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Some properties of derivative functions.
By
Witold Wilkosz (Cracow).
The first investigations of properties belonging to the remarkable

class of derivative functions are to be found in the work of Cay chy,
the great foundator of modern Differential Calculus. The study of

- them has been pursued by Duhamel, Dini and has attained to

a very considerable development in our time especlally by the work
of Lebesgue and his successors. In the famous book of Lebes
gue ,Sur Uintégration® we can find nearly all results of the
known properties of these functions and we are able to recognise
bhow many questions are hitherto unsolved.

The modest scope' of my paper is to pursue.in some points the
considerations of the subject. |

1. To begin with the precise definition we put the following:

(«) A function of one real variable f(z), defined in the interval

[ab] {limits both included} is called ,Duhamelian® or briefly (D)

in the interval, if there exists a function F(x) such that:
d .
JS(x) = gy F(@® in [ab],.

S (@) being finite in any point of [ab].

(B) We call f(x) a quadratic Duhamelian or (D? if not
only f(x) but also f2(z) is (D) in (ab)].

(Y) The set of limited (D)s or (D?'s we distinguish by (D)
ev. (D). ' |

2. 1 come now to a brief account of the known properties con-

cerning (D). Demonstrations are to be found in the quoted book of
Fundamenta' Mathematicas 1. : ‘ 10 -
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Lebesgue and (partly) in Dini’s ,Fondamenti per una teoria delle
funzioni*. |
(1) Any continuous function in [ab)] is (D) in the same interval,
(2) Any (D) is of the first class in the classification of Bajre. -
(2™) Any (D). is almost pointwise discontinuous in respect of
any perfect set of points in [ad].
(3) The discontinuities of a (D) are (if at all) of the second kind.
(4) Any (D!) in [ab] is continuous in [¢8] in the sense econsidered

by Darboux, i. e. it .takes every intermediate value between the
values on the extremes of any subintervall of [ad]

(6) If (x) f.(z) are (D) in [ad] n= L,2...
(B) lim f,(z) = f(2) uniformly in [ad],
then: f(z) is (D) in [ad).
(6) Any (D) is totalisable in the sense of Denjoy and the ne-
cessary and sufficient condition for a f(2) to be (D) in [ab] is

7 [7ie=r@) i (a

where the infegrale is taken in the widest sense of Denjoy (Cf.
Denjoy, C. R. de Paris 1912).

(1) If f(=) and g(x) are (D) in [ab] there are also 4 S - By,

where 4, B are arbitrary constants.

3. We come next to the consideration of the product of two
(D) oxr (Di). |

The curious fact, that the product of two (D) even of two (D)
may be not a (D), must be first exhibited,

It will be sufficient to prove that a quadrat of some (D) is
not (D). But this is shown by the following example:

.1 .
Take: F(z) = z* sin - in 10.1] (F 0) =0),

. .1 1 .
then f(x):F(m)::?:csm;—-cos; } f 230
=0

if z=0,
.1
but @(z) =9 sin — } for z=0
=0 for z=0,
is continous in [ab] and therefore (D).
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Then:

ﬂ’(w):qv(w)—f(w“——"cosi- } z =0

=0 x:O’

is (D) in [0,1}..
After this take

(D?(x)zé(l —|—cos’*§~) } r==0

= () z =0,

If @%(x) were (D) then exists 4(r) such that

da
L 4@ =d2z) in (01

@ (x) is (D), then if B’ (x) = @(x) in [ad] we have:

% (5) = 4lz20).

)
-__——__%coszg } r0
=0 x=0.

‘We shall have
| d d Z
a0 =1+ B(5) | =40

d x
mo.f-%la(g) =0,

then; '
%[A(x)___zs(g)] —3 } shall be (D)

=0

but it is impossible for we have a diseontinuity of the first kind
5 2 (3) | |
The non-Duhamelian character of @?(x) is by this demonstrated!
From this we conclude that before some restrictions are not given
we shall not expect generally a (D) in the produet of (D) factors.
These restrictions are f. ex. includel in the following theorem.

) The example by Lebesgue op. cit. p 95 is erroneous.
10*
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Prop. I. If 1. f(z) and g(z) are (Dl) in [ab), | |
| 2. Tn any point of [aB] either f(z) or g(®) is upper
' or lover semidiscontinuous (in the sense of Baire),

" then the product f(z)¢(x) is (D) in (2 d]. |
Dem: We take 2 in [ab] and suppose g(z) to be f. ex. upper

gemidiscontinuous in 2.

