

A Condition that every Subcontinu of a Continuous Curve be a Continuous Curve.

Rν

John Robert Kline (Philadelphia).

It is well known that every two points of a continuous curve M can be joined by a simple continuous arc 1), which belongs to M. The converse, that every closed connected set having the property that every pair of points of the set lie on a simple continuous arc belonging to the set, is a continuous curve, is not true as may easily be seen by an example. Indeed it is not necessary that a continu, in which every irreducible subcontinu is an arc, be a continuous curve 1). However, we shall show in this note that if every irreducible continu joining two points of a continuous curve is an arc, then every subcontinu of the continuous curve is itself a continuous curve 3). While the proof is carried out for two dimensions, a similar proof holds for any number of dimensions.

Theorem A. A necessary and sufficient condition that every subcontinu of a continuous curve be a continuous curve is that every irreducible continu be an arc¹).

Proof: That the condition is necessary follows as follows. Suppose M is a bounded continuous curve such that every subcontinu is a continuous curve and suppose further that there exists an irreducible continu k from A to B that is not an arc. Now as k is a continuous curve, by assumption, A and B can be joined by an arc h belonging entirely to k. Hence as h is a continu from A to B and as k is an irreducible continu between the same two points, k and the arc k must be identical, contrary to assumption.

The condition is sufficient. Suppose that M contains as a subset a continu H which is not a continuous curve. Then there exist two concentric circles K_1 and K_2 whose radii are r_1 and r_2 , respectively and a sequence of subcontinua of H_1 , H_2 , H_3 , ... such that (1) each of these subcontinua contains at least one point on K_1 and at least one point on K_2 but no point exterior to K_1 or interior to K_2 , (2) no two of these subcontinua have a point in common and no two of them contain points of any connected subset of M which lies wholly in $K_1 + K_2 + I$ (where I is the annular domain bounded by K_1 and K_2) (3) H_{∞} is the sequential limiting set of the sequence $H_1, H_2, H_3, ...$ (4) if K is the maximal subcontinu of H containing H_{∞} and lying wholly in the set $K_1 + K_2 + I$, then all the continua H_1 , H_2 , H_3 ,... lie in a connected set of $M - K^2$). For every i, H_i is a closed connected set containing a point P_i on K_1 and a point Q_i on K_2 . Now there is an irreducible continu I, of H, from P, to Q,3) and by hypothesis $P_i Q_i$ is an arc from P_i to Q_i . Let B_i be the first point on the arc

¹⁾ Cf. R. L. Moore, A Theorem Concerning Continuous Curves, Bulletin of the American Mathematical Society vol. 24 (1916-17).

³) Let us consider the point set P_i , where for every positive integer P_i is the point whose polar coordinates are $(1, \pi/2^i)$. Let O and P be the points whose polar coordinates are (0,0) and (1,0) respectively. Then let M be the continu composed of l, the straight line interval from (0,0) to (1,0) plus the infinite collection of intervals l_i , l_i , l_i , ... where l_i is the straight line interval from O to P_i . It is clear that if Q is a point of l different from O, then M is not connected im kleinen at Q.

³⁾ For a study of conditions, necessary and sufficient that every subcontinu of a continuous curve be a continuous curve see II. M. Gehman, Concerning the Subsets of a Continuous Curve, Annals of Mathematics vol. 26 (1925).

i) If A and B are distinct points, then an irreducible continu from A to B is a continu containing both A and B, which contains no proper subcontinu containing both A and B. If A and B are distinct points, then a simple continuous arc from A to B is a continu containing both A and B, which contains no proper connected subset containing both A and B. Throughout this paper "arc" and simple continuous arc" will be used interchangeably. If AB is an arc, then the symbol AB will denote the point set AB - A - B.

²⁾ Cf. R. L. Moore, Report on Continuous Curves from the Viewpoint of Analysis Situs, Bull. Amer. Math. Soc. vol. 29 (1923) p. 296. See also R. L. Wilder, Concerning Continuous Curves, Fund. Math. vol. 7 p. 371.

³⁾ Cf. S. Janiszewski, Sur les continus irréductibles entre deux points, Journal de l'Ecole Polytechnique 2-me série vol. 16 p. 109.

 P_i Q_i which is on K_2 while A_i is the last point of P_i B_i on K_1 . The point set A_1 , A_2 , A_3 ,... has a limit point A which belongs to H_{∞} . Select a sequence $A_{1,1}$, $A_{1,2}$... approaching A as the sequential limiting point.

Put about A as center a circle C_1 of diameter ε where ε is less than onetenth of r_1 minus r_2 . As M is connected im kleinen, it is possible to find an integer α_1 such that if $i \neq j$, $i \geqslant \alpha_1$ and $j \geqslant \alpha_1$, then $A_{1,i}$ and $A_{1,j}$ can be joined by an arc lying entirely within C_1 . Consider the point set $B_{1,\alpha_{i+1}}$, $B_{1,\alpha_{i+2}}$... where $B_{1,i}$ is the endpoint of $A_{1,i}$, $B_{1,i}$ on K_2 and $A_{1,i}$, $B_{1,i}$ is free of points of $K_1 + K_2$. These points have a limiting point B on H_{∞} and we can pick out a subset of $B_{1,\alpha_{i+1}}$, $B_{1,\alpha_{i+2}}$... having B as its sequential limiting point. Let this sequence be B_{1,n_i} , B_{1,n_2} ,... Put about B a circle C_2 of radius $\leqslant \varepsilon/2$ such that no point of the arc A_{1,α_i} , B_{1,α_i} is within or on C_2 . By the connectivity im kleinen of M at B, it is possible to find an integer β_1 such that if $i \neq j$, $i \geqslant \beta_1$ and $j \geqslant \beta_1$, then B_{1,n_i} and B_{1,n_j} are the endpoints of an arc of M which lies entirely within C_2 . Join A_{1,α_i} to $A_{1,n_{\beta_i}}$ by an arc of M

lying wholly within C1. This are will contain as a subset an are

 $\overline{A_1} \ \overline{A_2}$ where $\overline{A_1}$ is on $A_{1,\alpha_1} B_{1,\alpha_1}$ and $\overline{A_2}$ is on $A_{1,n_{\beta_1}} B_{1,n_{\beta_1}}$ while

