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1. Introduction. Let K be a field. A Galois extension F |K(t) is called
K-regular (in the following simply regular) ifF∩K = K. For any t0 ∈ K∪{∞}
and any place p of F extending theK-rational place t 7→ t0, we have a residue
field extension Ft0 |K. This is a Galois extension, not depending on the choice
of place p. We call it the specialization of F |K(t) at t0.

Now let G be a finite group. A Galois extension of a field K with Galois
group G will be called a G-extension for short. For K a number field (or
more generally a Hilbertian field), Hilbert’s irreducibility theorem famously
asserts that, given a regular G-extension F |K(t), there are infinitely many
t0 ∈ K such that Ft0 |K has the same Galois group G. A natural question is
whether all G-extensions of K arise in this way. This question can be made
precise in several different ways: Firstly, the Beckmann–Black problem, first
posed in [1] (for K = Q), asks whether every Galois extension of K with
group G is a specialization of some regular Galois extension with group G.
This problem remains open (over number fields) for many groups G, and
there is no group for which a negative answer is known. Beckmann [1] showed
that the answer is positive for abelian groups and symmetric groups; further
examples were given by Black, for example for many dihedral groups in [2].

One may further ask how many regular G-extensions are necessary to
cover all G-extensions of K. This leads to the concept of G-parametric Galois
extensions, introduced by Legrand [5].

Definition 1.1 (G-parametric Galois extension). Let K be a field and
F |K(t) be a regular Galois extension with group G. Then F |K(t) is called
G-parametric (over K) if every Galois extension of K with group G arises
as a specialization of F |K(t).
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Obviously, the existence of a parametric extension is sufficient, though
not necessary, for a positive answer to the Beckmann–Black problem for the
group G.

2. Background on parametric extensions and statement of the
Main Theorem. In this paper, we focus on the case that K is a num-
ber field. Very few G-parametric extensions over number fields are actually
known. In particular, over Q, only the subgroups of S3 are known to have
a G-parametric extension. On the other hand, it is quite difficult to show
non-parametricity for a given regular extension, or even to show that there
are any non-parametric extensions at all for a given group. The last prob-
lem was solved over arbitrary number fields by Legrand in [6], where the
following is shown:

Theorem 2.1 (Legrand). Let K be a number field, F |K(t) a regular Ga-
lois extension with group G. Then there are infinitely many k ∈ N with the
following property: The extension F ( k

√
t)|K( k

√
t) is a non-G-parametric regu-

lar Galois extension with group G. More precisely, there are infinitely many
specializations of F |K(t) which are not specializations of F ( k

√
t)|K( k

√
t).

The aim of this article is to sharpen this result by proving that, in fact,
almost all rational functions g of a fixed degree k, instead of only functions
of the form g = Xk (and only for some k), yield non-parametric extensions
in the same way.

By a rational translate of a Galois extension F |K(t) we mean an exten-
sion F (s)|K(s), where K(s)|K(t) is an extension of rational function fields,
i.e. s is a root of g(X)− t for some rational function g ∈ K(X).

Theorem 2.2 (Main Theorem). Let K be a number field with ring of
integers OK , let F |K(t) and F2|K(t) be (not necessarily distinct) regular
Galois extensions with group G, and let k ≥ 2. Then for almost all polyno-
mials g1, g2 ∈ OK [X] of degree k, the rational translate F (s)|K(s), where s
is a root of t− g(X) := t− g1(X)/g2(X), is a regular Galois extension with
group G fulfilling the following: There are infinitely many Galois extensions
of K with group G which arise as specializations of F2|K(t), but not as
specializations of F (s)|K(s). In particular, F (s)|K(s) is non-G-parametric.

Here, “almost all” is to be understood in the sense of “density 1”, as
explained in Definition 3.3 below.

Theorem 2.2 is applied to answer the broader question of when two
regular Galois extensions have the same set of specializations, showing that
this almost never happens among rational translates. This is contained in
Section 5.
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Remark 2.1. The following example shows that there do exist regular
Galois extensions F |K(t) and non-trivial rational translates which yield the
same set of specializations as F |K(t): The extension K(

√
t)|K(t) is C2-

parametric, and therefore every quadratic extension F |K(t) with exactly
two branch points, both K-rational, is also C2-parametric (since it can be
transformed into the above extension by fractional linear transformations
in t). Now let s be such that t = s2 − 1; then the translate of K(

√
t)|K(t)

by K(s) is the splitting field of X2 − (s2 − 1) over K(s), which is quadratic
with branch point set {±1}, and therefore parametric by the above.

