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On the generation of a simple surface by means
of a set of equicontinuous curves.

Robert L. Moore (Austin, U. S. A.).

If, in a three dlmenmonal space S,! is a simple open ') curve
and G is a self-compact?) set- of slmple open curves such that
through each point of ! there is just one curve of the set & and
each curve of the set G contains just one point of ! then, in order

‘that the curves of the set & should form a simple open surface

(i. e. a suface which is in one to one continuous correspondence
with a plane) it is not sufficient that no two curves of the set &
should have a point in common. Such a set of curves may form
a surface containing a portion resembling a part of a coat with
a pocket which, in addition to being attached as usual, is also sewed
to the coat along its two ,lateral edges“. In this case the set of
curves G is, however, not equicoutinuous?) with respect to every

1) A simple open curve is a point-set which is in one to one continuous
correspondence with a straight line. For a characterization of such a point-set see
my paper Concerning simple continuous curves, Transactions of the American
Mathematical Society, vol, 21, (1920), pp. 333 —347.

2) A set G of curves iz said to be self-compact if every infinite soguence of
curves of the set G containe an infinite subsequence of curves which has a curve
of the set G as its sequential limiting set, Cf. M, Fréchet, Sur quelques poinis
du caleul fonctionnel, Rendiconti del Circolo Matematico di Palermo, vol 22,
(1908), pp. 1—72,

3) A set of curves G is said to be equicontinuous with respect to a gien
noint-set M if, for every positive number &, there exists 2 positive number du,
such that if P, and P, are two points of M at a distance apart less than du, and

|
lying on a curve g of the set G then that arc of ¢ which has F, and P, as

~endpoints lies wholly within some circle of radius &, Cf. R, L. Moore, Concer-
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bounded point-set. A condition which is sutficient in oder that a set
of curves may form a simple open surface is given below in the
statement of Theorem 2. This theorem may be proved with the
help of the following related theorem concerning certain sets of
simple continuous arcs.

Theorem 1. Suppose that, in a given three dimensional space S
ABCD is a rectangle and G is a self-compact set of simple comfz'-i
nuous arcs such that (1) through each point of ABCD there is jaust
one arc of G, (2) BC and AD are arcs of G, (3) no two arcs of
G have « point in common (4) each arc of G has one eﬂdpoiht
on the interval AB and one endpoint on the interval CD but con-
tains mo other point in common with -either of these intervals, (5)
the set of arcs G is equicontinuous. Then the point-set B composed

.. of all the ares of the set G is in ane to one continwous correspon-

dence with the plane point-set formed by a rectangle together with
ils interior. - :

The truth of this theorem will be established with the help of
two lemmas. These lemmas will be proved first.

Definition. A connected point-set K -is said to be simply related

to a set of ares G satisfying the conditions stated in the hypothesis

of Theorem 1 if (1) every point of K belongs to some arc of the
set G, (2) K contains the whole of every G-intervall) whose end-
points are in K, (3) if P is a point of K there exists a sphere
with center at P such that évery point of R within this sphere
belongs to K, (4) there exist two G arcs g, and g, such that (a) g,
lies above g,, every point of K is between g, and g, and both g, -

mng certain equicontinuous systems of curves, Transactions of the American
Mathematical Society, vol. 22. (1921), p. 42. As far as I know, the notion of a set
of equicontinuous functions was first introduced by G. Ascoli in an article titled
Sulle curve limiti di una varieta data di curve, Memoire della Reale Accademia
dei Lincei, vol. 18, (1884), pp. 521 - H86.

1) If & is a set of arcs or curves, a G-arc or a G-curve is an arc or curve
of the set G. A G-interval is an interval (and a G-segmeni is a segment) of such
an arc or curve, If G is a set of arcs satisfying the conditions stated in the
hypothesis of Theorem 1, the G-are g, is said to be above the G-arc g, if that
endpoint of ¢, which lies on AB is between B and that endpoint of g, which lies
on AB. If P is a point of R, gr denotes that arc of G which contains P, If R,
and P, are points of R, P, will be said to lie above P, in case gs is above gp.
If g, and g, are arcs of G and g, is above g, and below g, then g, is said to
be between g, and y, and every point of y, is said to be between g, and g,.
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and g, have points in common with the boundary of K with res-
pect to B, (b) the set of all those points that the boundary ) of K
with respect to B has in common with g, is an interval ¢, of gs
(i=1,2) (e ‘o point of # or of ¢, except their endpoints, 18
a limit point of any point-set which lies between g, and g, and
contains no point of K. The interval # minus its endpoints will
be called the upper base and the interval f, mious 1its endpoints
will be called the lower base of the set K.

