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The summatory function of the Möbius function
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Byungchul Cha (Allentown, PA)

1. Introduction. Recall that the Möbius function µ(n) is defined for
any positive integer n by

µ(n) :=


1 if n = 1,

0 if n is not square free,

(−1)t if n is a product of t distinct primes.

Let M(x) be its summatory function,

M(x) :=
∑
n≤x

µ(n).

Mertens’s conjecture [19] states that

(1.1) |M(x)| <
√
x

for all x > 1. This conjecture was disproved by Odlyzko and te Riele [21]
in 1985. Still, understanding the growth of M(x) remains the subject of
intensive investigation by many authors in analytic number theory. For ex-
ample, see [18] and [24] for some recent results. Relevant to us is a paper [20]
of Ng, who gives certain conditional results on the growth of M(x), using
the techniques of Rubinstein and Sarnak [23]. In particular, Ng presents a
probabilistic argument supporting the conjecture of Gonek that M(x)/

√
x

grows roughly as (log log log x)5/4. More precisely, there exists a number
B > 0 such that
(1.2)

lim sup
x→∞

M(x)
√
x(log log log x)5/4

= B, lim inf
x→∞

M(x)
√
x(log log log x)5/4

= −B.
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In this paper, we try to construct a function field analog of Ng’s work
and examine several issues that arise from this attempt. This is motivated
by the present author’s earlier paper [3], where a function field version of
Rubinstein and Sarnak’s work is established.

To describe our results in more detail, we fix some notation. Let C be
a nonsingular projective curve of genus g defined over a finite field Fq of
characteristic p > 2 with q elements. Define the Möbius function µC/Fq

(D)
of C/Fq for all effective divisors D of C in the obvious way,

µC/Fq
(D) :=


1 if D = 0,

0 if a prime divisor divides D with order at least 2,

(−1)t if D is a sum of t distinct prime divisors.

Also, define the summatory function

MC/Fq
(X) :=

∑
degD≤X

µC/Fq
(D)

for all positive integers X.
The starting point is an asymptotic formula for MC/Fq

(X) as X → ∞
(Proposition 2.2). Roughly speaking, this formula says that MC/Fq

(X) =

O(Xr−1qX/2), where r is the maximum order of all inverse zeros for C/Fq
(see (2.2) for the definition of inverse zeros and their orders). From this, if
all inverse zeros are simple, we deduce in Corollary 2.3 that the quantity

(1.3) B(C/Fq) := lim sup
X→∞

MC/Fq
(X)

q(X+1)/2

exists as a finite number. This could be regarded as a (weak) function field
analog of (1.1).

However, it is obvious that the boundedness of MC/Fq
(X)/qX/2 when

all inverse zeros are simple stems from the fact that there are only finitely
many inverse zeros for any given C. So, rather than studying B(C/Fq) for a
single curve C, it would be interesting to find the average of B(C/Fq) over a
family F of curves whose genus g is large. Instead, what we would like to do
in this paper is find the average of B(C/Fq) over F with the scalar field Fq
growing larger. The advantage of dealing with this geometric average is that
this set-up enables us to use the powerful tool of Katz and Sarnak’s [11]
reformulation of the equidistribution theorem of Deligne. Still, we do not
quite succeed in computing the geometric average of B(C/Fq) but obtain
something close to it. This is explained later in this introduction.

At this point, we need to give a definition of the Linear Independence
property.

Definition 1.1 (Linear Independence (LI)). Let γ1 =
√
q eiθ1 , . . . , γ2g

=
√
q eiθ2g be the inverse zeros of a curve C/Fq. We say that C satisfies the
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Linear Independence (LI) property if the set

{θj | 0 ≤ θj ≤ π with j = 1, . . . , 2g} ∪ {π},
listing the inverse zeros with multiplicity, is linearly independent over Q.

The number field version of LI, which states that nonnegative ordinates
of the critical zeros of the Riemann zeta function or Dirichlet L-functions
are linearly independent over Q, plays a key role in the aforementioned work
of Ng [20], as well as in the work of Rubinstein and Sarnak [23] on the prime
number race. Note that LI is called the Grand Simplicity Hypothesis in [23]
and [3]. The fact that such a property of zeta zeros bears on understanding
the exact growth of M(x) had already been made clear by Ingham [10], well
before Odlyzko and te Riele disproved Mertens’s conjecture. Ingham proved
in 1942 that lim supx→∞M(x)/

√
x = ∞ if LI holds true for the Riemann

zeta function.
Unfortunately, there is currently very little direct theoretical or numer-

ical evidence to support the number field version of LI. However, in the
function field case, things are better understood. There are known examples
(see [3], [4] and [17]) where LI can be confirmed and, in some other cases,
disproved. Moreover, the work [17] of Kowalski shows that most curves in
a certain one-parameter family of hyperelliptic curves satisfy LI. For more
background and precise statements of Kowalski’s results, the readers are
referred to [17] and Remark 3.2 of this paper.

The importance of LI in our work comes from Theorem 2.6, which states
that if C satisfies LI, then the bound

(1.4) D(C/Fq) :=
1

q1/2

∑
γ

∣∣∣∣ γ

Z ′C/Fq
(γ−1)

γ

γ − 1

∣∣∣∣
of B(C/Fq) we find in Corollary 2.3 becomes sharp, that is, B(C/Fq) =
D(C/Fq) under LI. It turns out that Kowalski’s argument in [17] can be
easily extended to prove that most curves in the familyH2g+1 of hyperelliptic
curves of genus g satisfy LI (Theorem 3.1). As a consequence, B(C/Fq) =
D(C/Fq) for most curves C/Fq in H2g+1. That is why we choose to work
with F := H2g+1 in this paper.