Consider:
Y

0
=L ftee@ —s@eE e { 35wl

May be: |
I, =I,+ K
s

=1 [ —FE1g@) d=

. »{-h :
, K= f 7@ o) — 9()] do-
Then: | ' '
. » _ i o
@) lim I, = g(2) lim 1 [ —rie)) de
=0 {f() being (D).
o '(ﬁ)"Wé take ¢ >0 and i ‘sufﬁciently small to be
9(e) — g@) <& in [ 24h

{on the bare of upper semi-disc.).
(y) Let be: K,=L,+ M,

o |
- Lh=;17ff(x) {9(x) — g(2) + &) dw

a+h
1 |
=3 [ f@) s

e |
) ’.13'13 M, = & f(x),

® g(@) — g(2) +e=0,



ICM Biblioteka Wirtualna Matematyki

~ being

Some p'roperties of derivative functions 149

also by the ﬁrst theorem of medium

n—}-h

hf (%) — g(2) + €] dx .10,,]<A

where 4> |f(2)| in [ab].
ath

®  limg f (@) — 9() +4

We take || sufficienty small to be
L] <e IMI<€|J°($)I+8

|L,| < 4. 2¢
then:
L] <(B3A+2)e
We see: * |
lim I, = 0.

hus(

Also f(x) g(x) is in every z in [ab] thé differential-coefficient

- of its integral and f(z) g(z) is (D) in [ad].

Corr: If f(») is (D1) and g(z) continuous in [ab] then j’(a:) g(z)
is (DI) in the same .interval.

The next step in these questions shall be made after some con-
siderations of (D?%) to which I now pass over.

4. Consider the class of (D?). It is obvious that:

() If f(z) and g(x) are (D?) in [ab] there are also Af and
f(®) 4 4 where A is an arbltrary constant.

() Every continuous function is (D%). ,

() It f(=) is (D? in [abd] then it is summable (L) with its
quadrat in [ab].

Dem: f2(z) shall be totalisable, but f2>0 ‘then summable
in [ab] — also f(z) must be summable every (D) being mesurable.

‘Definition. 1. Take f(x) defined in the neighbourhood of z==2.
Denote by K;(e, 2) the set of points in this neighbourhood where:

7@ —f@)| >
e<<z=z+6 if 6>0
z>x__2__yz—|—d- if d<O.

r
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2. Then if: -
m' K;(e, 2) { m’' K" is the (L)
mesure of K!

for any ¢ >0

we say: f(x) is asymptotically continuous in z.

J(x) asympt. cont. in every z in [ab] is called asympt. cont.
in [ab).

It is obvious that the function which is asymptotically continuous
in [ab] is also mesurable in the interval comsidered.
- We can now prove the next fundamental theorem.

Prop. I. The necessary and suffictent condition for a limited
funetion, to be (D%) in [ab] is its asymptotlcal continuity in {ab].

Dem: 1. Sufficiency. ‘

Let be: f(x) asympt. cont. in [ab].

Consider:
s+h

= J @) - £} d
L= (@) f@} do+ [(70) — S do

Ey(es 5} © Lyle )

= 4,4 B, | { Ly=[22-}+h—K

2 arbitrary in [ab]

but: in L, we have. | /(&) — f(2)| < & therefore:

BTt =,
|A,,§_"}‘}fl(" 24 A>|f@)| in [ad],
then: |
L= Ihl*u-}-e,
lim I, =0
i e: f() is (D) in [ab]
Take now:
»n

Lf"(x) —f? (2)] d
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We have:

o '
=3 f V) 7@ (o) -1t a
RIS ,,,[ ﬁf(x) ~76)| = 1 f6) +7(2)| do

oam

f @) — ()| d,

From this pomt onward the demonstration proceeds in analogous
manner to the indicated above;

We split: |
1 |
Ffmw}mf(z)'dleﬁff+l%ff= Q.+ R,
0 = ”Thlf* 24 |R|=e
Then:
|P| = ”" hflf" 1 24e,

lim P,,___O therefore f(z) is (D’)

Hwal)
IL. Necessity.
Let be f(x) (D) in [ab] and 2 arbitrary in [ad).
Then f(x) — f(2) is also (D) and we shall have:

adh ’

lim [, = lim ; f {F(2) — f(2))* dw = O,
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Hhm(

Let be
| A,,:'%-jf; B, ....Ihf as above.