 Lemma 1. If G is a set of arcs salisfying the conditions stated
in the hypothesis of Theorem 1, B, C, and B;.C, are arcs of &,

B, and B, are points of AB and C, and C, are points of CD.

and B, is between B, and A, then C, is between Cy and D.
 Proof There exists a point E between 4 and B, such that
if X is any point between 4 and E and XY is an arc of & then

- Y is between C, and D. For if there exists no such point E them

there exists on AB a sequence of distinet points X, X,, Xj,... such

‘that as n =oo, X, =4, but sugh that, if ¥, denotes the othex
~ endpoint of that .arc of G which has X, as one endpoint, them

Y, is between C, and C. But since the set @ is self-compact the-
refore the sequence of ares X,Y,, X,Y,, X;¥;,... contains an in-
finite subsequence X, Y,.X,Y,, X, X, ... such that as m = oo
X, Y, approaches, as a limiting set, an arc of G. Since as m = o<
X, =4, this limiting arc must pass through A4 and must therefore
be the arc 4D. But this is impossible since, for every m, Y, is
between C, and C. Thus the supposition that there exists no point
E having the property stipulated above leads to a contradiction.
Now let M denote the set of all points [E] that have this property
and let N denote the set of all the remaining points (if there are
any) on the segment AB. Suppose that N is not vacuous. Then
there exists a point O which is either the uppermost point in set
‘M or the lowermost point in set N. That there is no uppermost
point in set M can be proved by an argument entirely analogous

~ to that employed above to prove the existence of a point belonging

to the set M. Suppose that P is the lowermost point in the set IV,
Then every point between P and A belongs to the set M. Hence,

1) If the point-set K is a proper subset of the point-set [, the boundary of
K with respect to R is the set of all points [X] belonging to' B such that every
sphere which encloses X encloses at least one point of K and at least one point
of R — K, '
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since G is self-compact, if PH denotes that arc of G which has

P as an endpoint, G contains an infinite sequence of ares P, Z.
P73, PyZs,... such that the points Py, By, Py,... all belong t;) i;
; uch limit s sequence. Hence H
Is a limiting point of the sequence of points Z,, Z,, Z,,... But H
is between C; and C and the points Zyy Zy, Zy,... are all between
D and C,. Thus we again have a contradiction. The truth of
Lemma 1 is therefore established.

Lemma 2. Under the conditions stated in the hypothesis of
Theorem 1, if Pis a point (distinct from A, and Jrom Do) belong-
ing to an arc Ay Dy of the set G and S is a sphere with center at P

. B
cand A,D, is distinct from { Ag} then there exists, within S, a can-

.M | ' i
nected point-set { N} such that (1) every point of {i{} lies on a G-arc

{above

below} Ao D,, ,(2) the point P is a limit point\ of {EIVI}, (3) there

exists a sphere with center at P such that every point {Zflf:z} A4, D,

and within this sphere belongs to the point-set {1{{}

Proof. There exists, within S, a sphere S,, with center at P,
such that if X and Y are two points lying within S, and on a
(+-arc g, then that interval of g whose endpoints are X and ¥ lies
wholly within S, Let E and F denote two points on 4,01, in the
order A,EPFD, and such that the interval EPF of A,D, lies
wholly within S,. Let S, denote a sphere which lies within S,, has
its center at P, and neither contains nor encloses any point of the
arc Ay D, which does not lie on the segment EF of 4,D,. In view
of the fact that the set of ares ¢ is equicontinuous, and satisfies
the other conditions of the hypothesis of Theorem 1, it ean be

-easily proved that there exist, within §,, two spheres S; and S,

with centers at £ and F respectively, such that if Z is a point
within S, and lying on a G-arc g which contains a point within
Sz and a point within S;, then Z lies on an interval of g whose
endpoints lie within S; and 8, respectively.