The next step is to use Deligne’s equidistribution theorem to find the
geometric average of D(C/Fq). We show in Theorem 3.3 that a certain
truncated version of the geometric average of D(C/Fq) is equal to

I(g) :=
�

USp(2g,C)

ϕ(U) dµHaar(U).

Here, dµHaar is the unique probability Haar measure on the unitary sym-
plectic group USp(2g,C). The function ϕ is defined in (3.4) and (3.5). This
situation is similar to the number field case in [20] where the discrete neg-
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ative moments J−k(T ) of ζ ′(s) play an important role in understanding the
growth of M(x).

In §4, which can be read independently of other parts of this paper,
we study the integral I(g), especially its asymptotic behavior as g → ∞.
A key result here is Theorem 4.1, which finds an asymptotic expression for
the average value of powers of the characteristic polynomials of random
unitary symplectic matrices. The main tool is a formula by Deift, Its, and
Krasovsky [6] for Hankel’s determinants with singular weight functions. We
note that Theorems 4.1 and 4.2 extend the earlier work of Keating and
Snaith [14, 15] and that of Keating and Odgers [12] on the moments of
characteristic polynomials. See Remark 4.3 for more detail.

Our result seems to suggest that the geometric average of B(C/Fq) over
H2g+1 is given by the asymptotic formula in (4.14). However, there are at
least two major issues we cannot resolve in this paper.

The first issue is the extent of the possible failure of LI in H2g+1. With-
out LI, it may happen that B(C/Fq) < D(C/Fq), so the geometric average
of D(C/Fq) might potentially overestimate that of B(C/Fq). Even though
the set of conjugacy classes in USp(2g,C) whose eigenvalues have no (non-
trivial multiplicative) relations form a measure zero subset with respect to
the Haar measure, it is still dense in USp(2g,C), and it is unclear if one
could utilize the equidistribution theorem to control the difference between
the averages of B(C/Fq) and D(C/Fq).

The second issue is that we cannot (yet) finish the proof of the asymptotic
formula (4.14) of I(g). It seems that to do so we need a finer control on
the error term in the formula of Deift, Its, Krasovsky. For a more detailed
explanation, see §4, especially Remark 4.4.

2. Asymptotic formula and the LI property. Throughout this pa-
per, we write #A for the cardinality of a finite set A. We fix a power q of an
odd prime p > 2 and denote by Fq a finite field with q elements. For each
n ≥ 1, we have a unique extension Fqn (inside a chosen algebraic closure
of Fq) of Fq of degree n. For a nonsingular projective curve C over Fq of
genus g, the zeta function ZC/Fq

(u) of C over Fq is defined by

ZC/Fq
(u) := exp

(∑
n≥1

#C(Fqn)

n
un
)
,

initially viewed as a formal power series in u with rational coefficients. It is
known from the Riemann Hypothesis for curves over finite fields that

(2.1) ZC/Fq
(u) =

PC/Fq
(u)

(1− u)(1− qu)
,
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where PC/Fq
(u) is a polynomial in u of degree 2g with integer coefficients,

which factorizes as

(2.2) PC/Fq
(u) =

2g∏
j=1

(1− γju)

for some complex numbers γj with |γj | =
√
q for all j = 1, . . . , 2g. These

numbers γj are called the inverse zeros of C. By the order of an inverse
zero γ, we mean the multiplicity of γ−1 as a root of PC/Fq

(u). If γ is of order
one, we will say that the inverse zero γ is simple.

2.1. Asymptotic formula for MC/Fq
(X). Let Zµ(u) be the following

Dirichlet series (in u) associated with µC/Fq
(D), for a divisor D, together

with the change of variable u := q−s:

(2.3) Zµ(u) :=
∑
D≥0

µC/Fq
(D)

NDs
=
∞∑
N=0

cµ(N)uN .

Here ND is the absolute norm of D, and cµ(N) :=
∑

deg(D)=N µC/Fq
(D).

From the Euler product expression of Zµ(u), it is easy to show (see [22,
Chapter 1] or follow the same argument as in the number field case) that

(2.4) Zµ(u) =
1

ZC/Fq
(u)

=
(1− u)(1− qu)

PC/Fq
(u)

.

From (2.3) and the definition of cµ(N), we have

(2.5) MC/Fq
(X) =

∑
N≤X

cµ(N).

Therefore, the crucial step in finding the asymptotic formula for MC/Fq
(X)

is to estimate the coefficients cµ(N).

First, we consider the easiest case when C is of genus zero. In this case,
PC/Fq

(u) = 1 and

Zµ(u) = (1− u)(1− qu) = 1− (q + 1)u+ qu2.

So, cµ(N) = 0 for all N ≥ 3 and cµ(N) = 1,−(q + 1), q if N = 0, 1, 2
respectively. This easily determines the values of MC/Fq

(X) for all X. In
particular, we obtain the trivial bound |MC/Fq

(X)| ≤ q for all X. We note
here that even in this genus zero case, sums of the Möbius function become
interesting if we restrict ourselves to short intervals. See the work of Keating
and Rudnick [13] for more detail.

Next, we consider the case of arbitrary genus g. Let C1 be a circular
path in the complex plane of radius 1 centered at the origin, oriented coun-
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terclockwise. We calculate the integral

1

2πi

�

C1

Zµ(u)

uN+1
du

using Cauchy’s theorem.