Kyler =) L;(BJ »)
We have:

Ir- == A, + Bn:
A4, = ¢t ”Ithjfhw B, < e =1lim B, = lim [, =0,
then: | |
lim m Kh (8! z)

LT Ihl mo’ ’
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The following theorem that I regard as a key to the whole-
importance of (D%]) is due to my devoted friend St. Banach:
Prop. IL. If: (1) f(z) is (DI) in [ad),
2) f@) is (D) in [ab),
then: f(x)g(x) is (D?) in [ab].
Dem: Take z in [ab] and put

+h ‘
L= [ /&) 90) — 1) g(2)] e

sbn
=3 [l9) — 9(a). /i) da,
)

=7 [ 96 {#0) — @)}

Ih=Ih+Lh7

' theh:

+h

L=y f [f(e) — £ ds

lim L, =0 {because f(x) is (D)}

he=(

=+h -
s [ls@—9@lds 4|70 in (a)

v | 5 |
b= l/ h ﬁy(f)- g(2))* do { by th_e fa.mous

Schwarzian inequality
sl f; f@(x)_g(zzdx

hmI....O

C he=p

Then: hmI =0 1ie f(a:)g(m) s (D) in [ad).

k=0
What follows is only an a,pphcatlon of the Banach-theorem.
Prop. IIL. If f(z) is (D¥) in [ab] then f*(x) where n is a,ny
positive integer is also (D3).

Dem: By the Prop. II if f d (D) and * (DI), th
dso f@p* s (D) (z) and (D%) and fla)* ( 1), then
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But f(#) in D% — then by the principle of induction every
JS*(®) is (D1), then also (D2l). The theorem is therefore proved.
Prop. 1V, If (1) f(2) is (D%) in [ad],

- (2) F(y) is continuous in the interval of variability
of f(=), , |
than: & (z) = F{f(x)} is also (D3l) in [ab)].
Dem: Develop F(y) in a sequence of uniformly convergent
polynomials as follows:

'Pl(y) Pz(?/)---Pn(y) te
lim P,(y) = Fly).

Y= 00

If we put
L, (.'13’) = Pu {f(‘r)}7
then by prop. IL z,(x) is (D%) and the sequence

7oy (2). .. 7;,(2)...

eonverges uniformly to D (). |
By the theorem in § 1 we have D (z) is (DI),

Take: G(y)= F*(y), then G(y) is also continuous and by what
preceeds we have:

U(x) = G{f(2)) = P*(z) is (DI) in [ad]

These theorems prove the identity of every class (D%) (D9%)..,

(D"Y)... with (D) and als (CDY) i, ‘e. continuous transformation
of (D).

5. A further theorem concerning (D?) can be stated as follows:
Prop.: If f(x) and g(x) are (D?) in [ab] then JS@) g(x) is (D)

in the same interval.
Dem. Put:

Rl

L=7 [U&) 9@ — sl a,

ath Aein

L=3 (@)~ F@) o) da -+ [ 1) tg(a) — g(e)) v

== A, -} f(2) B,
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But: . )
(cx) lhl_g)l Bh = U,

=+h RN

® lAl= ‘lim%fff(x)——f(z)]’dx.lim%fg‘*d.v:: 0.

This implies: lim I, =0 i. e. f(z)g(e) is (D) in [ab].

6. Consider f(z) and g(z) both (D) in [ab]. If f(z) — g(z)
vanishes in [ab] with possible exception of a set of points of
mesure zero, we can affirm the identity of two functions in this
interval. The truth of this theorem is evident if we remember
that taking

F@=f@), 6@ =g( in |af
we have

J(#@) —g(@) =(F— Gy

and by a theorem of De la Vallée Poussin [ef. his Cours d'Analyse
V. I, 8. ed] if a derivative of a function is always finite and va-
nishes ,& mesure nulle prés® then it vanishes identically — Then
we have f(r) = g(x).

From this we conclude: If in a function (D) we change the de-
finition in a set of mesure zero the changed function is not more (D).

Remains a question. Suppose we have a mesurable function S(=)
in [ab], which is a (non-D) Can we change this function in a set
of zero mesure to obtain a (D) ?

The answer must be in some caser negative. Because if the
changed function is g(z) than:

Fi) mffdésfgdz |

F'(z) = g(z) in [ab].

Then if the indefinite integral of our J(x) is a function which
has no derivative in sume points of the interval the problem must
remain impossible.

Further developmént of the subject I leave fo the next: paper.

and