3. Auxiliary results. In the following, K always denotes a number
field and OK its ring of integers.

3.1. A non-parametricity criterion. Legrand exhibits several suffi-
cient criteria for a regular G-extension to be non-G-parametric. The one
that we will make use of in this paper uses the mod-p behaviour of minimal
polynomials of the branch points of a given regular extension:

Definition 3.1. Let F |K(t) be a regular Galois extension, with branch
points t1, . . . , tr ∈ Q ∪ {∞}. Define the ramification polynomial of F |K(t)
(with respect to t) as the homogeneous polynomial

∏r
i=1 µti(X,Y ), where

µti(X,Y ) :=

{
X − tiY if ti 6=∞,

Y if ti =∞.

Remark 3.1. (a) As branch points come in sets of algebraic conjugates,
the ramification polynomial is in K[X,Y ], and equals the product of all (ho-
mogenized) minimal polynomials of branch points (without multiplicities)
over K.

(b) We deliberately work with the homogeneous setup in order not to
get exceptions for the branch point t 7→ ∞ in the following. Of course one
can also always reduce to the case that ∞ is not a branch point by suitable
fractional linear transformations in t. The subtle problem with this is that
we want to look at rational translates given by g(s) = t, where we count
rational functions g up to a given height (see Def. 3.3). Transformations in
t would change the rational function g and in particular distort the height.

Legrand gives the following criterion (see [5, Theorem 4.2]) (1):

Proposition 3.1. Let F1|K(t) and F2|K(t) be regular Galois extensions
with group G and with ramification polynomials m1 and m2. Assume that
there are infinitely many primes p of OK such that m1 has a root modulo p

(1) Note that the somewhat more convoluted definition of the ramification polynomial
in [5, Section 4.1.1], including also the minimal polynomials µ1/ti(X) of inverses of branch
points, is unnecessary here, since µti and µ1/ti have the same splitting behaviour modulo
almost all primes.
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but m2 does not. Then there are infinitely many specializations of F1|K(t)
with group G which do not arise as specializations of F2|K(t). In particular,
F2|K(t) is non-G-parametric.

3.2. Height and density. By a prime divisor of a polynomial f we
mean a prime p such that f has a root modulo p. The main idea for the proof
of our Main Theorem 2.2 is now that a composition f ◦ g of polynomials
almost never has the same set of prime divisors as the polynomial f . This is
the combined content of Lemmas 4.2 and 4.3, generalizing the results of [6].

To turn this into a precise statement, we first need a notion of height
for polynomials over the algebraic integers of some number field. There are
several ways to do this, but the following may be most convenient (see [3,
Section 2]) (2).

Definition 3.2 (Height of an algebraic integer). Let K be a number
field with ring of integers OK . Let ω1, . . . , ωn be an integral basis of OK
over Q. For α =

∑n
i=1 aiωi ∈ OK (with ai ∈ Z) define the height H(α) as

(maxi |ai|)n.

We derive a notion of height for polynomials and rational functions. Note
that the number fieldK is always assumed to come with a fixed integral basis.

Definition 3.3 (Height of a polynomial/Density). Let K be a number
field with ring of integers OK , and let Vn := OK [X]≤n be the space of
polynomials of degree ≤ n over OK . For f =

∑n
i=0 αiX

i ∈ Vn, we define the
height of f as H(f) := maxni=0H(αi).

We say that a subset S ⊂ Vn has density d ∈ [0, 1] if the limit

lim
H→∞

|S ∩ {f ∈ Vn | H(f) ≤ H}|
|{f ∈ Vn | H(f) ≤ H}|

exists and equals d.

In particular, we say that a property holds for almost all f ∈ Vn if the
density of the set of polynomials fulfilling this property is 1.

The same notions will be used for f = f1 + tf2 ∈ Vn + tVn (with a
transcendental t), e.g. H(f) := max{H(f1), H(f2)}. By a slight abuse of
terminology, we will say that a property holds for almost all degree-n rational
functions over OK if it holds for almost all f = f1 + tf2 as above.