First, we note that the integral can be easily bounded independently
of N . From (2.4) and (2.2),

(2.6)

∣∣∣∣ 1

2πi

�

C1

Zµ(u)

uN+1
du

∣∣∣∣ ≤ 1

2π

�

C1

∣∣∣∣Zµ(u)

uN+1

∣∣∣∣ |du| ≤ 2(1 + q)

(1−√q)2g
.

Next, we see from (2.2)–(2.4) that the function Zµ(u)/uN+1 has poles at
u = 0 and u = γ−1 for all inverse zeros γ. The series expression (2.3) implies
that the residue of Zµ(u)/uN+1 at u = 0 is cµ(N). Therefore, if we define
RC/Fq

(N, γ) to be the residue of Zµ(u)/uN+1 at u = γ−1 for any inverse
zero γ, Cauchy’s theorem yields∣∣∣cµ(N) +

∑
γ

RC/Fq
(N, γ)

∣∣∣ ≤ 2(1 + q)

(1−√q)2g
.

By letting N →∞, we get

(2.7) cµ(N) = −
∑
γ

RC/Fq
(N, γ) +O(1).

So, in order to obtain an asymptotic formula for MC/Fq
(X), we will need to

calculate the residues RC/Fq
(N, γ). We do this by finding the Laurent series

expansion of Zµ(u)/uN+1 = 1/(ZC/Fq
(u)uN+1) directly.

From the binomial theorem,

(2.8) u−(N+1) = γN+1
∞∑
k=0

(−1)k
(
N + k

k

)
γk(u− γ−1)k.

Let r be the order of γ. Then the power series expansion of ZC/Fq
(u) at

u = γ−1 starts with

ZC/Fq
(u) =

Z
(r)
C/Fq

(γ−1)

r!
(u− γ−1)r + · · · .

Here Z
(r)
C/Fq

(u) is the rth derivative of ZC/Fq
(u) (with respect to u). Then

the Laurent series expansion of 1/ZC/Fq
(u) at u = γ−1 begins with

(2.9)
1

ZC/Fq
(u)

=
r!

Z
(r)
C/Fq

(γ−1)
(u− γ−1)−r + · · · .

Therefore, the residue RC/Fq
(N, γ) is obtained by multiplying the two series
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(2.8) and (2.9) and extracting the coefficient of (u− γ−1)−1. To be precise,

RC/Fq
(N, γ) =

r!

Z
(r)
C/Fq

(γ−1)
γN+1(−1)r−1

(
N + r − 1

r − 1

)
γr−1 + · · ·(2.10)

=
r!

Z
(r)
C/Fq

(γ−1)
γN+1(−1)r−1

N r−1

(r − 1)!
γr−1 + · · ·

=
γN+r(−1)r−1r

Z
(r)
C/Fq

(γ−1)
N r−1 + · · · ,

where all the suppressed terms are polynomials in N of degree r− 2 or less.

If we sum (2.10) over N = 1, . . . , X, we get

(2.11)
X∑
N=1

RC/Fq
(N, γ) =

γr(−1)r−1r

Z
(r)
C/Fq

(γ−1)

γ

γ − 1
Xr−1γX +O(Xr−2γX)

as X →∞. This is an immediate consequence of Lemma 2.1, which can be
proven by partial summation [2, Theorem 4.2], as outlined in [3, Lemma 2.2].
So, we omit the proof.

Lemma 2.1. Let β be a complex number with |β| > 1 and k be a non-
negative integer. Then

lim
X→∞

1

XkβX

X∑
N=1

NkβN =
β

β − 1
.

Denote by θ(γ) the argument of the complex number γ, so that γ =√
q eiθ(γ). Then (2.11) becomes

(2.12) − 1

Xr−1qX/2

X∑
N=1

RC/Fq
(N, γ) =

(−γ)rr

Z
(r)
C/Fq

(γ−1)

γ

γ − 1
eiXθ(γ) + o(1).

Now, (2.5), (2.7), (2.12) together yield the estimate of MC/Fq
(X) in the

proposition below.

Proposition 2.2. For an inverse zero γ, let θ(γ) be the argument of γ,
so that γ =

√
q eiθ(γ). Also, let r be the maximum order among all the inverse

zeros γ of ZC/Fq
(u), that is,

r = max {ord γj}2gj=1.

Then, as X →∞,

MC/Fq
(X)

Xr−1qX/2
=

∑
ord γ=r

(−γ)rr

Z
(r)
C/Fq

(γ−1)

γ

γ − 1
eiXθ(γ) + o(1).



382 B. Cha

In particular, if all inverse zeros {γj}2gj=1 are simple, then

MC/Fq
(X)

qX/2
= −

2g∑
j=1

γj
Z ′C/Fq

(γj−1)

γj
γj − 1

eiXθ(γj) + o(1).

Corollary 2.3. With the above notation,

lim sup
X→∞

MC/Fq
(X)

Xr−1qX/2
≤

∑
ord γ=r

∣∣∣∣ γrr

Z
(r)
C/Fq

(γ−1)

γ

γ − 1

∣∣∣∣.
Remark 2.4. It is interesting to compare the (upper) bound ofMC/Fq

(X)
in the above corollary with the corresponding bound in the number field case.
First of all, from the obvious fact r ≤ 2g, Corollary 2.3 gives

(2.13) MC/Fq
(X) = O(X2g−1qX/2).

