as “bad” Wf (see Section 2 for a detailed description of these
spaces). The first interesting result involving this class of spaces is The-
orem 3.7, where we prove that if a separable space X contains a “bad”
Wf then X∗ still fails the σ(X∗, X)-FPP. A simple but relevant conse-
quence is that X∗ lacks the σ(X∗, X)-FPP whenever there is a quotient
of X that contains an isometric copy of a “bad” Wf (Remark 3.8). The
last section is devoted to the characterization of the preduals of `1 such
that `1 lacks the σ(`1, X)-FPP. Theorem 4.1, which is the main result of
this paper, lists several properties of a predual X of `1 that are all equiv-
alent to the lack of the σ(`1, X)-FPP for `1. Among them, one property
is exactly the structural condition that appears in Remark 3.8. Another
property (see condition (4) in Theorem 4.1) seems to be of importance.
It is related to the w∗-cluster points of the standard basis of `1 and it
allows us to extend [6, Theorem 8]. Indeed, we can prove that theorem
without the strong assumption on w∗-convergence of the standard basis
of `1.

Throughout the paper we will follow standard terminology and nota-
tion. In particular, it is well-known that c∗ can be isometrically identi-
fied with `1 in the following way. For every x∗ ∈ c∗ there exists a unique
f = (f(1), f(2), . . . ) ∈ `1 such that

x∗(x) =

∞∑
n=0

f(n+ 1)x(n) = f(x)

with x = (x(1), x(2), . . . ) ∈ c and x(0) = limx(n).

2. A class of hyperplanes in the space of convergent sequences.
This section is devoted to recalling some properties of a class of hyperplanes
of c that will play a crucial role in the remainder of our paper. For the con-
venience of the reader we repeat some material from [4] without proofs, thus
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making our exposition self-contained. Moreover, we prove some additional
properties of those hyperplanes, directly related to the topic studied in the
present paper.

Let f ∈ `1 = c∗ be such that ‖f‖ = 1. We consider the hyperplane of c
defined by

Wf = {x ∈ c : f(x) = 0}.
In [4], the following results are proved:

(I) There exists j0 ≥ 1 such that |f(j0)| ≥ 1/2 if and only if W ∗f is
isometric to `1.

(II) There exists j0 ≥ 2 such that |f(j0)| ≥ 1/2 if and only if Wf is
isometric to c.

For our aims, an important case is when |f(1)| ≥ 1/2 and |f(j)| < 1/2
for every j ≥ 2. Under these assumptions, Theorem 4.3 in [4] identifies W ∗f
with `1 as follows: for every x∗ ∈W ∗f there exists a unique g ∈ `1 such that

(2.1) x∗(x) =
∞∑
n=1

g(n)x(n) = g(x)

where x = (x(1), x(2), . . . ) ∈Wf .
We conclude this section by proving some additional useful properties of

the spacesWf . The first proposition gives a necessary and sufficient condition
for the existence of a subspace of Wf isometric to c.

Proposition 2.1. Let f ∈`1 = c∗ be such that ‖f‖=1 and |f(1)|≥1/2.
Then the following statements are equivalent:

(1) Wf contains a subspace isometric to c.
(2) |f(1)| = 1/2, the set {n ∈ N : f(1)f(n + 1) > 0} is finite, and
{n ∈ N : f(n+ 1) = 0} is infinite.

Proof. (2)⇒(1). Let {n ∈ N : f(n + 1) = 0} = {nk}∞k=1 and consider
the mapping T : c → Wf defined for every x = (x(1), x(2), . . . ) ∈ c by
T (x) = ((T (x))(1), (T (x))(2), . . . ) ∈Wf , where

(T (x))(i) =

{
x(k) if i = nk,
−sgn(f(1)f(i+ 1)) · limj x(j) if i ∈ N \ {nk}.

It is easy to see that T is a linear isometry of c into Wf .
(1)⇒(2). If Wf is isometric to c, then the assertion follows immediately

from (II) recalled at the beginning of this section. Suppose that Wf is not
isometric to c. Let (e∗n)n≥1 be the standard basis of `1 = c∗. For every n ≥ 2
we take a norm-one extension of e∗n onto the whole Wf and we denote it
by g∗n. Consider a σ(`1,Wf )-convergent subsequence (g∗nk

)k≥2 of (g∗n)n≥2 and
denote its limit by g∗n1

. Obviously, g∗n1
is a norm-one extension of e∗1 ontoWf .
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It is easy to see that ‖g∗nk
± g∗nl

‖ = 2 for all k, l ∈ N, k 6= l. Consequently,

(2.2) supp g∗nk
∩ supp g∗nl

= ∅
for all k, l ∈ N, k 6= l, where supp g∗n := {i ∈ N : g∗n(i) 6= 0}. Hence,
by using the argument in [6, beginning of the proof of Theorem 8] and [4,
Theorem 4.3], we obtain

g∗n1
= ±

(
f(2)

f(1)
,
f(3)

f(1)
,
f(4)

f(1)
, . . .

