Concerning Menger regular curves.
By
Gordon T. Whyburn (Austin, Texas, U. S. A.).

A continnum M will be called a Menger regular curve, or simply
a regular curve’), provided it is true that for each point P of M
and each positive number e there exists a connected open subset
of M containing 2..and of diameter less than ¢ whose boundary
with respect®) to M is finite. The point P of a continuum M is
said to be a regular point of M if for each ¢ >0 an open subset
of M exists which ¢ontains P and is of diameter <C ¢ and whose
M-boundary is finite: Menger?) has shown that all regular curves
are continuous curves (or, rather, that they are connected im klei-
nen continua).

A continuous curve M is said to be cyclicly conmected4) provided
that every two points of M lie together on some simple closed
curve which is a subset of M. If the eyclicly connected continuous
curve C is a subset of a continuous curve M, then C ist sad to
be a maximal cyclic curves) of M provided that C is not a proper

) Cf. K. Menger, Grundziige einer Theorie der Kurven, Math. Ann. vol.
95 (1925), pp. 287—306.

) If B is an open subset of M (i. e., no point of B is a limit point of
M — R), then the boundary of R with respect to M is the set of all those
'pf)ints of M—R which are limit points of B. Cf. R. L. Moore, Concerning
simple continuous curves, Trans. Amer. Math. Soc., vol. 21 (1920), p. 345. In
the present paper I shall use the term M-boundary to denote the boufxdary of
an open subset of a continuum M with respect to M.

9 Loe. cit. :

Y G. T. Whyburn, Cyclicly conmected continuous curves, Proc. Nat. Acad.
Se., vol. 13 (1927), pp. 81—38.

%) Loe. cit.
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gubset of any cyclicly connected continuous curve which is also
a subset of M.

In this paper a study will be made .of the structure of Menger
regular curves in general and also of some particular types of
regular curves. Particular attention will be given to the structure
of the maximal cyclic curves of these regular curves. An extensive.
theory of the structure of a continuous curve (whether it be a re-
gular curve or not) with reference to its cyclic elements, i. e, its
maximal eyelic curves, eut points, and end points, will be found
in my paper Concerning the structure of a continuous curve'). Among
other things it is there shown that Ewvery continuons curve is an
acyclic continuous curve®) with rexpect to its cyclic elements. Thus it
is seen that the structure of any continuous curve can be fairly
readily determined when once we know the nature of each of its
maximal cyclic curves.

In this paper, unless otherwise specified, it is to be understood
that the point sets considered lie in a Euclidean space of n di-
mensions. In many cases the theorems hold in even more general
spaces. It is also to be understood, unless definitely stated to the
contrary, that the supposition that ,M is a continuous eurve* im-
plies that the point set M is bounded. Use will be made in n di-
mensions and for unbounded curves of a number of theorems of
the author’s on ecyclicly connected continuous curves which were
stated by him in the above mentioned papers only for the case of
the plane. That these theorems are true in a space of n-dimensions
and for unbounded curves has recently been established by W.
L. Ayres?).

§ 1.

Regular Curves in General.

Menger) has raised the question as to whether or not every
regular curve is, -for each e >0, the sum of a finite number of

1) To appear soon in the American Journal of Mathematics.

%) That is, a continuous curve containing no simple closed curve, or
a ,baum* curve (Menger). : . :

) Of. W. L. Ayres, Cyclicly connected continvious curves in a space of
n-diniensions, presented to the Am. Math. Soc., Sept. 9, 1927.

4) K. Menger, Zur aligemeinen Kurventheorie, Fund. Math., vol. 10
(1927), pp. 96 —115.
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eontinua each of dismeter < e and no two of which have more
than one point in common. In this section I shall give a partial
solution to this problem. Although my solution is mot a complete
one, nevertheless it applies to a fairly general class of regular
curves — much more general than the baum curve.

Definition. The two points "(or point sets) 4 and B of a con-
tinuum M are said to be separated in M by the poiut (or point
set) X of Al provided that M -— X is the sum of two mutually
scparated point sets 1, and M, containing 4 and B respectively.

In our paper ,On continuous curves in n-dimensions®?) W. L
Ayres and I proved the following theorem (Theorem A) which will
be used in this paper.

Theorem A. In order that a continuum M should be a Menger
regular curve it is nccessary and sufjicient that every two points of
M should be separated in M by some finite subset of M.

Theorem 1. In order that o coniinuous curve M should be
a Menger. regulur curve @ is necessary and sufficient that ecoery wma-
ximul curve of M should be a reqular curve.