With the usual “dictionary” (qX ↔ x and X ↔ log x) between function
fields and number fields, we see that (2.13) provides a stronger bound than
the following number field version of the corresponding upper bound of
M(x) =

∑
n≤x µ(n):

M(x)/
√
x� exp

(
(log x)1/2(log log x)14

)
,

which was proven by Soundararajan [24] under RH. The reason why we have
a stronger upper bound in the function field case is essentially that there
are only finitely many zeta zeros for a (fixed) base curve C/Fq.

The next theorem follows from the adaptation of Rubinstein and Sar-
nak’s [23] argument to the function field setting; the proof is identical to
that of [3, Theorem 3.2], so we omit it.

Theorem 2.5. With the notation of Proposition 2.2, the function
MC/Fq

(X)/(Xr−1qX/2) has a limiting distribution µ on R, that is,

lim
Y→∞

1

Y

Y∑
X=1

f

(
MC/Fq

(X)

Xr−1qX/2

)
=

∞�

−∞
f(x) dµ(x)

for all bounded continuous functions f on R.

2.2. Application of LI. Suppose that the curve C has the Linear
Independence property (Definition 1.1). One immediate consequence of LI
is that all the inverse zeros of C are simple, so the formula in Proposition 2.2
becomes

(2.14)
MC/Fq

(X)

qX/2
= −

2g∑
j=1

∣∣∣∣ γj
Z ′C/Fq

(γj−1)

γj
γj − 1

∣∣∣∣ cos
(
ω(γj)+Xθ(γj)

)
+o(1),
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where

ω(γj) := arg

(
γj

Z ′C/Fq
(γj−1)

γj
γj − 1

)
.

Another consequence of LI is that, thanks to the Kronecker–Weyl equidi-
stirbution theorem, the trigonometric terms on the right side of (2.14) be-
have independently of each other. As a result, we have

Theorem 2.6. If C satisfies LI, then

lim sup
X→∞

MC/Fq
(X)

qX/2
=

2g∑
j=1

∣∣∣∣ γj
Z ′C/Fq

(γj−1)

γj
γj − 1

∣∣∣∣.
3. Universal families of hyperelliptic curves. We define H2g+1 to

be the space of monic polynomials of degree 2g + 1 with distinct roots (see
[11, (10.1.18.1)]). One can think of H2g+1 as an open subvariety of the affine
scheme A2g+1 over Z. In particular, for each n ≥ 1, H2g+1(Fqn) is the set of
monic polynomials f(x) = a0+a1x+ · · ·+a2gx

2g+x2g+1 with coefficients ai
in Fqn and nonzero discriminant. Therefore, each f ∈ H2g+1(Fqn) defines a
hyperelliptic curve Cf of genus g over Fqn , the nonsingular projective model
of the plane curve defined by y2 = f(x). At this point, it will be convenient
to introduce a terminology from [5]. We will say that most points of H2g+1

have the property D = {Dn}∞n=1 if

lim
n→∞

#{f ∈ H2g+1(Fqn) | Cf satisfies Dn}
#H2g+1(Fqn)

= 1.

3.1. LI for most curves in H2g+1

Theorem 3.1 (Chavdarov [5], Kowalski [17]). For fixed q and g,

lim
n→∞

#{f ∈ H2g+1(Fqn) | Cf satisfies LI }
#H2g+1(Fqn)

= 1.

In other words, most points of H2g+1 satisfy LI.

Proof. Let f and Cf be as above. Then one can show that, for most
points of H2g+1, the sum of the inverse zeros of Cf is nonzero. This directly
follows from Deligne’s equidistribution theorem [11, Theorem 10.8.2] because
the set of conjugacy classes with zero trace is a measure zero subset of the
space USp(2g,C)# of conjugacy classes of USp(2g,C), with respect to the
(direct image of) Haar measure.

The second step is to apply Chavdarov’s theorem [5, Theorem 2.3] which
says that, for most points of H2g+1, the Galois group of the splitting field
of PCf

(u) is as large as possible, that is, isomorphic to the Weyl group
W2g corresponding to the symplectic group Sp(2g). To apply Chavdarov’s
theorem, we need to ensure that the mod-` geometric monodromy group of
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H2g+1 is Sp(2g,F`) for all large `. But this had been previously shown by
J. K. Yu (unpublished). More recently, Hall [7] and independently Achter
and Pries [1] proved this result.

The last step is now to follow Kowalski’s argument in [17, §3]. His proof
of [17, Proposition 1.1 in §3] can be applied to H2g+1 without any change
to show that if the sum of the inverse zeros of C is nonzero and the Galois
group of PCf

(u) is as large as possible, then C satisfies LI. This concludes
the proof of our theorem that most elements of H2g+1 satisfy LI [5].

We note that the assumption of odd characteristic p > 2 is essential in
this proof. To show that the geometric monodromy group in Sp(2g) is as
large as possible we need the prime 2 to be invertible in the base field Fq
(see [7] and [1]).

Remark 3.2. The aforementioned Chavdarov theorem has a quantita-
tively refined version, first proven by Kowalski [16, Theorems 6.1 and 6.2],
who gives a quantitative bound on the number of curves in a family whose
zeta functions are either reducible or have splitting fields with Galois group
strictly smaller than the maximum possible one. Using this result, Kowalski
derives a bound on the number of curves which do not satisfy LI in the
one-parameter family of hyperelliptic curves

Ct : y2 = f(x)(x− t),

where f(x) is a monic irreducible polynomial with coefficients in Z whose
discriminant is not divisible by p [17, Proposition 1.1]. In fact, if we assume
that p > 2g + 1, then [16, Theorem 6.1(ii)] is directly applicable to the
family H2g+1, and we can deduce from it that the number N(H2g+1(Fq))
of curves in H2g+1(Fq) such that PCf

(u) is either reducible or has splitting
field smaller than W2g satisfies, as q →∞,

N(H2g+1(Fq))� q2g−γ(log q)

for γ := 1/(10g2 +6g+8). Therefore, the same bound applies to the number
of curves that do not satisfy LI.