)
.

Therefore |f(1)| = 1/2 and {n ∈ N : f(n + 1) = 0} is infinite. Since there
exists x ∈ c ⊂Wf such that ‖x‖ = 1 and e∗n(x) = 1 for every n, we get

e∗nk
(x) = g∗nk

(x) = g∗n1
(x) = 1

for every k ≥ 2. From the above relation and the standard duality of Wf

(see (2.1)) we have

(2.3) x(i) = sgn(g∗nk
(i))

for all i ∈ supp g∗nk
and k ∈ N. Taking into account (2.2) and (2.3) we con-

clude that there exists i0 such that either x(i) = 1 for infinitely many i ≥ i0,
or x(i) = −1 for infinitely many i ≥ i0. Therefore {n ∈ N : f(1)f(n+1) > 0}
is finite.

The last proposition of this section characterizes a class of spaces Wf

such that `1 enjoys the σ(`1,Wf )-FPP.

Proposition 2.2. Let f ∈ `1 = c∗ be such that ‖f‖ = 1, 1/2 ≤
|f(1)| < 1 and |f(j)| < 1/2 for every j ≥ 2. The space `1 has the σ(`1,Wf )-
FPP if and only if one of the following conditions holds:

(1) |f(1)| > 1/2.
(2) |f(1)| = 1/2 and the set N+ = {n ∈ N : f(1)f(n+ 1) ≤ 0} is finite.

Proof. We have W ∗f = `1 as recalled at the beginning of this section
(see (I)). Now, [4, Theorem 4.3] shows that

e∗n
σ(`1,Wf )−−−−−→ e∗,

where e∗ = (−f(2)/f(1),−f(3)/f(1), . . . ). The conclusion follows immedi-
ately from [6, Theorem 8].

Proposition 2.2 and item (II) lead to the following definition.

Definition 2.3. A space Wf is called bad with respect to σ(`1,Wf )-
FPP (briefly bad) if f ∈ `1 is such that ‖f‖ = 1, |f(1)| = 1/2 and the set
N+ = {n ∈ N : f(1)f(n+ 1) ≤ 0} is infinite.

By combining Propositions 2.1 and 2.2, we can produce an example of
an `1-predual space X such that `1 fails the σ(`1, X)-FPP but X does not
contain an isometric copy of c.
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Example 2.4. Consider the space Wf where

f = (1/2,−1/4, 1/8,−1/16, . . . ) ∈ `1.
We see that

• W ∗f = `1;
• Wf does not contain an isometric copy of c (by Proposition 2.1);
• `1 lacks the σ(`1,Wf )-FPP (by Proposition 2.2).

We point out another feature of this space that will be useful in the last
section. The space Wf does not have a quotient that contains an isometric
copy of c. Indeed, suppose c ⊆Wf/Y . Then, following the proof of Proposi-
tion 2.1, we obtain a sequence (x∗n)n≥1 ⊂ (Wf/Y )∗ such that

• x∗n
σ((Wf/Y )∗,Wf/Y )
−−−−−−−−−−−−→ x∗1;

• ‖x∗n‖ = 1 for every n ∈ N;
• ‖x∗n ± x∗m‖ = 2 for all m,n ∈ N, m 6= n.

Now, for each u ∈ v + Y , v ∈Wf , we set y∗n(u) = x∗n(v + Y ). Consequently,

(y∗n)n≥1 ⊂W ∗f is equivalent to the standard basis in `1, and y∗n
σ(`1,Wf )−−−−−→ y∗1.

Again, by following the argument in [6, proof of Theorem 8], Theorem 4.3
in [4] yields

y∗1 = ±(1/2,−1/4, 1/8,−1/16, . . . ).
This yields a contradiction.

Two remarks concluding this section relate Proposition 2.2 to some results
in the literature.

Remark 2.5. If we restrict our attention to w∗-topologies on `1, the
assumptions of [6, Theorem 8] are equivalent to those of Proposition 2.2.
Indeed, if X is a predual of `1 such that the standard basis of `1 is a σ(`1, X)-
convergent sequence, then there exists a suitable Wf isometric to X (see [4,
Corollary 4.4]).