 $\overline{A_1}$ $\overline{A_2}$ is free of points of $A_{1,\alpha_1}B_{1,\alpha_1}+A_{1,n_{\beta_1}}B_{1,n_{\beta_1}}$

Draw a circle K_3 , concentric with K_1 and K_2 and having as its, radius $r_1 - \varepsilon$. Let A_{2,n_i} be the first point of $B_{1,n_i} A_{1,n_i}$ ($i \ge \beta_1$) going from B_{1,n_i} to A_{1,n_i} which is on K_3 so that $B_{1,n_i} A_{2,n_i}$ is a subset of the annular domain I_{23} between K_2 and K_3 . Consider the point set $A_{2,n_{\beta_1}+1}$, $A_{2,n_{\beta_1}+2}$... This set will have as a limit point a point A_2 of H_{∞} on K_3 and again we can select from it a subsequence A_{2,m_i} , A_{2,m_2} ,... having A_2 as its sequential limiting point. Now put about A_2 as center a circle C_3 of diameter $\le \varepsilon/2^2$ such that there are within or on C_3 no points of the arcs $A_{1,\alpha_1} B_{1,\alpha_1}$ and $A_{1,n_{\beta_1}} B_{1,n_{\beta_1}}$. It is clear that no point of $\overline{A_1} \overline{A_2}$ is within this circle. By the connectivity im kleinen, there will exist an integer α_2 such that if $i \neq j$, $i \ge \alpha_2$ and $j \ge \alpha_2$, then A_{2,m_i} and A_{2,m_j} can be joined by an arc of M which lies wholly within C_3 . Join $B_{1,n_{\beta_1}}$ to $B_{2,n_{\alpha_2}}$ by an arc of M lying wholly in C_2 . This arc will contain as

a subarc, an arc $\overline{B_2}$ $\overline{B_3}$ where $\overline{B_2}$ is on $A_{1,n_{\beta_1}}B_{1,n_{\beta_1}}$ and $\overline{B_3}$ is on $A_{2,n_{\alpha_2}}B_{2,n_{\alpha_3}}$ while $\overline{B_3}$ $\overline{B_3}$ is free of points of both these arcs and of course of the arc $A_{1,\alpha_1}B_{1,\alpha_1}$ which has previously been excluded.

Now draw a circle C_4 concentric with K_1 and K_2 , having as its radius $r_2 + \varepsilon/2$ and proceed as before by means of first picking out a sequence of the B's and then getling an arc \overline{A}_3 \overline{A}_4 lying entirely within C_3 , which has no point except \overline{A}_3 in common with $B_{\alpha_1} \overline{A}_1$ (on $A_{\alpha_1} B_{\alpha_1}$) + \overline{A}_1 \overline{A}_2 + \overline{A}_2 \overline{B}_2 (on $A_{1,n_{\beta_1}} B_{1,n_{\beta_1}}$) + \overline{B}_2 \overline{B}_3 + \overline{B}_3 \overline{A}_3 (on $A_{2,m_{\alpha_3}} B_{2,m_{\alpha_3}}$).

Continue this process¹). Consider the set $W=(B_{\alpha_1}\,\overline{A}_1+\overline{A}_1\,\overline{A}_2+\overline{A}_3\,\overline{B}_2+\overline{B}_2\,\overline{B}_3+\ldots)$ and let $(\overline{W}-W)$ denote the limit points of W not in W. Clearly all points of $(\overline{W}-W)$ which are limit points of $B_{\alpha_1}\,\overline{A}_1+\overline{A}_2\,\overline{B}_2+\overline{A}_3\,\overline{B}_3+\ldots$ lie in H_{∞} and also between or on circles K and K, concentric with K_1 and K_2 and of radii $(r_1-4\varepsilon/3)$ and $(r_2+2\varepsilon/3)$ respectively. Clearly while the sets $\overline{A}_{2i-1}\,\overline{A}_{2i}$ and $\overline{B}_{2j}\,\overline{B}_{2j+1}$ may have points in common with H_{∞} , they can, by our method of construction, have no points in common with those points of H_{∞} which lie on or between K and K and the only limit points of $\overline{A}_1\,\overline{A}_2+\overline{A}_3\,\overline{A}_4+\ldots$ not in the set, are limit points of $\overline{A}_1+\overline{A}_2+\overline{A}_3+\ldots$ The set \overline{W} is clearly an irreducible continu between B_{α_1} and any point of $\overline{W}-W$. It is not an arc as it contains infinitely many mutually exclusive subarcs of diameter greater than $\frac{1}{2}(r_1-r_2)$. Thus we are led to a contradiction if we suppose our condition is not sufficient.

1) The process described above could have been simplified very much had one been interested merely in a proof for the subcontinua of a two dimensional continuous curve. In two dimensions we are aided by properties following rather directly from the Jordan curve separation theorem.

University of Pennsylvania, Philadelphia, Pa.