3.2. Average over the family. Let C be a nonsingular projective
curve over a finite field F of characteristic p > 2. As in §2, let r be the
maximum order of all inverse zeros of C/F. Define

(3.1) B(C/F) := lim sup
X→∞

MC/F(X)

#F(X+1)/2Xr−1
.

Further, we let

(3.2) D(C/F) :=
1

(#F)1/2

∑
ord γ=r

∣∣∣∣ γrr

Z
(r)
C/F(γ−1)

γ

γ − 1

∣∣∣∣.
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(Note that if all inverse zeros are assumed to be simple, then the above defi-
nitions (3.1) and (3.2) are the same as in (1.3) and (1.4) of the introduction.)
Corollary 2.3 and Theorem 2.6 can then be summarized by saying that

(3.3) B(C/F) ≤ D(C/F),

and equality holds true if C satisfies LI. In this subsection, we investi-
gate the relationship between the average value of D(Cf ,Fqn) over all f
in H2g+1(F2g+1) and a certain integral over the unitary symplectic group
USp(2g,C).

To describe this relationship, we start by defining the characteristic poly-
nomial ZU (θ). (A typographical note: in the literature, this characteristic
polynomial is denoted by ZU (θ) or Z(U, θ). We use the calligraphic font to
distinguish it from the zeta function ZC/Fq

(u) of a curve C.) Let N be a
positive integer. For a 2N × 2N unitary matrix U and a real number θ, we
define

(3.4) ZU (θ) := det(I − Ue−iθ) =

2N∏
m=1

(1− ei(θm−θ)),

where eiθ1 , . . . , eiθ2N are the eigenvalues of U . When U has no repeated
eigenvalues, we define

(3.5) ϕ(U) :=

2N∑
j=1

1

|Z ′U (θj)|
.

Note that ϕ(U) depends only on the conjugacy class of U . We will be mostly
interested in ϕ(U) for U ∈ USp(2g,C). Then ϕ(U) is continuous and well-
defined outside the measure zero subset where U has a repeated eigenvalue.

Next, for a curve Cf over Fqn , we recall that there exists a certain conju-
gacy class ϑ(Cf/Fqn) ∈ USp(2g,C)#, called the unitarized Frobenius conju-
gacy class attached to Cf/Fqn . For its definition, the readers are referred to
[11, Chapters 9 and 10 (especially §9.2 and §§10.7.2)]. In this paper, it will
be sufficient to say that this is the unique conjugacy class with the property
that

(3.6) PCf/Fqn
(u) = det

(
1− uqn/2ϑ(Cf/Fqn)

)
.

Finally, we define a truncated version of D(Cf ,Fqn) using ϕ(U) above.
Fix T > 0. Then

(3.7) DT (Cf/Fqn) :=

{
D(Cf ,Fqn) if ϕ(ϑ(Cf/Fqn)) ≤ T,
0 otherwise.

Note that the second case in the above definition is used when either
ϕ(ϑ(Cf/Fqn)) > T , or ϑ(Cf/Fqn) has a repeated eigenvalue. The truncated
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average over H2g+1(Fqn) is defined by

(3.8) D
T

(H2g+1(Fqn)) :=
1

#H2g+1(Fqn)

∑
f∈H2g+1(Fqn )

DT (Cf/Fqn).

We are ready to state the main theorem of this section.

Theorem 3.3. With the above notation,

lim
T→∞

lim
n→∞

D
T

(H2g+1(Fqn)) =
�

USp(2g,C)

ϕ(U) dµHaar(U).

Here, dµHaar is the unique probability Haar measure on USp(2g,C).

Remark 3.4. The above theorem essentially calculates the first (trun-
cated) moment of D(Cf ,Fqn). The work [9] of Humphries, which is based
on the present paper in preprint form, carries out a similar calculation to
instead determine the cumulative distributive function of D(Cf ,Fqn).

Another remark is that it is common in the context of function fields to
define MC/Fq

(X) to be the sum over all effective divisors D of deg(D) = X
(that is, our cµ(X) in (2.3)), instead of the sum of those with deg(D) ≤ X.
If we adopt this new definition, the expression D(Cf ,Fq) will be slightly
different. But, as was shown in [9, §4], this difference is negligible in the
large q limit. On the other hand, a similar observation cannot be made in
the study of Chebyshev’s bias in [3], as one has to sum over all N ≤ X to
make the bias emerge.

Using (3.4) and (3.6), we can easily deduce that

(3.9) Zϑ(Cf/Fqn )(θ) = PCf/Fqn
((qn/2eiθ)−1)

for any real θ. Assume that Cf has only simple inverse zeros and write

γj = qn/2eiθj . Then we differentiate (3.9) to obtain

(3.10)
γj

Z ′Cf/Fqn
(γj−1)

γj
γj − 1

=
1− qn/γj

iZ ′ϑ(Cf/Fqn )
(θj)

.