We need a sufficiently strong version of Hilbert’s irreducibility theorem
over arbitrary number fields, considering integer specializations up to a given
height. The following is contained in [3].

(2) Since statements used in this paper, such as Hilbert’s irreducibility theorem, also
hold for other notions of height (e.g. the logarithmic Weil height), it should not be difficult
to extend our results to those height functions as well.
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Theorem 3.2 (Cohen). Let K|k be an extension of number fields, let
t := (t1, . . . , ts) and let f(X, t) ∈ K[t,X] be a non-zero polynomial in the
indeterminates X and t1, . . . , ts (with s ≥ 1). Then for N sufficiently large,
the number of integer specializations t 7→ (α1, . . . , αs) ∈ (Ok)s such that
H(αi) ≤ N for all i = 1, . . . , s, and such that the Galois group of f(X,α)
over K does not equal the Galois group of f(X, t) over K(t), is at most

c ·N s−1/2 · log(N)

for some constant c only depending on s, K and f .

4. Proof of the Main Theorem. We start with an easy observation.
This and some variants (with straightforward modifications to the proof)
will be used several times in the proofs of later statements.

Lemma 4.1. Let S ⊂ Q ∪ {∞} be a finite subset, and let k ∈ N. For a
degree-k rational function g over K, let K(s)|K(t) be a root field of g(X)−t.
Then for almost all degree-k rational functions g (in the sense of density 1),
no branch point of K(s)|K(t) lies in S.

Proof. Firstly, we can assume that the denominator of g is separable, so
t 7→ ∞ is not a branch point.

Let g1 :=
∑k

i=0 αiX
i and g2 :=

∑k
j=0 βjX

j be generic polynomials of
degree k, with independent transcendentals αi, βj . Write α := (α0, . . . , αk)
and β := (β0, . . . , βk). Let ∆ be the discriminant of g1− tg2. After multiply-
ing by a suitable factor, we can assume ∆ ∈ OK[α, β, t]. The branch points
of K(s)|K(t) are just the roots of ∆(α0, β0, t) (with some specialization
α → α0, β → β0). Let R1, . . . , Rn be the roots of ∆ in K(α, β). Certainly
no Ri is contained in S (otherwise, every K(s)|K(t) would have a branch
point at this Ri). Thus

∏
1≤i≤n, t0∈S(Ri − t0) ∈ K(S)(α, β) is non-zero, and

therefore remains non-zero under almost all specializations of α, β in OK .

In the following, we will consider compositions f ◦ g of a homogeneous
polynomial f ∈ OK [X,Y ] with a rational function g = g1/g2 (gi ∈ OK [X]).
By this, we mean f(g1(X), g2(X)). Of course, if Y does not divide f , this is
just the same as the numerator of f(g1/g2, 1).

Lemma 4.2. Let f ∈ OK [X,Y ] be homogeneous and separable of degree
d ≥ 1, and let L|K be a finite extension containing a splitting field of f . Let
k ≥ 2. Then for almost all rational functions g over OK of degree k, the
Galois group of f◦g over L is isomorphic to (Sk)

d, in the natural intransitive
action with d orbits of length k.

Proof. Let λ1(X,Y ), . . . , λd(X,Y ) ∈ L[X,Y ] be the (homogeneous) lin-
ear factors of f , i.e. λi = X − tiY for some ti ∈ L, or λi = Y .
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Set G1 := (
∑k

i=1 αiX
i) − t, G̃1 := G1 + t and G2 :=

∑k
j=0 βjXj , with

independent transcendentals αi, βj and t (i.e. G1 and G2 are generic poly-
nomials of degree k, only the constant coefficient of G1 has been named
separately because of the following treatment). Let G = G1/G2, and set
α := (α1, . . . , αk), β := (β0, . . . , βk). The polynomial f ◦G then factors over

L(α, β) as
∏d
i=1 λi(G1, G2).

Now consider the polynomials Pi := λi(G1, G2) = λi(G̃1 − t, G2), i =
1, . . . , d. They all have Galois group Sk over L(α, β, t), since even the spe-
cialization β0 = · · · = βk = 0 (or α1 = · · · = αk = t = 0 in case λi = Y )
leaves a generic degree-k polynomial.

