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The derivates of functions of intervals.
By
I. C. Burkill (Cambridge, England).

1. The writer has recently communicated to the London Ma-
thematical Society some properties of functions of intervals. A fun-
ction of intervals is defined by a set of rules associating a definite
number with each interval [ of a certain aggregate of intervals and
is denoted by the symbol g(I). Previous writers who have dealt
with such functions have assumed them to be additive; we do not
make this restriction. In this paper we consider intervals in one
dimension only. \

Every function of intervals gives rise to two functions of points
the upper and lower derivates. We recall their definitions.

Given an interval I and a point %, we define ¢, the parameter
of regularity of I with respect to 2, as mI/mS, where S is the
smallest interval with centre z whlch contmns I (and mI is the
length of 1).

We then define u(p, x) as the upper limit of g(I)/ml as mI—0
where the parameter of revularlty of I with respeci to x is restri-

cted to be greater than .

For fixed x, u(g, x) increases as ¢ decreases, and we define u(:t:),
the upper derlvate of g(I) at x, as lim u(p, x).

We have corresponding deﬁnmotfs for I(g, z) and I(z).

If u(xr)=1I(r), we call their common value ¢’(z), the derivative
of g(I) at x.

It may be proved that u(g, x), e, z), u(z), I(x) are measnrable
funetions

We also introduced the concept of the integral of a funcmon
of intervals,
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Gtven an interval R, divide it into meshes /... I,. We define
the upper and lower integrals

J g(ly=Tim Zg L), f g(1) == lim 2”‘9(1;)

den | fom]

as the length of the greatest mesh tends to zero, If fg([)==/ z([ )y
we write their common value [g¢(1).
g

The object of this paper is to investigate the possible values of
the derivates of a function g(/), assuming only thdt [g(l) exists.
"

The arguments may be compared with those which Denjoy and
M™ Young!) use in the corresponding problem for the derivates of
a function fiz).

To prove any theorem of this nature, we need a lemma on the co-
vermg of a sel of points by intervals, An important covering lemma
is that due to Vitali%) which stales conditions under which a set
of points miay be approzimately covered by a finite mumber of as-
sociated intervals. Thus Vitali's lemma is effective only when 'sets
of intervals of arbitrarily small total measure can be neglected, that
is to say, when ‘g(I)is absolutely continuous. To deal with the general

g(I) we need an extension of Vitali's lemma which provides for the
e.r:aat covering of an interval B by a system of intervals associated
with points of R; this extension' will be found in lemma 7,

2. We shall use the following lemmas.

Lemma 1. B 48 a set of positive measure. Then, given ¥ > 1,
we can find a subset F' of B and an interval I containing F such that

ml < Imk.
Weo can enclose B in a denumerable set of non- overlappmg
intervals I,,...f,.,-. ., in such a manner that
o0
A\
DmL < Imk.

fu ]

1) G. O, Young, Proceedings of the London Mathematieal Soclety, Vol. 15
(1918), page 360, and references thero given,
3 Carathdodory, Vorlesungen Uber reclle Manktionen, page 299,
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Let F,— EI,. Then E— }..’F and so mE mZmF Thérefore
. fma]

Iml < raz'mﬁ;.
: fiom] ixal

Hence there is a value of i for which mI, < 3mF..

‘Lemma 2. (Lebesgue) . The density of a set E is 1 almost eve-
rywhere in E.

An elegant proof is given by Sierpidski, Fundamenta. Vol. IV,
page 167.

‘Lemma 3 (Lusin). If E has positive measure, it contains a per-
fect subset which is throughout of posilive measure (that is such that

the part of it in every interval containing one of zts pomts i8 of posi-

tive measure).
A proof is given by M™ Young, loe. cit., page 365.
Lemma 4 (Vitali). E is a measurable set of points contained in

" an interval R. With each point P of E is associated a set of inter-

vals whose lengths ~>0, having parameier of regularity with respect
to P greater than o(P)> 0. Then, given &, we can choose a finite
set 8 of the associated intervals, nom-overlapping and contained in R,
such that |

m(8—8E)<e and m(E—E8) <e

See Carathéodory, loc. cit. Banach, Fund. Math., Vol. V, p. 130.
Lemma D. In lemma 4, we can choose 8 so that each interval

‘cbmplemantary to the intervals of & coniains at least one point of E.

Let F be the subset of E at which the densﬁ.y is 1. By
lemma 2, mF=mE.
leen e(<mKE), choose 77<8/8mE
Given any pcmt P of F, we cau find an interval I with centre

P such that if I, is any smaller concentric mterval and Fy=F1,, then

mFy, > (1— emml,.

Let every interval associated with P be extended at each énd‘by a frac-
tion #n of its length. Then if the extended interval is contained in I,

each of the two extensions must contain a point of F in its interior.

By lemma 4, we can find & set & of a finite number of the ex-
tended intervals, non-overlapping and contained in R, such that

m(F—FE)<e snd m(E—EF) < je.
21+
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Culting off the extensions we have a set & of the original in-
tervals such that
m(F — 8) == 2nm < dymli < }e
and therefore
- m(6—8E)<<e and m(b—E§) <=

Moreover each complementary interval contains a point of K.

- Lemma 6, E is a closed set. For cach point P of K, let all suf-
ficiently small intervals containing P as an interior point possess
a certain’ property A. Then we can find an interval R (containing
points of E) such that any subinterval of R which comtains a point
of E in its interior has the property A.