Further, assume that ϕ(ϑ(Cf/Fqn)) ≤ T . Then we sum (3.10) over j =
1, . . . , 2g; by setting r = 1 in (3.2), this yields

D(Cf/Fqn) =
1

qn/2

2g∑
j=1

∣∣∣∣ 1− qn/γj
iZ ′ϑ(Cf/Fqn )

(θj)

∣∣∣∣(3.11)

=

2g∑
j=1

(
1

|Z ′ϑ(Cf/Fqn )
(θj)|

+
1

qn/2
A(f, j)

|Z ′ϑ(Cf/Fqn )
(θj)|

)
,

where A(f, j) is a constant with |A(f, j)| ≤ 1.
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Now, we compute D
T

(H2g+1(Fqn) from its definition (3.8) by summing
(3.11) over all f ∈ H2g+1 with ϕ(ϑ(Cf/Fqn)) ≤ T . As a result,

(3.12) D
T

(H2g+1(Fqn) =
1

#H2g+1(Fqn)

∑
ϕ(ϑ(Cf/Fqn ))≤T

2g∑
j=1

1

|Z ′ϑ(Cf/Fqn )
(θj)|

+
1

#H2g+1(Fqn)

∑
ϕ(ϑ(Cf/Fqn ))≤T

2g∑
j=1

O

(
1

qn/2
1

|Z ′ϑ(Cf/Fqn )
(θj)|

)
.

The next step is to let n→∞ in (3.12) and to apply Deligne’s equidis-
tribution theorem [11, Theorem 10.8.2]. The right side of the first line of
(3.12) then becomes

lim
n→∞

1

#H2g+1(Fqn)

∑
ϕ(ϑ(Cf/Fqn ))≤T

2g∑
j=1

1

|Z ′ϑ(Cf/Fqn )
(θj)|

=
�

ϕ≤T
ϕ(U) dµHaar(U).

The second line of (3.12) converges to zero as n→∞ due to the qn/2 term
in the denominator and the convergence of the first line. In other words, we
have proved that

lim
n→∞

D
T

(H2g+1(Fqn)) =
�

ϕ≤T
ϕ(U) dµHaar(U).

The proof of Theorem 3.3 is now completed by letting T →∞.

4. Averages of characteristic polynomials on unitary symplectic
groups. Recall that, for a 2N ×2N unitary matrix U and a real number θ,
the function ZU (θ) was defined in (3.4) by

ZU (θ) := det(I − Ue−iθ) =

2N∏
m=1

(1− ei(θm−θ)),

where eiθ1 , . . . , eiθ2N are the eigenvalues of U . Also, the function ϕ(U) is
defined in (3.5) by

ϕ(U) :=

2N∑
j=1

1

|Z ′U (θj)|

whenever U has no repeated eigenvalues. When U ∈ USp(2N,C), its eige-
nangles θ1, . . . , θ2N come in complex conjugate pairs; we will enumerate
them so that 0 ≤ θj ≤ π for j = 1, . . . , N and θN+1 = −θ1, . . . , θ2N = −θN .
The main theorem of this section is Theorem 4.1, where we give an asymp-
totic formula for the 2sth moment of ZU (θ) in USp(2N,C) using the work
of Deift, Its, and Krasovsky [6]. Additionally, we prove a similar result for
SO(2N) in Theorem 4.2 as well.
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Theorem 4.1 (cf. [12, Theorem 5]). Fix a complex number s with <(s) >
−1/2 and a (real) θ with 0 < θ < π. As N →∞,

�

USp(2N,C)

|ZU (θ)|2s dµHaar(U) ∼ N s22−s(sin θ)−s(s+1)G(1 + s)2

G(1 + 2s)
.

Here, G(z) is the Barnes G-function.

Proof. During the proof, we use the notation

(4.1) 〈|ZU (θ)|2s 〉USp(2N,C) :=
�

USp(2N,C)

|ZU (θ)|2s dµHaar(U).

We first rewrite

(4.2) |ZU (θ)| =
N∏
j=1

|1− ei(θj−θ)| |1− ei(θj+θ)| = 2N
N∏
j=1

|cos θj − cos θ|.

This can be done by applying to (3.4) the straightforward trigonometric
identity

(4.3) |1− ei(θj−θk)| |1− ei(θj+θk)| = 2|cos θj − cos θk|.

To integrate (4.2), we use the Weyl integration formula, which describes the
Haar measures on classical matrix groups explicitly in terms of eigenangles.
The version we use here is [11, (5.0.4)], recalled below. Define the measure
µ(USp(2N)) on [0, π]N to be

(4.4) dµ(USp(2N)) =
2N

2

N !πN

∏
1≤j<k≤N

(cos θj − cos θk)
2
N∏
j=1

sin2 θj

N∏
j=1

dθj ,

where dθ1, . . . , dθN refer to the usual Lebesgue measure on [0, π]. Then
the Weyl integration formula says that, for a bounded, Borel measurable
R-valued central function g on USp(2N,C), we have

(4.5)
�

USp(2N,C)

g(U) dµHaar(U) =
�

[0,π]N

g̃(θ1, . . . , θN ) dµ(USp(2N)).

Here, g̃ is the function on [0, π]N defined by the property

g̃(θ1, . . . , θN ) = g(U),

whenever θ1, . . . , θN ,−θ1, . . . ,−θN are the eigenangles of U ∈ USp(2N,C).
Now, from (4.1), (4.2), (4.4) and (4.5), we have
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〈|ZU (θ)|2s 〉USp(2N,C) =
2N

2+2sN

N !πN

�

[0,π]N

∏
1≤j<k≤N

(cos θj − cos θk)
2

×
N∏
j=1

|cos θj − cos θ|2s sin2 θj dθj .