Suppose that 4,1), is distinct from BC. With the aid of the condi-
tions (other than that of equicontinuity) stipulated in the hypothesis
of Theorem 1, it can be shown that there exists a G-are 4,D,.
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lying above 4,D, and such that every G-arc which lies between
A,D, and A,D, contains a point within each of the sph.eres S,
Sy and S, Let M denote the point-set composed of all points [ W]
such that W is on a G-segment which lies between 4,D, and 4,D,
and whose endpoints are within S, and S, respectively. The set M
15 connected. For suppose that M, and M, are two mutually exclu-
sive point-sets such that M, + M, =M. If any one G-arc g conﬁairfs
both points of M, and points of M,, then, since the set g X M1 s
clearly connected, it follows that one of the point-sets g X M, and
g X M, contains a limit point of the other one, and therefore one
of the sets M, and M, contains a limit point of the other one. Suppose
that no are of G contains both points of M, and points of M.
Let M, denote the set of all those points [L] on the interval 4,4,
of AB such that G-arc which has L as one of its endpoints. con-
tains points of M, and let M, denote the set of all the remaining
points of 4,4,. Then every G-arc which has a point of M, as an
endpoint contains points of M,. Since the interval 4,4, is a con-
nected point-set, one of the sets M, and M, contains a limit point
of the other one. Suppose, for instance, that M, contains a point &
which is a limit point of M,. Then E is the sequential limit point
of some sequence of points E,, E,, E;,... belonging to M,. The arc
9= 18 the limiting set of the sequence of ares gy, g, gn,... The
arc gy contains a point T' within the sphere S,. The point T is
the sequential limit point of a sequenece of points T,, Ty, Ts,...
such that, for every n, T, belongs to g5, There exists an integer m
such that if %# >m then T, is within S,. The point T is the
sequential limit point of the sequence of points 1y Togay Doy oo
But every point of this sequence belongs to M,. Thus M, containg
a point 7' which is a limit point of M,. o

So, no matter how M is divided into two mutually exclusive
subsets, one of these subsets contains a limit point of the. other
one. It follows that M is connected. Clearly P is a limit point
of M. It is clear that no point between 4,0, and AoD, is a limit
point of the point-set composed of all those points of R which are
above 4,D; or below 4,D,. It follows that there exists a sphere,
with center at P, which lies within S, and neither contains nor
encloses any point of R which lies above A,D, but does not lie

') By ¢ X M is meant the set of all points that are common to g and M.
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between A,D, and A,D;. Every
belongs to the point-set M.

The remainder of Lemma 2 may be proved in an entirely analo-
£0us manner. |

. Lemma 3. .If G is a set of arcs satisfying the conditions stated
in the hypothesis of Theorem 1, and the point-set K is stmply related
to .G, the?z any point on the upper base of K can be Joined to any
pomt on its lower base by a simple continwous arc that lies wholly
in K and does not have more than one point in common with any
arc of the set G.

Proof. If P is a point of R and ¢ is a positive mumber, let
R, denote the set of all points [X] belonging to R such that X lLies
on a G-interval ZW such that (1) Z and W are both within a sphere
Sy, of radius & and with center at P, and (2) some point of ZW
can be joing’d to P by a closed and connected subset of B which
lies wholly within S,,. That the set E., contains points above g»
(unless P is on BC) and points below g, (unless P is on AD) can
be easily proved with the aid of Lemma 2. It can also be easily
proved that E., is connected. If, for a given point P and a given
pair of positive numbers e and & such that ¢ < e, the point-set
R,. has points between two distinet G-arcs g, and g, and also poinis
on g, and points on g, then the set of all those points of R, that
lie between g, and g, will be called an elemental set of rank ed).
It follows from Lemma 2 that, if €is a positive number, each point
of K is in some elemental set of rank ¢ which lies, together with
its boundary, wholly in the point-set K* composed of K and its
two bases. Such an elemental set will be called a K element of
rank e If E and F are two points of K* and E is above F, then
by a chain of K-elements from E to F, or joining E to F, is meant
a finite set of K-elements K,, K,, Kj,... K, such that (1) E belongs
to the upper base of K, and F belongs to the lower base of K., (2)
for each i (I =i==n) the lower base of K, and the upper base
of K,., lie on the same arc of the set G and have points in common,
and the set of all their common points is a segment #. The point-set
K+ K+ K +...+ K+t +1t+t+ ...+ t., is simply re-
lated to G. It will bhe called the set associated with the chain

point of R within this sphere

1) According to this definition, if &, < £, then every elemental set of rank &
is also of rank e, ‘