Remark 2.6. In the case of a particular family of sets in `1, a characteri-
zation of the fixed point property for nonexpansive mappings was established
in [5]. For every ε ∈ (0, 1) we define the set Cε ⊂ `1 by

Cε =
{
α1(1− ε)e∗1 +

∞∑
i=2

αie
∗
i : αi ≥ 0,

∞∑
i=1

αi = 1
}
.

The set Cε is convex, bounded and closed. Moreover, it has the FPP (see [5]).
Obviously Cε is neither σ(`1, c)-compact nor σ(`1, c0)-compact.

Let f =
(

1
2−ε ,−

1−ε
2−ε , 0, 0, . . .

)
. From [4, Theorem 4.3] we know that

W ∗f = `1 and

e∗n
σ(`1,Wf )−−−−−→ (1− ε)e∗1.
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Hence, Corollary 2 in [6] implies that Cε is σ(`1,Wf )-compact. By Proposi-
tion 2.2, `1 has the σ(`1,Wf )-FPP.

3. Sufficient conditions for the lack of weak∗ fixed point property
in the dual of a separable Banach space. This section is devoted to
proving some sufficient conditions for the lack of the σ(X∗, X)-FPP where X
is a separable space. The first step is suggested by the well-known example
of X = c. Indeed, we start by showing that the presence in X of a copy of c
implies the failure of the σ(X∗, X)-FPP. To prove this we use an auxiliary
result about the existence of a 1-complemented copy of c.

Proposition 3.1. Let X be a separable Banach space that contains an
isometric copy of c. Then there is a subspace Y of X such that Y is isometric
to c and 1-complemented in X.

Proof. Let (e∗n)n≥1 be the standard basis of c∗ = `1. For each n ∈ N,
we consider a norm preserving extension of e∗n to the whole X; we denote it
by x∗n. Then, there exists a subsequence (x∗nj

) such that n1 > 1 and

x∗nj

σ(X∗,X)−−−−−→ x∗.

Consider the subspace

Y = {y ∈ c : lim y(n) = y(0) = y(s) for each s ∈ N \
{
nj − 1}

}
and the mapping P : X → Y defined by

P (x) = x∗(x)e0 +
∞∑
j=1

(x∗nj
− x∗)(x)enj−1,

where e0 = (1, 1, . . . ). It is easy to see that Y is isometric to c, and P is a
norm-one projection onto Y .

Theorem 3.2. Let X be a separable Banach space that contains a sub-
space isometric to c. Then X∗ fails the σ(X∗, X)-FPP.

Proof. By Proposition 3.1 we may assume that c is 1-complemented inX.
So, there is a projection P of X onto c with ‖P‖ = 1. Then P ∗ : c∗ → X∗

is a w∗-continuous isometry. Since c∗ fails to have the σ(c∗, c)-FPP, there
exists a σ(c∗, c)-compact convex set C that lacks the FPP. Therefore P ∗(C)
is a convex, σ(X∗, X)-compact set in X∗ which lacks the FPP.

Remark 3.3. It is easy to find a σ(c∗, c)-compact and convex set C ⊂ c∗
which fails the FPP for isometries. Moreover, Lennard (see [9, Ex. 3.2–3.3,
pp. 41–43]) found an example of a convex, σ(c∗, c)-compact set C ⊂ c∗ that
fails the FPP for affine (as well as for non-affine) contractive mappings (i.e.,
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T : C → C such that ‖T (x)−T (y)‖ < ‖x−y‖ for all x, y ∈ C, x 6= y). There-
fore, under the assumptions of the previous theorem, X∗ fails the σ(X∗, X)-
FPP for isometries and affine contractive mappings.

A consequence of Theorem 3.2 shows that for every separable Linden-
strauss space X with nonseparable dual, X∗ lacks the σ(X∗, X)-FPP.

Corollary 3.4. Let X be a separable Lindenstrauss space such that X∗
is nonseparable. Then X∗ lacks the σ(X∗, X)-FPP.

Proof. Theorem 2.3 in [8] proves that a separable Lindenstrauss space
X with nonseparable dual contains a subspace isometric to the space C(∆)
where ∆ is the Cantor set. Since C(∆) contains an isometric copy of c, the
conclusion follows directly from Theorem 3.2.

A simple extension of Theorem 3.2 can be easily obtained by considering
a quotient of X instead of a subspace.

Remark 3.5. LetX be a separable Banach space and suppose that there
exists a quotient X/Y isometric to c. Theorem 3.2 shows that Y ⊥ fails the
σ(Y ⊥, X/Y )-FPP and it follows easily that also X∗ fails the σ(X∗, X)-FPP.