Note that the expression
∏

1≤j<k≤N (cos θk − cos θj) is the same as the Van-
dermonde determinant ∆(cos θ1, . . . , cos θj) where

∆(x1, . . . , xN ) := det (xj−1i )1≤i,j≤N .

Set y = cos θ. Then clearly 0 < y < 1. Also, we use the change of variables
xj = cos θj to obtain

(4.6) 〈|ZU (θ)|2s〉USp(2N,C)

=
2N

2+2sN

N !πN

�

[−1,1]N
∆(x1, . . . , xN )2

N∏
j=1

wy(xj) dxj .

Here, the weight function wy(x) is defined by

wy(x) := |x− y|2s
√

1− x2.

Now, we will use the Andréief identity

(4.7)
1

N !

�

Xn

det [fj(xk)]1≤j,k≤N det [gj(xk)]1≤j,k≤N

N∏
j=1

w(xj) dxj

= det
[ �
X

fj(x)gk(x)w(x) dx
]
1≤j,k≤N

for any interval X in R. Setting fj(x) = gj(x) = xj−1 and X = [−1, 1] in
(4.7), we can rewrite (4.6) as

(4.8) 〈|ZU (θ)|2s〉USp(2N,C) =
2N

2+2sN

πN
det
[ 1�

−1
xj+kwy(x) dx

]
0≤j,k≤N−1

.

The determinant in (4.8) is called a determinant of Hankel’s type [25] with
weight wy(x). We need an asymptotic expression for Hankel’s determinant
when the weight function is not differentiable. We use a result of Deift,
Its, and Krasovsky [6], which can be applied to much more general weight
functions than our wy(x). In particular, Theorem 1.20 of [6] with

(4.9) V ≡ 0, b± ≡ 1,


α0 = 1/4,

α1 = s,

α2 = 1/4,


λ0 = 1,

λ1 = y,

λ2 = −1,

βi = 0 for all i
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gives

(4.10)

det
[ 1�

−1
xj+kwy(x) dx

]
0≤j,k≤N−1

= 4−(sN+N/2+s/2+3/16)(2π)1/2N s2+1/4

×2−1/8|1−y2|−s/2G(3/2)−2(1−y2)−s2/2G(1 + s)2

G(1 + 2s)

πN+1/2G(1/2)2

2N(N−1)N1/4
(1+o(1))

as N →∞. Further simplification yields

det
[ 1�

−1
xj+kwy(x) dx

]
0≤j,k≤N−1

=
πN

2N2+2sN
2−sN s2(1− y2)−(s2+s)/2G(1 + s)2

G(1 + 2s)
(1 + o(1)).

Combining this with (4.8) (and remembering y = cos θ), we finish the proof
of the theorem.

Even though we do not need it in this paper, we prove a similar formula
for SO(2N) in place of USp(2N,C), as its proof can be obtained with very
little change.

Theorem 4.2. Fix a complex number s with <(s) > −1/2 and a (real)
θ with 0 < θ < π. As N →∞,

�

SO(2N)

|ZU (θ)|2s dµHaar(U) ∼ N s22s(sin θ)−s(s−1)
G(1 + s)2

G(1 + 2s)
.

Here, G(z) is the Barnes G-function.

Proof. The proof is almost entirely analogous to that of Theorem 4.1
with very minor modification. Start with [11, (5.0.6)], which simplifies to

(4.11) dµ(SO(2N)) =
2(N−1)

2

N !πN

∏
1≤j<k≤N

(cos θj − cos θk)
2
N∏
j=1

dθj .

The analogue of (4.8) becomes

(4.12) 〈|ZU (θ)|2s〉SO(2N) =
2(N−1)

2+2sN

πN
det
[ 1�

−1
xj+kwy(x) dx

]
0≤j,k≤N−1

with the (slightly different) weight function

wy(x) :=
|x− y|2s√

1− x2
.
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Then we apply [6, Theorem 1.20] again with the same parameters as in (4.9),
except for α0 = α2 = −1/4. The result follows from this.

Remark 4.3. Theorems 4.1 and 4.2 extend the previous work of Keat-
ing and Snaith [14] and [15], and that of Keating and Odgers [12] on the
(asymptotic) formulas for the 2sth moments 〈|ZU (θ)|2s〉 for different values
of θ and G ∈ {U(N),SO(2N),USp(2N,C)}. This is summarized in Table 1.
The first three rows in the table are due to Keating and Snaith, the next
two rows are proved by Keating and Odgers, and Theorems 4.1 and 4.2 give
the last two.

Table 1. Known cases of moments of characteristic polynomials

θ s G

θ arbitrary <(s) > −1 U(N)

θ = 0 <(s) > −3/2 USp(2N,C)

θ = 0 <(s) > −1/2 SO(2N)

θ arbitrary s ∈ N USp(2N,C)

θ arbitrary s ∈ N SO(2N)

θ arbitrary <(s) > −1/2 USp(2N,C)

θ arbitrary <(s) > −1/2 SO(2N)

In view of Theorem 3.3, it would be desirable to obtain an asymptotic
expression of

(4.13) I(N) :=
�

USp(2N,C)

ϕ(U) dµHaar(U)

as N →∞, because this could be thought of as a function field analog (for
the family H2g+1) of the (log log log x)5/4 term in (1.2). Using Theorem 4.1
(for s = 1/2), we present some evidence in support of the formula

(4.14) I(N) ∼
√

2G(1/2)2B(5/8, 1/2)N1/4.