ICM Biblioteka Wirtualna Matematyki

112 R. L. Moore:

K, K, K,...K,. Suppose that E is a point on the upper base of
K, F is a point on its lower base and & is a positive number.
I will show that E can be joined to F by a chain of K-elements
of rank & Let K denote the set of all those points of K that can
be joined to E by chains of K-elements of rank & It can easily
be seen with the aid of Lemma 2 that there exists a K-element
of rank ¢ whose upper base contains the point E. It follows that
the set K exists. |
Suppose that -WZ is an arc of G that contains a point of K.
The set of points common to WZ and K is a segment W3Z%
Every point of W1Z1 must belong to K. For suppose this is not
the case. Then the segment W1Z! is the sum of two mutually
exclusive point-sets S, and S, such that S, is a subset of K but
no point of S, belongs to K. There exists a point P which either
belongs to S, and is a limit point of S, or belongs to S, and is
a limit point of §;. In the first case there is a chain @, of K-ele-
ments of rank ¢ from E to P. The lower base of the last element
of this chain is a segment of W1Z! containing P. Since P is
a limit point of S, this segment must contain at least one point
P, of S,. Thus e, is a chain of K elements of rank ¢ from E
to P,. Thus the supposition that S; contains a limit point of S,
leads to a contradiction. Suppose now that S, contains a point P
which is a limit point of S,. There exists a K-element ¢ of rank
¢ whose lower base W, Z, contains P and is a segment of W31ZL
Since P is a limit point of S, there exists on the segment W,Z,
a point P, belonging to S,. There exists a chain e,, ¢, €,...,¢, of
K-elements of rank & from E to P,. The lower base of the last
element ¢, of this chain is a segment W,Z, containing P,. There
exists a G-arc gy (lying above WZ) and two segments W,Z, and
‘W,Z, such that (1) W,Z, is the set of all points common to e,
and g, (2) W,Z, is the set of all points common to ¢ and g, (3)
W.Z, aud W, Z, have a segment in common. Let z, denote that
part ot e, which lies between g and the arec of G that contains the
upper base of e, Let e, ., denote that part of ¢ which lies between §
and WZ. The set of elements e, ¢, e,..., €, , &, €., 18 a chain
of K-elements of rank & from F to P. It is thus established that
if one point of W1Z1! belongs to K then so does every other point
of WiZ1 It has heen shown that if a G-are above g, contains
a point of K then so must some lower arc of G. It follows that
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if F does not belong to K there exists an are X ¥ which is the

uppermost arc of G that contains no point of K. Let P denote
a point of K on the are X Y. There exists a K-element ¢ of rank
¢ whose lower base contains P. The set G contains an arec g that

intersects ¢ in a segment MN. Let P denote a point of MN. There

exists a chain of K-elements of rank & from K to P. If to this
chain of elements there is added that portion of the K-element ¢
which lies between g and XY, there is obtained a chain of K-ele-
ments of rank & from E to P. Thus the supposition that £ can not
be joined to &' by a chain of K-elements of rank & leads to a con-
tradiction. It follows that there exists a simple chain, from & to F,
whose links are all K-elements of rank 1. Let K, denote the set
associated with this chain. There exists a simple chain of K-ele-
ments, of rank 1, from & to F. This process may he continued,
It follows that there exists a sequence of simple chains C,, C,, C;,...
from E to F such that if, for each %, K, denotes the set associated
with C, then (1) every link of C,,, is a K,-element of rank 1/n,
(2) K,y is a subset of the point-set composed.of K, plus its bases.
Let ¢ denote the set of all points [X] such that X belongs to
every K,. It can be proved!) that ¢ is a simple continuous are
from K to F' and that it does not have more than one point in
common with any given are of the set G. The truth of Lemma 3
is thus established.