The following example shows that to consider a quotient of X is a true
extension of Theorem 3.2.

Example 3.6. Consider the space Wf where

f = (−1/2, 1/4, 0,−1/8, 0, 1/16, 0, . . . ) ∈ `1.
We see that

• W ∗f = `1;
• Wf does not contain an isometric copy of c (by Proposition 2.1);
• `1 lacks the σ(`1,Wf )-FPP (by Proposition 2.2).

Moreover, there exists a quotient of Wf isometric to c. Indeed, consider the
subspace

Y = {y ∈Wf : y(2k) = 0 for all k ∈ N}
and the map T : c→Wf/Y defined by

T (x) =
(
7
3x(0), x(1), x(0), x(2), x(0), . . .

)
+ Y

for every x ∈ c. The map T is easily seen to be a surjective isometry.

It is easy to observe that the lack of the σ(X∗, X)-FPP does not im-
ply that c ⊂ X when X is a generic separable Banach space. Indeed, the
well-known example by Alspach [2] shows that `∞ fails the σ(`∞, `1)-FPP,
whereas its only predual does not contain an isometric copy of c. Moreover,
Example 2.4 shows that also a Lindenstrauss space exhibits the same be-
haviour. The same example proves that also the lack of a quotient of X
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containing an isometric copy of c is not a necessary condition for the lack of
σ(X∗, X)-FPP.

The next result extends Theorem 3.2. Indeed, the space c can be regarded
as a special member of the family of badWf by taking f = (1/2, 1/2, 0, 0, . . . )
(see Section 2).

Theorem 3.7. Let X be a separable Banach space. If X contains a sub-
space isometric to a bad Wf , then X∗ fails the σ(X∗, X)-FPP.

Proof. Let x ∈Wf and (e∗n) be a sequence of elements of W ∗f defined by

e∗n(x) = x(n)

for every n ∈ N. From [4, Theorem 4.3] we have

e∗n
σ(`1,Wf )−−−−−→ e∗

where e∗ = (−f(2)/f(1),−f(3)/f(1),−f(4)/f(1), . . . ) (observe that the
same relation holds when |f(j)| = 1/2 for some j ≥ 2). We denote by x∗n
the equal norm extension of e∗n onto the whole space X. By the assumption
about Wf the set N+ = {n ∈ N : f(1)f(n + 1) ≤ 0} has infinitely many
elements. Therefore we can choose an increasing sequence (nj) ⊂ N+ such
that

x∗nj

σ(X∗,X)−−−−−→ x∗

and w0 = e∗ − u0 6= 0 where u0 =
∑∞

j=1 e
∗(nj)e

∗
nj
. Now we consider the

extension of u0 to X defined by ũ0 =
∑∞

j=1 e
∗(nj)x

∗
nj
, and the elements

w̃0 = x∗ − ũ0 and w̃ = w̃0/‖w0‖. By adapting the approach in [6, last part
of the proof of Theorem 8], we show that the σ(X∗, X)-compact, convex set

C =
{
µ1x

∗ + µ2w̃ +

∞∑
j=1

µj+2x
∗
nj

:

∞∑
k=1

µk = 1, µk ≥ 0, k = 1, 2, . . .
}

can be rewritten as

C =
{
λ1w̃ +

∞∑
j=1

λj+1x
∗
nj

:
∞∑
k=1

λk = 1, λk ≥ 0, k = 1, 2, . . .
}
.

Consider the map T : C → C defined by

T
(
λ1w̃ +

∞∑
j=1

λj+1x
∗
nj

)
=

∞∑
j=1

λjx
∗
nj
.

Since x = λ1w̃ +
∑∞

j=1 λj+1x
∗
nj
∈ C has a unique representation, the map

T is well defined. Moreover it is nonexpansive. Indeed, for every αj ∈ R,
j = 1, 2, . . . ,
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∥∥∥α1w̃ +

∞∑
j=1

αj+1x
∗
nj

∥∥∥ ≥ ∥∥∥∥α1
w0

‖w0‖
+

∞∑
j=1

αj+1e
∗
nj

∥∥∥∥ =

∞∑
j=1

|αj |

=
∞∑
j=1

|αj |‖x∗nj
‖ ≥

∥∥∥ ∞∑
j=1

αjx
∗
nj

∥∥∥.
Finally, it is easy to see that T has no fixed point in C.

As already pointed out with respect to Theorem 3.2 (see Remark 3.5),
we can extend Theorem 3.7 by assuming a property of the quotients of X.