Proof The condition is sufficient. For let 4 and B be any two
points of a continnous curve M every maximal cyclic curve of
which is a Menger regular curve. First suppose 4 and B lie toge-
ther in a maximal eyclic curve C of M. Then since by hypothesis
C is a Menger regular curve, it follows by Theorem A that there
exists a finite subset 7' of C which separates 4 and B in C. Then
T separates 4 and B in M. For suppose it does not. Then from
a theorem of R. L. Moore's?) it readily follows that M — 7" con-
tains an are ¢ from 4 to B. But by a theorem of the author's?)
it fullows readily that C must contain every arc in M whose end-
points belong to C. Hence C contains ¢, and 7' does not separate
A and B in C. Thus the supposition that 7 does not separate A
and B in M-leads to a contradiction. Second, suppose A and B

. 1) Offered to the Bulletin of the American Mathematical Society.

%) R. L. Moore, Concerning continuous curves in the plane, Math. Zeit.,
vol. 15 {1922) pp. 284—260, Theorem 1. Although stated by him for the case
of plane continuous curves, it is easy to see that Moore's theorem holds in
n-dimensions, since the axioms used by him are all satisfied in n-dimensions.

9) G. T. Whyburn, Cyclicly connected continuous curves, loc. cit., The-

~ orem 2; see Ayres, loc cit, for this theorem in n-dimensions and for un-
bounded curves.
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do not lie together in the same maximal eyclie curve of M. Thea
4 and B cannot lie together on any simple closed curve which
belongs to M; and by a theorem of the author’s!) it follows that
there exists a point X of M which separates 4 and B in M.

Thus, in any case, there exists a finite subset of M which sepa-
rates, A and B in M. Therefore, by Theorem A, Af is a Menger
regular curve. Hence the condmon of Theorem 1 is sufficient.

The condition is also necessary. For if a continuum 3/ is a Men-
ger regular curve, then it is an immediate consequence of the de-
finition of a regular curve that every subcontinsum of M is also
a regular curve. Hence all the maximal ecyclic curves of 3/ are
regular curves,

Since every maximal cyclic curve of the boundary of a com-
plementary domain of a plane continuous eurve is a simple closed
curve, we have the following

Corollary. The boundary of every complementary domain of
a plane continuous curve is .a Menger regular curve.
This corollary is not true in a space of 8 dimensions.

Theorem 2. In order that a bounded continuous curve M should
be, for each >0, the sum of a-jfinite number of continua each of
diameter < e and no two of which have more than omne point in
comamon it is necessary and sufficient that each mazimal cyclic curve
of M should have this same property.

Proof. The condition is sufficient. For let M be any continuous
curve satisfying the condition, and let ¢ be any positive number.
By a theorem of the author’s?) there are not more than a finite
.y C of 3 each

of diameter >>¢/4. Let the componentss) of .2 Cy be denoted by

iy Clay.ivy €,y For each i<Cmy, Cy contams at most one limit

ny
point of each component of M3 C;. Furthermore, there are at
fm1 .

Y G T. Whyburn, Some properties of continuous curves, Bull. Am. Math.
Soc. vol. 33 (1927) pp. 305—308, Theorem 3.

N G. T. Whyhburn, Cyclicly connected continuous curves, loc. cit. The-
orem 6.

%) A component of a point set K is a maximal connected subsot of K,
i e. a connected subset of K which is not a proper subset of any other con-
nected subset of K; of F. Hausdorff, Mengenlehre 1927.
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most a finite number of components X of i/ — 3¢ '« such that
fml

there exist two distinet integers j and & such that both G and (|
contain a:limit poiut of X. Let the components of M — 2 Cy, for

which this is true be denoted by Ay, Aig, Argyees Ay For each
integer i<Cmy, let X, avd Yy, be points belongmg to different
sets {Cy} and such that each of these points is a limit point of
Ay,. There exists an are #, from X, to ¥}, which lies, except for
the points X, and Y, wholly in 4,,. Let T3, denote the simple
cyclic chain®) in M from X, to ¥y, i. e, the set of points obtained
Ly adding to #,, all those maximal cychc curves of M which con-
tain a segment of #,. Then 7}, is a subset of 4,?). Now let
C;u Ci, Ca,..., Cs, denote the components of the set of pnints

’,,—-|— 2’ T,,. Let Ay, Ags,..., 4s,, denote the components of 3/ —
-1

i

[§ (r’l(-{—ETﬁ] which have the property that, for each integer

i< g, there exist two distinet integers j and k <Cn, such that
each of the sets Cy and Ci contains a limit pomt of 4,,. For
each i<Cng, let X,, and Y,, be points which belong to different
sets {Cy) and wWhich are limit points of 4,,. Let #, be an arc
from X;, to ¥,, which lies, except for the points X,, and Y,
wholly in 4,,, and let 7}, be the simple cyclic chain in M from
X, to Y. Now let Cj, Ch,..., Cs,, denote the components of