Proof of Theorem 1. If X is a point of 4B and XY is that
arc of G which has X as one of its end-points, it may be easily
proved, with the aid of the Heine-Borel Theorem, that there exists
on XY a finite set of points A4, 4,, 4;,... 4,, in the order
XA Az Az A, ... A, ; A, Y, such that each of the intervals X A4,,
Ay dyy..., 4,4 A,, A, ¥ of the arc XY, lies wholly within some
sphere of radius 1. Let C,, G, Cy,... C, denote n points in the order
BC,CyCy...C,_,0,C ou the arc BC and let Dy, Dy, Dy,..., D, denote
n points in the order AD,D,... D, , D, D on the are 4AD. With
the use of Lemma 3 it is easily established that there exist two
sets of ares, 4, C;, 4,C;,... A4,C, and 4,D,, 4, D,,... A, D,, such
that no arc of either set has a point in common with any other

Y) Cf. the proof of Theorem 15 of my paper On the _ﬁmndations of plame
enalysis situs, Transactions of the American Mathematical Society, vol. 17 (1916),

Fundamenta Mathematicae 1V. 8
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arc of that set and such that, for every n, (1) 4. C. lies, execept
for its endpoints, entirely Wlthm 1) XBCY, (2) A.D, hes, except
for its endpoints, entirely within AX YD, (3) neither 4,C, nor
A, D, bas more than one point in common with any one are of.
the set G. With the help of the fact that the set ¢ 1is equicontinuous
it 1s casy to show that there exist two points X* and X, in the
order A X1XXB, and two ares X'¥* and XY belongmg to @,
such that if for every i (1<z<n) A} is the point in which X1*¥!
intersects 4,D, and 4, is the point in which XY intersects A4,C,
then the subset of R which forms the interior, with respect to R,

of the closed curve formed by the intervals A} A4,, 4, A‘, A, A,,H,_
Ay Aigyy Aiy Alyy and A} A} of the ares 4,D,, 4, C, XY s Aia G,
Ay Doy and X1Y1 respectively, lies entirely within some sphere
of radius 1. For each point X of AB make a similar construction

and apply the Heine-Borel Theorem to the set of segments (XX ).

If certain arcs are properly extended there will result a double
ruling®) T, of ABCD such that (1) each arc of one of its rulings
is an are of G and each arc of its other single ruling has its end-
points on BC and 4D respectively and has just one point in common
with each arc of the set G, (2) each of the subdivision %) into which
T, divides R lies within some sphere of radius 1. In a similar manner
each subdivision a of this set can itself be subdivided by a double ru-
ling T, such that (1) each arc of one of its single rulings is an inter-

1) If AD and C‘B are two G-intervals not belonging to the same (-are and
'AB: and DC are two sxmple continupus ares each of which lies. wholly in B and
has not more than one point in common with any one G-are and AB has not
point in common w1th I)(; then by the mtlmoo, with respect 2o B of the simple
ment which has one endpoint on "AB and the other endpomt on CD. A point.
will be said to be within AB C D if it belongs to the interior, with 1espect to It
of ABCD.

3) Cf. my paper Concerning a set of postulates Jor plane analysis situs,
Transactions of the American Mathematical Society, vol. 20 1919), p- 17& {foot~ .
note) and pp. 172—175,

3 If AD and CB are intervals of twoarcs g, and g, of G ’belongmg to one
of the single rulings of 7| and such that there is no arc of T lying bolween g,
and g, and belonging to the same single ruling. and AB and DC aro intervals
of arcs of the other single ruling of T such that there iz no ure of that single
ruling between them then the interior Wlth respect to B of the simple closed curve
ABCD is called a subdivision of the ruling 7, or one of the subdivisions into

‘which 1), duwdes R.



ICM Biblioteka Wirtualna Matematyki

- On the generation of a surface 115

val of an arc of @, (2) each arc of its other single ruling has its end-
points on the ares which form Tespectively the upper and the lower base
of @ and no arc of this ruling bas more than one point in common
with any arc of @, (3) each of the snbdivisions into which T, di-
vides a is within a sphere of radius 1/2. It follows that there emsts
a double ruling T, satisfying the conditions (1) and (2) stated above

~as being satisfied by T, and also satisfying the additional condition
‘that each of its subdivisions is within some sphere of radius 1/2,

for every @ each arc of T,, being an interval of an arc of one

.or the other of the rulings of T,. This process may be continued.

