Über ein Problem von Herrn C. Carathéodory.

Von

Paul Urysohn (Moskau).

Gibt es ein einfach zusammenhängendes Gebiet, dessen sämtliche Primenden zweiter Art sind 1)?

1. Nehmen wir an, dass ein solches Gebiet W existiert. Es sei O ein fester Punkt innerhalb W und YOX ein Koordinatenkreuz.

Als Teilgebiet bezeichnen wir einen solchen Teil des Gebietes W, welcher durch einen aus einem Kreisbogen bestehenden Querschnitt q bestimmt wird und den Punkt O nicht enthält; dieser Punkt muß ausserdem ausserhalb des Kreises, zu dem der Kreisbogen gehört, liegen 2).

Als Primenden eines Teilgebietes bezeichnen wir nur diejenigen, welche der Grenze von W (aber nicht zu q) gehören.

Wir nennen Länge des Primendes A die grösste Entfernung zwischen dem erreichbaren und einem veränderlichen Punkte von A.

Es sind nur zwei Falle möglich:

- α) entweder enthält jedes Teilgebiet Primenden von beliebig kleiner Länge,
- β) oder es gibt ein Teilgebiet, dessen sämtliche Primenden länger als eine feste Zahl ε sind.
- 2. Nehmen wir an, dass die erste Voraussetzung stattfindet. Wir nummerieren ein für allemal alle Radien-Vektoren R_i , die einen rationalen Winkelkoefficient und einen Anfangspunkt mit ra-

*) Kreisbilgen mit zusammenfallenden Endpunkten sind ebenfalls zulässig.

¹⁾ C. Carathéodory, Über die Begrenzung einfach zusammenhängender Gebiete, Mathematische Annalen 73 (1912), S. 325.

tionalen Koordinaten haben. Jeder R_j konvergiert gegen ein bestimmtes Primende A_j , dessen erreichbarer Punkt auf R_j liegt. Solche Primenden werden wir rationale Primenden nennen.

Hülfsatz I. Es sei φ ein Teilgebiet, A ein darin enthaltenes Primende von der Länge ε . Dann enthält φ ein Teilgebiet φ_i , dessen Breite $< 3\varepsilon$ ist.

Be we is. Es sei a der erreichbare Punkt von A. Wir können A durch eine Kette von Querschnitten $\{q_n\}$, welche auf Kreisen vom Radius $\frac{1}{n}$ mit dem Mittelpunkte a liegen, definieren 1).

Die entsprechenden Teilgebiete φ_n liegen alle (ausser höchstens endlich vielen) innerhalb φ ; der Durchschnitt der Folge $\{\overline{\varphi}_n\}$ (wo $\overline{\varphi}_n$ das Gebiet φ_n mit seinen Grenzpunkten bedeutet) besteht nur aus der Menge der zu A gehörenden Punkte. Da aber die Breite dieser Menge 2ε nicht übertrifft, so müssen alle φ_n , von einem φ_N ab. in φ liegen und eine Breite $< 3\varepsilon$ haben. Wir setzen $\varphi_N = \varphi_I$.

Folgerung. Jedes Teilgebiet φ enthält solche Teilgebiete, deren sämtliche Primenden $< \varepsilon$ sind $(\varepsilon$ beliebig).

In der Tat, φ enthalt Primenden, deren Länge $\leq \frac{\varepsilon}{3}$ ist, also auch Teilgebiete, deren Breite $< \varepsilon$ ist. Ein solches Teilgebiet kann aber nur Primenden $< \varepsilon$ enthalten.

Hülfsatz II. Jedes Teilgebiet φ enthält ein rationales Primende A_j , welches kürzer als ε ist (ε beliebig).

Be we is. φ enthalt ein Teilgebiet φ_0 , dessen sämtliche Primenden kürzer als ε sind. φ_0 sei durch den Bogen γ des Kreises Γ definiert. Jeder R_j , der in φ_0 anfängt und zu dem Komplementärbogen γ' gerichtet ist, wird uns ein solches A_j liefern 2).

Folgerung. Wir können zu jedem Teilgebiet φ ein darin enthaltenes φ_i von der Breite $< \varepsilon$ eindeutig bestimmen.

In der Tat, wir können das erste³) in φ enthaltene rationale Primende A_j von der Länge $\leq \frac{\varepsilon}{3}$ nehmen, und dann nach der Vorschrift des Hülfsatzes I φ_I wählen.

¹⁾ Ibid. S. 343. Wenn auf einem und demselben Kreise mehr als ein brauchbarer Querschnitt liegt, so wählen wir denjenigen aus, welchem das grösste Teilgebiet entspricht.