Remark 3.8. Let X be a separable Banach space and suppose that a
bad Wf is a subspace of a quotient X/Y of X. Theorem 3.7 shows that Y ⊥
fails the σ(Y ⊥, X/Y )-FPP. It is straightforward to see that also X∗ fails the
σ(X∗, X)-FPP.

In the next section we will see that the property stated in this remark
becomes a necessary condition if we additionally assume thatX is a separable
Lindenstrauss space.

4. The case of separable Lindenstrauss spaces. This section is
devoted to the main result of our paper. We characterize the separable Lin-
denstrauss spaces X such that X∗ fails the σ(X∗, X)-FPP.

By Corollary 3.4, we can limit ourselves to the Lindenstrauss spaces
whose dual is isometric to `1.

It is worth pointing out that the sufficient condition for the failure of the
σ(X∗, X)-FPP stated in Remark 3.8 turns out to be also necessary. This
fact emphasizes the crucial role played in the study of the σ(X∗, X)-FPP
by the bad Wf . Moreover, we are also able to find a condition involving the
limit of a σ(`1, X)-convergent subsequence of the standard basis of `1 that
is equivalent to the failure of the σ(`1, X)-FPP. This property allows us to
give a characterization of the σ(`1, X)-FPP in `1 by removing the restrictive
assumption about the convergence of the standard basis of `1 used in [6,
Theorem 8].

Theorem 4.1. Let X be a predual of `1. Then the following are equiva-
lent:

(1) `1 lacks the σ(`1, X)-FPP for nonexpansive mappings.
(2) `1 lacks the σ(`1, X)-FPP for isometries.
(3) `1 lacks the σ(`1, X)-FPP for contractive mappings.
(4) There is a subsequence (e∗nk

)k∈N of the standard basis (e∗n)n∈N in `1
which is σ(`1, X)-convergent to a norm-one element e∗ ∈ `1 with
e∗(nk) ≥ 0 for all k ∈ N.

(5) There is a quotient of X isometric to a bad Wf .
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(6) There is a quotient of X that contains a subspace isometric to a
bad Wg.

Proof. We divide the proof into several parts. First, the implications
(2)⇒(1), (3)⇒(1) and (5)⇒(6) are straightforward, and (6)⇒(1) follows
immediately from Remark 3.8.

(4)⇒(2) and (4)⇒(3). By adapting the method developed in [6, proof
of Theorem 8], we obtain a σ(`1, X)-compact and convex set C ⊂ `1 and an
isometry T : C → C that is fixed point free. Moreover, following the idea
of [3], we consider the mapping S : C → C defined as

S(x) =

∞∑
j=0

T j(x)

2j+1
,

where T is as above. It is easy to prove that S is a fixed point free contractive
mapping.

(4)⇒(5). By taking a subsequence we may assume that u∗ = e∗ −∑∞
k=2 e

∗(nk)e
∗
nk
6= 0. Set x∗1 = u∗/‖u∗‖ and x∗k = e∗nk

for k ≥ 2. It is
easy to see that (x∗k)k∈N is normalized sequence which is equivalent to the
standard basis in `1. Let Y = [{x∗k : k ∈ N}], where [·] denotes the closed
linear span. Since {x∗k : k ∈ N}w

∗
= {x∗k : k ∈ N}∪{e∗} ⊂ Y , Lemma 1 in [1]

guarantees that [{x∗k : k ∈ N}]w
∗
= Y . Consider Wf ⊂ c where

f =

(
−1

2
,
1

2

(
1−

∞∑
k=2

e∗(nk)
)
,
1

2
e∗(n2),

1

2
e∗(n3),

1

2
e∗(n4), . . .

)
.

Then, by Definition 2.3, Wf is bad. Let (y∗n)n∈N denote the standard ba-
sis in `1 = W ∗f . We shall consider two cases. Suppose

∑∞
k=2 e

∗(nk) > 0.

Then, applying [4, Theorem 4.3], we obtain y∗n
σ(`1,Wf )−−−−−→ y∗, where y∗ =

(1 −
∑∞

k=2 e
∗(nk), e

∗(n2), e
∗(n3), e

∗(n4), . . . ). Let φ be the map of Y onto
`1 =W ∗f given by φ(

∑∞
k=1 akx

∗
k) =

∑∞
k=1 aky

∗
k. Then

φ(e∗) = φ
(
u∗ +

∞∑
k=2

e∗(nk)e
∗
nk

)
= φ

(
‖u∗‖x∗1 +

∞∑
k=2

e∗(nk)x
∗
k

)
= ‖u∗‖y∗1 +

∞∑
k=2

e∗(nk)y
∗
k =

(
1−

∞∑
k=2

e∗(nk), e
∗(n2), e

∗(n3), . . .
)
= y∗.