Suppose the result false. Then given any interval R,, containing

points of K, we can find a subinterval [, containing a point P,
of ' E, which has not the property 4.

’I‘ake an interval R, containing Iy and contained in I, such
that mR, < }mR,

Then we can find a subinterval I, of R,, containing a point Fy
of F, which has not the property 4.

Repeat this argument; the pomts P, P,... have a limit point P
interior to every I,.

Since F is closed, P is a point of 'E.

Therefore all sufﬁcmntzly small intervals enclosing /> have the
property 4, and. this is a contradietion.

Lemma 7. Eis a closed set.

If P is any point of B, all sufficiently small intervals containing
P as an interior point have a property A.

Also, with each point P of K is associated a set of intervals, ha-
ving a property B, whose lengths —>0 and which have parameter of
regularity with respect to P greater tham o(F) > 0.

Then we can find an interval R, containing a part E, of . such
that, given & R can be exactly covered by a set 8, of a finile num-
ber of the intervals A together with a set 8, of a fzmt# number of

‘the intervals B, in such a way that

m(By— Epliy) <& and mily, ~ I, 8,) < &

Choose B as in lemma 6.
By lemma b, we can find a set of intervals &, such tha.

n 8}[““"”' GJEJ_) "< Ly &ﬂd M(EJ e M]‘ é'”) {: £,
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and such that each complementary interval contains a point of E
in its interior.

Hence each complementary mterval has the property A, and
these intervals form the set &,.

3. We now prove the main theorems.

Theorem 1. It fg(I) is finite, the points of R at which u(zx)=
B

and 1(}, x) > —oo form a set of measure zero.

Let E be the set at which u{z)= +oco and I(}, 2) > —oo. Let
E. be the set at which u(z)=+co and ¥}, 2)>—r. Then E_,(CE.
and E =lim E,.

Hence it is sufficient to prove that, for each », mE, = 0. Wri- .
ting g([) — rmI in place of g(I), we have only to prove that the
set £, at which u(z) = 400 and I(}, x) >0 has measure zero.

Suppose that m E, > 0.

Choose a perfect subset F of E ‘which iz tronghout of positive
measure (lemma -3).

We say that I has the property 4 if g(I)>>0, and the property
B if g(I) > kmI (where k is chosen later). By lemma 7, we can
find an interval R (independent of k) containing a part F; of F
which can be exactly covered by arbitrarily small intervals I,,..

such that

2' g(1) > %IcmF

i=]
Let fg(I)=1. |

Choose k>4l Vm F,, and take the covering intervals so small
hat

Som<e|l
=1
This is a contradiction, and so the theorem is true.
Corollary. If /Tg(l) fg{I ) are finite, then, except for a set of

measure zero, the points ai which u(.r)._-{—oo are the same as those

at which lr)=—oco.
 Theorem 2. If fg(I) exisis, the poinis of R at which u(z) and

(x) are finite and unequal form a set of medadure zero.
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Let E be the set of points at which u(:b) and I(x) are finite .
and unequal,
 Let £ (r an’ mteger) be the =et at which

—-r<l(m) <L ulx) < r

.and

%.1 -

u(x) — ) >
Then &,_, CE, and B==lim k.

Tomw (03

Hence it is sufficient to prove that, for each r, m.H, == 0. Sup-

" pose this untrue, Take the least » for which mE,> 0, ¥ is the
- sum of sets 8, in which |

=1y ¥
2r \<J<2r

where y takes integral values between -— 2% 41 and 2r* — 2. Then
there are one or more values ot y for which mS, > 0; take the

~ least such value.

Choose & perfect subset' 7, of 'S, which is throughout of posi-
tive measure (lemmg, 3).
We say that I has the property 4 if

—rml < g(l)<rml

As in lemma 6, choose an interval B, containing a part T’ of T,
- Take & satisfying

0 < (2y+1+8rt)e < .

By lemma 1, choose a subset I' of I' and an mterva.l R, con-

 taining F and contamed in B, such that

mit, < (L+4+e)mk. |

Since SRy g(1) exists, we can find & such that if Jg(L) and (1)
are the sums corresponding to any two subdivisions of R, into finite
sets of meshes of length less than 4, then

ml'

Now. define the property B to be

gy _ y
md < 9y
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~ By lemma 7, we can exactly cover R, with intervals I, of ty-
pes 4, B, baving lengths <(4, in such a way that

mé, < (L+emF and mé, < 2emF.
Hence

Sg(l) < %(1 +&mE + 2remF.

Again, taking the property B to be

I 1
9()>y;
¥

and using lemma 7, we can exactly cover R, with intervals I,, ha-

ving lengths less than 4, in such a way that

Zp(hy) > (l—e)mF-—- 2remF.

‘Then

\ (1 2y+1
2g(1) — Zg(1) > (,é-r — e drejmF

>’£, by ehoice of &

This contradicts (1) and so the theorem is true. We deduce from
~"Theorems 1 and 2 the result:

If [g(l) exists, then except at a set of measure zero either

.- R : !

(1) wx) = + oo, l(x) = —.00
or (2) a point g'(x) erists.
Any function f(z) of points z in R generates a function of in-
tervals g(I) in R defined by
g1y =flx) — flza)
where x,_,,x, are the end poinls of an interval 1, eontained in R.
u(z), I(x) are then exlensions of the crdinary upper and lower

derivates of f(z), and we have the result:
Except at a set of measure zero -either

) u(z) = + op, lfz) =—0c0

o 2 a finite f'(x) exists.