²⁾ Dieses Verfahren versagt wenn γ zusammenfallende Endpunkte hat. Man erkennt leicht, wie man in diesem Falle verfahren muss.

³⁾ d. h. mit dem kleinsten Index behaftete.

Satz III. Der Fall a) ist unmöglich.

Es sei φ irgend ein Teilgebiet, φ_1 ein darin enthaltenes Teilgebiet von der Breite $<\frac{\varepsilon}{2}, \varphi_2$ ein in φ_1 enthaltenes Teilgebiet von der Breite $<\frac{\varepsilon}{2^2}$, u. s. w. Die Kette $\varphi_1, \varphi_2, \ldots, \varphi_n, \ldots$ konvergiert gegen einen Punkt; sie bestimmt also ein Primende erster Art 1), was unserer Voraussetzung widerspricht.

3. Nehmen wir jetzt an, dass der Fall \mathcal{C}) der richtige sei; es existiert dann ein Teilgebiet φ_0 , dessen sämtliche Primenden länger als ε sind.

Es sei a_1 irgend ein erreichbarer Punkt der Grenze von φ_0 (der nich zum Querschnitt q_0 gehört), in welchem ein Radius-Vektor $d_1 a_1$ endet. Auf diesem Radius-Vektor legen wir die Strecke $a_1 b_1$ von der Länge $\frac{\varepsilon}{2}$ ab 2); dann beschreiben wir von b_1 ab in positiver Richtung den Kreisbogen $b_1 c_1$ (Bogen des Kreises mit dem Mittelpunkte a_1) bis zum ersten Grenzpunkte c_1 . Der so erhaltene Querschnitt $q_1 = a_1 b_1 c_1$ definiert ein Teilgebiet φ_1 3), dessen sämtliche Primenden in φ_0 enthalten sind, also ebenfalls länger als ε sind.

Da in jeder Umgebung eines jeden Punktes eines beliebigen Primendes innere Gebietspunkte vorhanden sind, so gibt es solche Punte von φ_1 , welche um mehr als ε von a_1 entfernt sind. Da aber φ_1 zusammenhängend ist, so ist sein Durchschnitt mit dem Kreise von Radius ε mit dem Mittelpunkte a_1 nicht leer; er besteht nämlich aus abzählbar vielen offenen Bögen. Wir nehmen den grössten von diesen Bögen; wenn es mehr als einen solchen gibt, so können wir denjenigen nehmen, dessen rechter Endpunkt die kleinste Amplitude hat. Es sei a_2 sein rechter, d_2 sein linker Endpunkt. Dann legen wir darauf den Bogen a_2b_2 von der Länge $\frac{\varepsilon}{2^2}$ ab; wir ersetzen jedoch $\frac{\varepsilon}{2^2}$ duch die Hälfte der Länge von a_2d_2 , wenn

3) Von jetzt an geben wir dem Worte "Teilgebiet" seinen allgemeinen Sinn zurück.

¹⁾ Ibid. S 352.

Wir würden $\frac{\varepsilon}{2}$ durch $\frac{\delta}{2}$ ersetzen, wenn die Entfernung δ von a_i bis zum Querschnitt q_0 kleiner als ε wäre

letztere kleiner als $2 \cdot \frac{\varepsilon}{2^2}$ ausfallt. Auf einem Kreise mit dem Mittelpunkte a_2 legen wir dann in positiver Richtung den Bogen $b_2 c_2$ bis zum ersten Grenzpunkte c_2 ab. Der erhaltene Querschnitt $q_2 = a_2 b_2 c_2$ definiert seinerseits ein Teilgebiet φ_2 , dessen sämtliche Primenden länger als ε sind.

Mit φ_2 verfahren wir ebenso wie mit φ_1 , u. s. w.; dabei ist die Breite des Querschnittes q_n nicht grösser als $2 \cdot \frac{\varepsilon}{2^n}$, weil q_n auf einer

Kreisfläche vom Radius $\frac{\varepsilon}{2^n}$ liegt.

Die φ_n bilden eine Kette; es sei A das dadurch definierte Ende. Wir werden zeigen, dass A ein Primende, und zwar dritter oder vierter Art ist.