Consequently, φ is a w∗-continuous homeomorphism from {x∗k : k ∈ N}w
∗

onto {y∗k : k ∈ N}w
∗
= {y∗k : k ∈ N} ∪ {y∗}. So, in view of [1, Lemma 2], φ is

a w∗-continuous isometry from Y onto `1 = W ∗f . This implies that Wf is
isometric to X/⊥Y . Finally, if

∑∞
k=2 e

∗(nk) = 0 then Wf is isometric to c.
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By the same reasoning as above, we easily conclude that c is isometric to a
quotient of X.

It remains to show that (1)⇒(4). This is the key part of the whole proof
and we split it into several steps for the convenience of the reader.

(1)⇒(4). The Final Step. Suppose that we have already constructed
a sequence (xm)m∈N ⊂ BX , a σ(`1, X)-convergent subsequence (e∗nk

)k∈N of
the standard basis (e∗n)n∈N in `1 = X∗ and a null sequence (εm)m∈N in (0, 1)
such that for all k,m ∈ N we have e∗nk

(xm) > 1 − εm. If e∗ denotes the
σ(`1, X)-limit of (e∗nk

)k∈N, then ‖e∗‖ = 1 and e∗(nk) ≥ 0 for all k ∈ N.

Indeed, let k0 ∈ N. Since e∗nk
(xm)

k−→ e∗(xm), we get e∗(xm) ≥ 1 − εm.
Consequently, for each m ∈ N, we have

e∗nk0
(xm) + e∗(xm) > 1− εm + 1− εm = 2− 2εm.

Hence, ‖e∗nk0
+ e∗‖ ≥ 2, from which our assertion follows at once.

In the following we construct sequences (xm)m∈N, (e∗nk
)k∈N and (εm)m∈N

described above.

Step 1. The sequence (x∗n)n∈N∪{0}. Assume that `1 lacks the σ(`1, X)-
FPP. Then, from [6, proof of Theorem 8], we know that there is a sequence
(x∗n)n∈N∪{0} in `1 with the following properties:

(i) x∗n
σ(`1,X)−−−−−→ x∗0;

(ii) (x∗n)n∈N tends to 0 coordinatewise;
(iii) limn→∞ ‖u∗ − x∗n‖ = 2 for every u∗ ∈ conv{x∗n : n ≥ 0};
(iv) limn→∞ ‖x∗n‖ = 1 = ‖x∗0‖.

Now, using (ii), (iii) and (iv), one may observe that for every n ∈ N,

2 = lim
m→∞

‖x∗n − x∗m‖ = ‖x∗n‖+ lim
m→∞

‖x∗m‖ = ‖x∗n‖+ 1,

and consequently

(v) ‖x∗n‖ = 1 for all n ≥ 0.

Again, using (ii), (iii) and (iv), one notices that for all m,n ∈ N ∪ {0},

2 = lim
k→∞

‖12(x
∗
n+x

∗
m)−x∗k‖ = ‖12(x

∗
n+x

∗
m)‖+ lim

k→∞
‖x∗k‖ = ‖12(x

∗
n+x

∗
m)‖+1,

hence

(vi) ‖x∗n + x∗m‖ = 2 for all m,n ∈ N ∪ {0}.

Taking into account (v) and (vi) we easily conclude that

(vii) x∗n(i) · x∗m(i) ≥ 0 for all m,n ∈ N ∪ {0} and i ∈ N.
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From now on we set
∑

i∈∅ ai := 0.

Step 2: Grinding (x∗n)n∈N∪{0}. Let (x∗n)n∈N∪{0} be as above. We show
that there is a sequence (y∗k)k∈N∪{0} in `1 and numbers s+ ∈ (0, 1], s− ∈
(−1, 0] such that

(a) ‖y∗k‖ = 1 for every k ≥ 0;
(b) for every k ∈ N the set supp y∗k := {i ∈ N : y∗k(i) 6= 0} is finite and

max supp y∗k < min supp y∗k+1;
(c) y∗m(i) · y∗n(i) ≥ 0 for all m,n ∈ N ∪ {0} and i ∈ N;
(d) for every k ∈ N,

s+(y∗k) :=
∑

i∈supp+ y∗k

y∗k(i) = s+ and s−(y∗k) :=
∑

i∈supp− y∗k

y∗k(i) = s−,

where supp+ y∗k := {i ∈ N : y∗k(i) > 0}, supp− y∗k := {i ∈ N :
y∗k(i) < 0};

(e) y∗k
σ(`1,X)−−−−−→ y∗0.