Here, G(z) is the Barnes G-function and B(x, y) is the beta function

B(x, y) =

1�

0

tx−1(1− t)y−1 dt.

The rest of the paper is devoted to presenting the argument in support
of (4.14). Our computation closely follows the strategy used by Hughes,
Keating, and O’Connell in [8, proof of Theorem 1.2].

Straightforward differentiation of ZU (θ) in (3.4) gives

(4.15) |Z ′U (θj)| = |1− e2iθj |
N∏
k=1
k 6=j

|1− ei(θj−θk)| |1− ei(θj+θk)|
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for j = 1, . . . , N . Using (4.3) and another easy trigonometric identity,

|1− e2iθj | = 2|sin θj |,

one easily deduces from (4.15) that

|Z ′U (θj)| = 2N |sin θj |
N∏
k=1
k 6=j

|cos θj − cos θk|.

Also, obviously |ZU (θN+j)| = |ZU (−θj)| = |ZU (θj)| for j = 1, . . . , N . Hence,

(4.16) ϕ(U) =
2N∑
m=1

|Z ′U (θm)|−1 = 21−N
N∑
j=1

|sin θj |−1
N∏
k=1
k 6=j

|cos θj−cos θk|−1.

To integrate ϕ(U) over USp(2N,C), we use the Weyl integration formula
again: from (4.16), (4.4) and (4.5),

I(N) =
�

USp(2N,C)

ϕ(U) dµHaar(U)

=
2N

2−N+1

N !πN

�

[0,π]N

[ N∑
j=1

|sin θj |−1
N∏
k=1
k 6=j

|cos θj − cos θk|−1
]

×
∏

1≤j<k≤N
(cos θj − cos θk)

2
N∏
j=1

sin2 θj

N∏
j=1

dθj .

Since the expression in square brackets inside the above integral is symmetric
in θj ’s, we can replace the summation on j by N times any single summand,
say, the j = N term. This yields

I(N) =
2N

2−N+1

(N − 1)!πN

�

[0,π]N

[
|sin θN |−1

N−1∏
k=1

|cos θN − cos θk|−1
]

(4.17)

×
∏

1≤j<k≤N
(cos θj − cos θk)

2
N∏
j=1

sin2 θj

N∏
j=1

dθj

=
2N

2−N+1

(N − 1)!πN

�

[0,π]N

[
|sin θN |

N−1∏
k=1

|cos θN − cos θk|
]

×
∏

1≤j<k≤N−1
(cos θj − cos θk)

2
N−1∏
j=1

sin2 θj

N∏
j=1

dθj .
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Again, (4.3) can be used to rewrite the expression in square brackets as

|sin θN |
N−1∏
k=1

|cos θN − cos θk| = |sin θN |
N−1∏
k=1

1
2 |1− e

i(θk−θN )| |1− ei(θk+θN )|

= 21−N | sin θN | |ZU (θN )|,

where U ∈ USp(2(N − 1)) has eigenangles ±θ1, . . . ,±θN−1. So, we continue
(4.17) to get

I(N) =
2(N−1)

2

(N − 1)!πN

�

[0,π]N

2|sin θN | |ZU (θN )|(4.18)

×
∏

1≤j<k≤N−1
(cos θj − cos θk)

2
N−1∏
j=1

sin2 θj

N∏
j=1

dθj

=
2

π

�

[0,π]

sin θN

( �

USp(2(N−1))

|ZU (θN )| dµHaar(U)
)
dθN ,

where the last equality is again from the Weyl integration formula (4.4)
and (4.5), applied to USp(2(N −1)). The integral in parentheses is precisely
〈|ZU (θN )|2s 〉USp(2(N−1)) with s = 1/2, whose asymptotic expression is found
in Theorem 4.1. Therefore, after some simplification, we find that

(4.19) I(N) =
√

2G(1/2)2N1/4
π�

0

(sin θ)1/4(1 + o(1)) dθ

as N →∞.

Remark 4.4. In order to prove (4.14), we let N → ∞ in (4.19). If we
can exchange limit and integral, then the integral of (sin θ)1/4 is expressed
in terms of the beta function, which would finish the proof of (4.14). The
key step here, therefore, is to estimate the size of the o(1)-term in (4.19)
with respect to θ.

This error term comes from the formula of Deift, Its, and Krasovsky,
quoted in (4.10). See [6, Remark 1.6] for some general discussion on the size
of their error term. Let εN (θ) be the o(1)-term in (4.19). If one can show
that (sin θ)1/4εN (θ) is bounded by a function in L1([0, π]) independently
of N , then the dominated convergence theorem can be used to justify the
exchange of limit and integral.

In fact, we can show that εN (θ) does not tend to zero uniformly in θ as
follows. Define

fN (θ) :=
�

USp(2N,C)

|ZU (θ)| dµHaar(U).
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Then it is known that

fN (0) ∼ N,
from a result in [15]. (Alternatively, one can use the formula of Deift, Its, and
Krasovsky and proceed exactly as in the proof of Theorem 4.1.) If we assume
that the error term in Theorem 4.1 is bounded uniformly in θ, we can pick
N large enough, so that fN (θ) is about (a constant times) N1/4(sin θ)−3/4,
for all θ close to 0. If we now choose θ in the range 0 < θ < 1/N2, then
this contradicts the continuity of fN (θ) at θ = 0. So, εN (θ) does not tend
to 0 uniformly in θ as N → ∞. Therefore, further investigation of εN (θ) is
warranted to justify the exchange of limit and integral in (4.19).
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