In der Punktfolge $a_1, a_2, \ldots, a_n, \ldots$ ist die Entfernung zwischen zwei hintereinander stehenden Punkten gleich ε ; sie muss also wenigstens zwei verschiedene Häufungspunkte z_1 und z_2 besitzen. Wir können aus $\{a_n\}$ zwei Teilfolgen $\{a'_n\}$ unh $\{a''_n\}$ aussondern, welche resp. gegen z_1 und z_2 konvergieren. Die Querschnittsketten $\{q'_n\}$ und $\{q''_n\}$ konvergieren gegen dieselben Punkte; sie bestimmen also zwei Primenden, für welche z_1 resp. z_2 Hauptpunkte sind. Da aber die Ketten $\{q_n\}$, $\{q'_n\}$ und $\{q''_n\}$ dasselbe Ende definieren 1, so ist A ein Primende, und zwar ein solches, welches zwei verschiedene Hauptpunkte z_1 und z_2 besitzt, — also ein Primende dritter oder vierter Art 2).

Der zweite Fall hat sich auch als unmöglich erwiesen. So haben wir den

Satz IV. Es gibt kein einfach zusammenhüngendes Gebiet, dessen Grenze ausschliesslich aus Primenden zweiter Art bestehe.

- 4. Der soeben gewonnene Satz kann verschärft werden, wenn wir ihm eine etwas andere Fassung geben, nämlich:
- 1º Wenn das einfach zusammenhäugende Gebiet W keine Primenden 3º oder 4º Art besitzt, so ist die Menge E seiner Primenden 1º Art nicht leer.

Von der Menge E können wir aber weit mehr behaupten, als ihre blosse Existenz.

¹⁾ Ibid. S. 333.

²⁾ Ibid. S. 354.

Wir können annehmen, dass die Primenden erster Art von der Länge null sind. Alle unsere Beweisführungen bleiben dabei bestehen; der Fall α) ist aber jetzt nicht nur möglich, aber sogar der einzig mögliche (da β) unmöglich bleibt).

 2° E hat die Mächtigkeit des Kontinuums. Der in einem beliebigen Teilgebiete φ enthaltene Teil von E besitzt dieselbe Eigenschaft.

In der Tat, wir wissen, wie mann ein in φ enthaltenes Teilgebiet von der Breite $<\varepsilon$ finden kann. Wir können aber auch zwei solche Teilgebiete φ_0 und φ_1 ohne gemeinsame Punkte finden. Es genügt nämlich ausser dem ersten $A_{i_0}^{-1}$) noch das nächste A_{i_1} zu wählen, welches zu φ gehört, nicht länger als $\frac{\varepsilon}{3}$ ist und dessen erreichbarer Punkt vom erreichbaren Punkte von A_{i_0} verschieden ist. Die Querschnitte q_0 und q_1 , welche φ_0 und φ_1 bestimmen, müssen darauf so klein gewählt werden, dass sie einander nicht treffen 2).

Dasselbe Verfahren dient uns dazu, um innerhalb φ_0 zwei Teilgebiete φ_{00} und φ_{01} ohne gemeinsame Punkte zu finden, deren Breiten $<\frac{\varepsilon}{2}$ sind; innerhalb φ_1 finden wir φ_{10} und φ_{11} mit denselben Eigenschaften. Ebenso verfahren wir weiter:

Wir wählen in $\varphi_{i_1 i_2 \dots i_n}(i_k = 0 \text{ oder } 1)$ zwei Teilgebiete $\varphi_{i_1 i_2 \dots i_n 0}$ und $\varphi_{i_1 i_2 \dots i_n 1}$, die $< \frac{\varepsilon}{2^n}$ sind.

Jede Kette

$$\varphi$$
, φ_{i_1} , $\varphi_{i_1 i_2}$, ..., $\varphi_{i_1 i_2 \dots i_n}$, ...

definiert ein Primende erster Art, das in φ enthalten ist; zwei verschiedene Ketten liefern dabei verschiedene Primenden 3). Verschiedener Ketten gibt es aber 2^{\aleph_0} , d. h. eine Menge von der Mächtigkeit des Kontinuums.

W. z. b. w.

- 5. Wir können noch weitere Schlüsse ziehen, wenn wir folgende Termina einführen:
 - 1) Vergl. 2, Hülfsatz II, Folgerung.
- Zahl ist, bei welcher die genannten Kreise alle Bedingungen erfüllen.
- 3) Von einem bestimmten n ab liegen nämlich alle Gebiete der ersten Kette in $\varphi_{i_1 i_2 \dots i_n 0}$, alle Gebiete der zweiten in $\varphi_{i_1 i_2 \dots i_n 1}$.

Eine Menge F von Primenden des Gebietes W nennen wir

1) $nirgends \ dicht$, wenn jedes Teilgebiet φ ein anderes Teilgebiet φ_1 enthält, welches kein zu F gehörendes Primende enthält:

2) von der I Kategorie, wenn sie aus abzählbar vielen nirgends-

dichten Mengen zusammengestellt ist;

3) von der II Kategorie, wenn ihre Komplementärmenge (d. h. die Menge der zu F nicht gehörenden Primenden des Gebietes W) von der I Kategorie ist 1)

Die Menge G der Primenden zweiter Art, deren Länge $\geqslant \varepsilon$ ist ist nirgendsdicht. In der Tat enthält jedes Teilgebiet φ ein anderer Teilgebiet φ_I , dessen Breite $<\varepsilon$ ist; φ_I kann kein zu G gehörendes Primende enthalten.