Next we show that for all i the splitting field Ei of Pi is linearly disjoint
over L(α, β, t) from the composite of all other Ej ; in other words,

Gal(f ◦G | L(α, β, t)) = Gal
( d∏
i=1

Pi

∣∣∣ L(α, β, t)
)

= (Sk)
d.

This is certainly true if it holds for some specialization of the α and β. First,
specializing αj 7→ c ·βj for all j = 1, . . . , k (with some fixed c ∈ L) maps Pi to

(c− ti)︸ ︷︷ ︸
=:µi

G2 − (t+ c)︸ ︷︷ ︸
=:s

(in case λi 6= Y ) or to G2 (in case λi = Y ).

Choosing c appropriately, we may assume that none of the µi are zero.

Since the polynomial G2 is generic, one shows as in Lemma 4.1 that
almost all specializations of β0, . . . , βk in OL have the property that no two
finite branch points of g2−s (g2 being the specialization of G2), viewed as a
polynomial over L(s) = L(t), differ by any ratio µj/µk (for 1 ≤ j 6= k ≤ d).
This however means that no two of the polynomials µig2−s have a common
finite branch point.

Furthermore, for almost all such specializations, µig2−s will have square-
free discriminant and so only has simple branch points apart from infinity
(i.e. inertia group generated by a transposition), which in particular means
that the splitting fields of the µig2−s are regular Sk-extensions of L(s). Now
since there is no non-trivial regular extension of L(s) ramified only at s =∞,
the splitting fields of the µig2−s must be linearly disjoint even over L (as the
sets of their finite branch points are disjoint), and so their composite is still
a regular extension of L(s). In addition, the splitting field of the polynomial
g2 (which occurs if the linear factor λi = Y occurs) is linearly disjoint over
L from the composite of all the other splitting fields, since it is a constant
field extension. We have therefore shown Gal(

∏d
i=1 Pi | L(α, β, t)) = (Sk)

d.

Finally, by Hilbert’s irreducibility theorem (in particular, the version in
Theorem 3.2), almost all specializations of the αi, βj and t to values in OK
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leave the Galois group over L invariant, i.e. Gal(f ◦g | L) = (Sk)
d for almost

all degree-k rational functions g = g1/g2 with g1, g2 ∈ OK [X].

Lemma 4.3. Let L, f , g be as in Lemma 4.2, i.e. such that Gal(f ◦g | L)
= Sdk . Let f2 ∈ O[X,Y ] be homogeneous and completely split over L (3).
Then there is a positive density set of primes p of OK such that f2 splits
completely modulo p, but f ◦ g does not have a root modulo p.

Proof. Let G := Gal(f ◦ g | K). Obviously, the normal subgroup Sdk =
Gal(f ◦ g | L) of G contains an element σ acting fixed point freely on the
roots of f ◦ g, namely every element which acts fixed point freely on each
of the d orbits of Sdk . At the same time, σ of course fixes all roots of f2. By
the Chebotarev density theorem, there is a positive density set of primes p
with Frobenius element conjugate to σ in G. But the cycle type of σ in the
action on the roots of f ◦ g corresponds to the splitting behaviour of f ◦ g
modulo p, while the cycle type in the action on the roots of f2 corresponds
to the splitting behaviour of f2. Therefore, for all such p, f2 splits completely
modulo p, while f ◦ g does not have a root.

Proof of Theorem 2.2. Let S be the set of branch points of the extension
F |K(t). Firstly, by Lemma 4.1, for almost all rational functions g of a fixed
degree, the ramification loci of K(s)|K(t) and of F |K(t) are disjoint (where
s is such that g(s) = t). This condition already forces F and the Galois
closure of K(s)|K(t) to be linearly disjoint even over K(t), and is therefore
in particular sufficient to ensure that F (s)|K(s) is still K-regular with Galois
group G. Also, by Abhyankar’s lemma (e.g. [7, Theorem 3.9.1]), disjointness
of the ramification loci implies that ramification indices in F (s)|K(t) are
the same as in F |K(t) (for primes ramifying in F |K(t)) or as in K(s)|K(t)
(for primes ramifying in K(s)|K(t)). The primes of K(s) ramifying in F (s)
are then exactly the ones extending primes of K(t) ramifying in F . After
constant field extension from K to K the ramified primes of F |K(t) split
exactly into the t 7→ ti with ti ∈ S. In the same way, the primes of K(s)
extending these primes split into the s 7→ si with si ∈ g−1(S). In other
words, the branch point set of F (s)|K(s) is just the preimage g−1(S).