Indeed, using (ii) and (v), we can choose a subsequence (x∗nk
)k∈N of

(x∗n)n∈N and a sequence (mk)k∈N∪{0} with mk ∈ N ∪ {0} and 0 = m0 <
m1 < m2 < · · · such that for every k ∈ N,

(4.1)
mk∑

i=mk−1+1

|x∗nk
(i)| > 1− 1

2k
.

Now, for every k ∈ N we set x̃∗nk
=
∑mk

i=mk−1+1 x
∗
nk
(i)e∗i and

˜̃
x∗nk

= x̃∗nk
/‖x̃∗nk

‖.

We can assume that the limits s+0 := limk s
+(
˜̃
x∗nk

) and s−0 := limk s
−(
˜̃
x∗nk

)

exist. Clearly, s+0 ∈ [0, 1], s−0 ∈ [−1, 0] and s+0 − s
−
0 = 1. We shall consider

two cases.
First, suppose s+0 > 0. Then we can assume that s+(˜̃x∗nk

) > 0 for all

k ∈ N. Further, suppose s−0 < 0. Then we can also assume that s−(˜̃x∗nk
) < 0

for all k ∈ N. Define (y∗k)k∈N∪{0} as y
∗
0 = x∗0, and for k ∈ N,

y∗k :=
s+0

s+(
˜̃
x∗nk

)

∑
i∈supp+

˜̃
x∗nk

˜̃
x∗nk

(i)e∗i +
s−0

s−(
˜̃
x∗nk

)

∑
i∈supp−

˜̃
x∗nk

˜̃
x∗nk

(i)e∗i .

Obviously, conditions (a)–(c) are satisfied. Moreover, s+(y∗k)=s
+
0 and s−(y∗k)

= s−0 , so to obtain (d) it is enough to take s+ = s+0 and s− = s−0 . We
shall prove that (e) holds too. Indeed, by considering (4.1), (i) and (v), we
get limk ‖x̃∗nk

‖ = 1, w∗- limk (
∑mk

i=mk−1+1 x
∗
nk
(i)e∗i ) = x∗0, and consequently

w∗- limk y
∗
k = x∗0 = y∗0, as desired.
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If s−0 = 0, then s+0 = 1 and we can assume that s+(˜̃x∗nk
) > 0 for all k ∈ N.

We define (y∗k)k∈N∪{0} as y
∗
0 = x∗0, and for k ∈ N,

y∗k =
s+0

s+(
˜̃
x∗nk

)

∑
i∈supp+

˜̃
x∗nk

˜̃
x∗nk

(i) · e∗i .

It is easy to see that properties (a)–(d) with s+ := s+0 = 1 and s− := s−0 = 0
are satisfied.

Suppose s+0 = 0. Then s−0 = −1 and we can assume that s−(˜̃x∗nk
) < 0

for all k ∈ N. Now, it is enough to define (y∗k)k∈N∪{0} as y
∗
0 = −x∗0, and for

k ∈ N,

y∗k = −
s−0

s−(
˜̃
x∗nk

)

∑
i∈supp−

˜̃
x∗nk

˜̃
x∗nk

(i)e∗i .

Then s+(y∗k) = −s
−
0 = 1 for every k ∈ N. Obviously, properties (a)–(d) are

satisfied with s+ = 1 and s− = 0.

Step 3: Construction of (xm)m∈N. Let (y∗k)k∈N∪{0}, s
− ∈ (−1, 0] and

s+ ∈ (0, 1] be as above. By using (a) and (e), we can choose x1 ∈ BX and
k1 ∈ N such that y∗0(x1) > 1− s+/8 and y∗k(x1) > 1− s+/8 for all k ≥ k1.
Next, using (a) and (c) we can choose x2 ∈ BX such that y∗0(x2) > 1−s+/82
and y∗k1(x2) > 1− s+/82. Moreover, (e) implies that there is k2 > k1 such
that for all k ≥ k2 we have y∗k(x2) > 1 − s+/82. Further, using (a), (c)
and (e), we can choose x3 ∈ BX and k3 > k2 such that y∗0(x3) > 1−s+/83,
y∗k1(x3) > 1 − s+/83, y∗k2(x3) > 1 − s+/83 and y∗k(x3) > 1 − s+/83 for
all k ≥ k3. Continuing, we construct a sequence (xm)m∈N ⊂ BX and a
subsequence (y∗kn)n∈N of (y∗k)k∈N∪{0} such that y∗kn(xm) > 1 − s+/8m for
all m,n ∈ N.