Dasselbe gilt auch von der Menge G_n der Primenden von der Länge $\geqslant \frac{\varepsilon}{2^n}$.

Die Menge sämtlicher Primenden zweiter Art, die als Summe der Mengen G_n dargestellt werden kann, ist von der I Kategorie. Ihre Komplementärmenge, d. h. die Menge der Primenden erster Art, ist somit von der zweiten Kategorie. Also

3º E ist von der II Kategorie.

Anmerkung. Wir können unsere Terminologie durch folgende Tatsachen rechtfertigen. Herr C. Carathéodory hat nämlich gezeigt, dass die Primenden einen zyklischen Ordnungstypus haben 2); dabei entspricht der Menge der Primenden eines Teilgebietes ein Intervall dieses Ordnungstypus, und umgekehrt.

Auf diesem Ordnungstypus haben also unsere Termina ihre gewöhnliche Bedeutung³).

- ¹) Folgende Beispiele zeigen, dass diese Begriffe von der gewöhnlichen (geometrischen) Dichtigkeit u. s. w. völlig unabhängig sind:
- 1) Die Menge E der Primenden erster Art muss überall dicht sein (d. h. solche Primenden sind in jedem Teilgebiet vorhanden); indessen zeigt Herr. C Carathéodory (ibid. S. 369, § 51), dass E nur aus einem Punkte bestehen kann.
- 2) Die Menge G der Primenden, deren Länge $\gg s$ ist, muss nirgendsdicht sein; indessen führt eine unwesentliche Modifikation der Brouwerschen Methode (Zur Analysis Situs, Mathematische Annalen 68 (1910), S. 423) zu einem Gebiete, dessen sämtliche Grenzpunkte in einem Primende A zweiter Art enthalten sind
- ²) Ibid. S. 350, Satz XIV. Der Beweis ist indirect (stützt sich auf die konforme Abbildung). Da ich von der Analyse keinen Gebrauch mache, so konnte ich auch diesen Satz nicht benutzen.
- 3) Die II Kategorie ist dabei im Lusinschen und nicht im Baireschen Sinne verstanden.

Wir können auch anders vorgehen. Wir werden nämlich die Primenden des Gebietes W als "Punkte" eines topologischen Raumes (im Hausdorffschen Sinne)¹) betrachten, den wir folgendermassen konstruieren werden. Es sei φ ein Teilgebiet, das durch einen Kreisbogen γ definiert ist; der Kreis, auf welchem γ liegt, soll einen rationalen Radius haben, und sein Mittelpunkt soll am Ende eines R_j liegen; es sei weiter U_{φ} die Menge der Primenden, die in φ enthalten sind²). Wir betrachten dann sämtliche U_{φ} ; wenn U_{φ} den "Punkt" A enthält. so werden wir sagen, dass U_{φ} eine Umgebung dieses "Punktes" ist.

Es ist nicht schwer zu zeigen, dass die Hausdorffschen Umgebungsaxiome³) erfüllt sind; dasselbe gilt auch von den Abzählbarkeitsaxiomen⁴).

In diesem Raume haben unsere Termina ihre gewöhnliche Bedeutung 5).

Moskau. den 16 April 1920.

Schon nach Beendigung dieser Schrift ist es mir bekannt geworden, dass das Carathéodorysche Problem durch Herrn W. Weniaminoff auf analytischem Wege (mit Benutzung der konformen Abbildung) bereits im Jahre 1919 gelöst worden war. Sein Beweis wurde aber — ebenso wie der meinige — wegen der russischen Zustände nicht publiziert.

- 1) Hausdorff, Grundzüge der Mengenlehre; Leipzig, Veit, 1914. Kap. VII-VIII.
- wie es aus der Carathéodoryschen Definition (l. c. S. 331) folgt, gehören die beiden Primenden, gegen welche die Halbbögen des Bogens γ konvergieren, zu U_{φ} nicht.
 - 3, Hausdorff, I. c. S. 213.
 - 4) Ibid. S. 263.
- ⁵) Vergl. Hausdorff, l. c. S. 251 u. 328. Der so konstruierte Raum ist, wie es aus dem obengesagten folgt, einer Kreisperipherie homoeomorph.

Moskau, den 19 Februar 1922.