Now let f be the ramification polynomial of F |K(t), multiplied by a suit-
able constant to make its coefficients integral. By definition, the ramification
polynomial of F (s)|K(s) then equals f ◦ g̃ (up to possibly multiplicity of
roots), where g̃ is the homogenization of (numerator and denominator of) g.
For purposes of splitting, we may simply identify this with f ◦ g.

Similarly, let f2 be the ramification polynomial of F2|K(t), and let L
be the splitting field of f · f2 over K. We know from Lemma 4.2 that for

(3) Note that this includes of course the special case f2 = f .
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almost all g, the Galois group of f ◦ g over L is isomorphic to (Sk)
d (where

of course k and d are the degrees of g and f).
We know from Lemma 4.3 that there exist infinitely many primes such

that f ◦ g has no root modulo p whereas f2 splits completely. The assertion
now follows immediately from Legrand’s criterion (Prop. 3.1).

5. A generalization: Specialization-equivalence of Galois exten-
sions. Here we consider a notion of specialization-equivalence of Galois ex-
tensions, generalizing the problem of G-parametricity.

For any (not necessarily regular) Galois extension F |K(t), let SF be the
set of all specializations Ft0 |K, where Ft0 is obtained from F by specializing
t 7→ t0 ∈ K ∪ {∞}. Call the extensions F |K(t) and F2|K(t) specialization-
equivalent if SF = SF2 .

The problem of specialization-equivalence is particularly interesting in
the investigation of families of regular Galois extensions. It is a natural
question to ask whether or not a member of such a family is uniquely char-
acterized within the family by its set of specializations. One such family is
the family of rational translates of a prescribed regular G-extension F |K(t).

As a consequence of Theorem 2.2, specialization-equivalence is rare among
rational translates. This is made precise in the following. To ease notation,
for a non-constant rational function g over K we write SF,g for the set of
specializations of F (s)|K(s), where s is a root of g(X)− t.

Corollary 5.1. Let F |K(t) and F2|K(t) be regular Galois extensions
with group G, let g2 be any non-constant rational function over K, and
let k ≥ 2. Then for almost all degree-k rational functions g over K the
following holds: The sets SF,g and SF2,g2 differ by infinitely many elements.
In particular, the translates of F by a root field of g(X)− t and of F2 by a
root field of g2(X)− t are not specialization-equivalent.

Proof. Let s2 be a root of g2(X)− t. We may assume that F2(s2)|K(s2)
still has Galois group G; otherwise SF2,g2 does not contain any G-extensions,
whereas almost all degree-k rational functions g lead to extensions still with
Galois group G (see the proof of the Main Theorem), and therefore to in-
finitely many specializations with group G. By a similar argument, we can
assume that F2(s2)|K(s2) is regular (otherwise all its specializations would
contain the same non-trivial subextension, whereas almost all g lead to reg-
ular extensions, which then have infinitely many linearly disjoint specializa-
tions). Now the assertion follows immediately from Theorem 2.2.

Remark 5.1. As pointed out by the referee, the example of Remark 2.1,
yielding specialization-equivalent members in a family of rational translates,
is due to the fact that there, the extension K(

√
t)|K(t) and its translate by

K(s) are isomorphic. It is natural to ask whether every such example arises
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in this way. In fact, this is not the case: One can construct (however, by
means exceeding the scope of this paper) examples of regular Galois exten-
sions F |K(t) and translates F (s)|K(s) such that F |K(t) is itself isomorphic
to a rational translate of F (s)|K(s), but F |K(t) and F (s)|K(s) are not
isomorphic. The classification of such exceptional cases seems to be an in-
teresting subject for further research.

6. Concluding remarks. While we have shown that for any given
groupG and any number fieldK, non-G-parametric extensions are abundant
(under the trivially necessary condition that there are regular G-extensions
over K at all), it is still left open whether there are groups G such that no
G-parametric extension exists over any number field K. The first examples
of such G are given in joint work by the author and F. Legrand [4]. It should
however be emphasized that the methods used there can never yield results
for all finite groups G (in particular, not for simple groups).
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