It follows that there exists an infinite sequence of double rulings
Ty, T,, Ts,... such that for every n, (1) T, satisfies the conditions
(1) and (2) stated above for T,, (2) each are of 7, is an are of
T.i, (3) each subdivision of T, is within a sphere of radius 1/n.
Let 8 be the set of all ares [¢] such that, for some n, ¢ belongs to
one of the rulings of T, and has its endpoints on AD and CB
respectively. If P is a point on BC which is not an endpoint of
an arc of the set 8 then there exists just one arc ¢, that has ome
endpoint at P and the other one on AD, lies except for its end-
points entirely in KB — ABCD and has no point in common with
any arc of the set 8. Let y be the set of all such ares #. for all
such points P. Let G denote the set of arcs composed of all the
arcs of B together with all the ares ot y and the straight line in-
tervals AB and CD. The points of each of the intervals 4D and
AB can be brought into one to one continuous correspondence with
the numbers of the set (0 ==zx=1) in such a way that B and D
correspond to 1 and in each case A correspond to 0. If P is a point
of R let h, denote the number which, in the above mentioned
correspondence, corresponds to the point of intersection of AD
with that arc of G' which passes trough P. Let k. denote the
number corresponding to the point in which A B intersects that
arc of G which passes through P. Let OX and OY be the axes
of Y in a rectangular system of coordinates in some plane M and
let & denote the set of all points (z,y) in M such that 0 =z =1
and 0=<<y=<(1. If P is a point of R let P denote the point in M
whose coordinates referred to OX and QY are (he, k). Let T’ de-
note the transformation of R into B such that if P is any point of B
then T(P)= P Itis easy to see that the transformation T is con-
tinuous and that it satisfies a]l the other requirements of Theorem 1
B*
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Theorem 2. Suppose that, in a space S of three dimensions, 1
is a simple open curve and G is a self-compact set of simple open
curves such that (1) through each point of | there is just one curve

- of the set G, (2) each curve of the set G contains a point of I, (3)

no two curves of the set G have a point in common, and (4) the set
of curves G is equicontinuous with respect to every bounded point-set.
Then the point-set obiained by adding together all the poinis of all
the curves of the set G is a simple open surface.

Indication of proof of Theorem 2. Let B denote the set of
all points [X] such that X is on some curve of the set G'. The
open curve ! may be brought into a definite one to one correspon-
dence with the set of all real numbers. If, in this correspondence,
the points X and Y are paired with the numbers x and y respec-
tively then X will be said to be above Y if, and only il, z > y. If
« and § are two curves of the set G, then a will be said to be
above @ if, and only if, the point in which ¢ intersects ! is above
the point in which § intersects !; and if 4 and B are two points
of B which do not both lie on [ then A4 is said to be above B if
that G-curve which passes through 4 is above the one which passes
through B. A point of R is said to be above a curve of the set G
if 1t is above every point of that curve. By an argument closely
related to that used in a portion of the above proof of Lemma 1,
it may be shown that if a and 8 are two curves of G such that
a is above § then no point which lies between o and § (i. e. which
is above f and below @) is a limit point of the set of all points
which lie above & or below g.

With the aid of these notions and a theorem identical with
Theorem 1, except that the rectangle ABCD is replaced by a sim-
ple closed curve ABCD, it is possible to prove, by a line of reaso-
ning analagous to that beginning with the second line from the
bottom of page B0 and ending on page 52 of my paper Concer-
wing certain systems of equicontinuous curves'), that there exists a set
of open curves H such that (1) through each point of R there is just
one curve of the set H, (2) each curve of the set G lies wholly
in B and has just one point in common with each curve of the
set G. The truth of Theorem 2 easily follows.

The following theorem may also be established.

1) Loc, cit.
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Theorem 3. Suppose that O is a point and J isa simple closed
curve and G is an equicontinuous and compact set of simple continuous
arcs such that (1) each arc of the set G has one endpoint at O and
its other endpoint on J, (2) for each point P of J there is an arc of
the set G which has P and O as its endpoints, and (3) no two arcs
of G have, in common, any point except O. Then the point-set composed
of all the arcs of the set G is in one to one continuous correspondence
with the plane point-set composed of a circle plus its interior.