For each n ∈ N we set z∗n = y∗kn . Then (z∗n)n∈N has the following proper-
ties:

(a′) for every n ∈ N the set supp+ z∗n is nonempty, supp z∗n is finite, and
max supp z∗n < min supp z∗n+1;

(b′) z∗n(xm) > 1− s+/8m for all m,n ∈ N;
(c′) for every n ∈ N, s+(z∗n) = s+ and s−(z∗n) = s−.

Step 4: Construction of (e∗nk
)k∈N and (εm)m∈N. Let (z∗n)n∈N, s− and s+

be as above. For each m,n ∈ N we define

E(n)
m = {i ∈ supp+ z∗n : e∗i (xm) > 1− 1/2m}.
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Then, using (c′), we have∑
i∈supp+ z∗n

z∗n(i)e
∗
i (xm) =

∑
i∈E(n)

m

z∗n(i)e
∗
i (xm) +

∑
i∈(supp+ z∗n)\E

(n)
m

z∗n(i)e
∗
i (xm)

≤
∑
i∈E(n)

m

z∗n(i) +

(
1− 1

2m

) ∑
i∈(supp+ z∗n)\E

(n)
m

z∗n(i)

=

(
1− 1

2m

) ∑
i∈supp+ z∗n

z∗n(i) +
1

2m

∑
i∈E(n)

m

z∗n(i)

=

(
1− 1

2m

)
s+ +

1

2m

∑
i∈E(n)

m

z∗n(i).

On the other hand, using (b′) and (c′), we get∑
i∈supp+ z∗n

z∗n(i)e
∗
i (xm) =

∑
i∈supp z∗n

z∗n(i)e
∗
i (xm)−

∑
i∈supp− z∗n

z∗n(i)e
∗
i (xm)

> 1− s+

8m
+ s− = 1− s+

8m
− 1 + s+ =

(
1− 1

8m

)
s+.

The above implies that(
1− 1

8m

)
s+ <

(
1− 1

2m

)
s+ +

1

2m

∑
i∈E(n)

m

z∗n(i),

so ∑
i∈E(n)

m

z∗n(i) ≥
(
1− 1

4m

)
s+.

The above calculations also show that for any m,n ∈ N the set E(n)
m is

nonempty and

(4.2)
∑

i∈(supp+ z∗n)\E
(n)
m

z∗n(i) ≤
1

4m
s+.

For each m,n ∈ N we define F (n)
m =

⋂m
j=1E

(n)
j . Obviously, for every

n ∈ N, F (n)
1 ⊇ F (n)

2 ⊇ · · · . We claim that F (n)
m 6= 0 for all n,m ∈ N. Indeed,

suppose that there are n,m ∈ N such that F (n)
m = ∅. Then supp+ z∗n =⋃m

j=1(supp+ z∗n \ E
(n)
j ), so taking into account (4.2) and (c′), we obtain a

contradiction:
1

2
s+ >

m∑
j=1

1

4j
s+ ≥

m∑
j=1

∑
i∈(supp+ z∗n)\E

(n)
j

z∗n(i) ≥
∑

i∈supp+ z∗n

z∗n(i) = s+.
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Since each F (n)
m is nonempty and, in view of (a′), F (n)

1 is finite, we con-
clude that G(n) :=

⋂∞
m=1 F

(n)
m is nonempty for every n ∈ N. Clearly,

G(n) =
∞⋂
m=1

E(n)
m = {i ∈ supp+ z∗n : e∗i (xm) > 1− 1/2m for all m ∈ N}.

Moreover, using (a′) we see that G(i) ∩G(j) = ∅ provided i 6= j. Hence, the
set
⋃∞
j=1G

(j) is infinite. Take any σ(`1, X)-convergent subsequence (e∗nk
)k∈N

of (e∗n)n∈⋃∞j=1G
(j) . Then e∗nk

(xm) > 1 − 1/2m for all m, k ∈ N. Apply now
The Final Step with εm = 1/2m. The proof of (1)⇒(4) is finished.

Remark 4.2. The bad Wf and Wg in statements (5) and (6) of Theo-
rem 4.1 cannot be replaced by c (see Example 2.4).

We conclude by pointing out a related open problem. Let X be a predual
of `1. Theorem 3.7 implies that the existence of an isometric copy of a badWf

inX ensures the failure of the σ(`1, X)-FPP. On the other hand, Theorem 4.1
provides a necessary and sufficient condition for the failure of the σ(`1, X)-
FPP based on the existence of a quotient of X isometric to a bad Wf .
A natural question still unanswered is whether the lack of the σ(`1, X)-FPP
implies that X contains an isometric copy of a bad Wf .
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