3 C“—i—ng,-—}—}jT,i, and so on, Let this process be continued.
iy el =1 :

Since M is a connected point set, it follows that this process must
terminate after at most », steps, i. e, there exists an integer k

"Q;—|-l
such’ that ECI,—I- 3T

Jui i=1
and hence such that no eomponeot of M minus this point set has
more than one limit point in this set. Let H, denote this set of
points.

is a connected point set (a continuum),

1) Bee my paper Concerning the structure oy a continusus curve, loc. cit.
Stmple cyclic chain is there defined in a different. but equivalent way.

%) Wherever the symbol X is used to demots a point set, the symbol X
will be used to denote the set X plus all of its limit points. ‘
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It follows from our hypothesis and from a theorem of Men-
ger's!) that every maximal eyclic eurve of M is a regular carve.
Therefore by Theorem 1, M itself is a regular curve and there
fore every subcontinuum of M is?) a continuous curve.

Since M and 'H, are bounded continuous curves, then there?)
are not more than a finite number of components of M — H, of
diameter > ¢/4. Let these be denoted by R,;. Ry, Bys,. ., Ry,. For
each positive integer i<Cj,, H, contains exactly one hmu; pomt
Py of By and Ry, contains a point @, whose distance from- P,, is
> ¢/8. Let Uy be an arc in M from P, to Q,, and let W,, be
the simple eyclic chain im M from Pj; to Q,, determined by the

arc U,,. Let H, denote the continuum Hl—I—g‘ W Then only
=1

a finite number of the components of M — H, are of diameter
> ¢/4. Let these be ordered Ry, Ry, Ryy,..., Ry,. For each posi-
tive integer i <(j;, H, contains exactly one limit point 2,,, and
R,, contains a point @,, whose distance from P, is > ¢/8. Let U,,
be an arc in M from Py to Qy, and let W, be the simple cyclic
chain in M from P, to @, determined by the arc U,. Let H,
denote the continuum H +2$ W;:. Denote the components of M—H,

jam]
which are of diameter > ¢/4 by Ry, Rys, Ryg,i..y By, and so on.
Since every subcontinuum of M is a continuous curve, since each

- of the sets’ {W,} is of a dismeter > ¢/8, and since it is true that

if a and b are integers such that a>>b -2, then no one of the
sets. W,; has a point in common with any one of the sets W, it
follows by a theorem of Gehman's?) that this process must ter-
minate after a finite nuimber of steps, i. e. there exists an integer
g such that no component of M — H, ig of diameter > ¢/4.

" Now the continuum H, -is by deﬁmtlon equal to the set of

k "Q_H-l g—l in
points 2’01‘ —{—-2 2 T,+ 2 ZW,. Since each set {C,} is a ma-
el fe] n=m] fm]

") K. Menger, Grundzige einer Theorie der Kurven, loc. cit., Theorem 20,

) K. Menger, loc. cit, Theorem 21. -

5\ Cf. W. L. Ayres, Concerning continuous curves and correspondences,
Ann. of. Math., vol. 28 (1927), pp. 396—418, Theorem 1. This also follows
from the fact that every subcontinuum of M js a continuous curve and a the-
orem, of H. M. Gehman's, cf. H. M. Gehman, Concerning- the subsets of
a plane continuous cwurve, Ann. of Math,, vol. 27 (1920) pp- 29—46. Theorem 5.

4 H. M. Gehman, loc. cit.
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ximal cyclic curve of M, then by hypothesis each such set can be
expressed as the sum of a finite number of continua each of dia-
meter < ¢/4 and no two of which have more than one point in
common. And sinece mo two sets {C),} can have more than one

. . "1 . .
point in common?), therefore 3 C, is the snm of a finite number
fn]

K, K, K,,..., K, of continua each of diameter <C¢/4 and no’ two
of which have more than one point in common. Now for each pair

. . LR
of integers a and b such that 77, is an element of ¥ 2 T7),, the chain
jm=1 im1

T, can be expressed as the sum of a finite number of continua
each of diameter <C¢/2 and no two of which have more than one
point in common as follows. Consider the arc #,. Every segment
of this are which is of diameter >> ¢/4- must contain at least one
point which separates X,, and Y,, in M, for otherwise by a the-
orem of the author’s?), there would exist a maximal cyelic curve
of M, distinet from every C,,, which is of diameter > ¢/4, con-
trary to the fact that all such sets belong to {C.}. It follows?)
that there exists a finite subset Fy, F), Fy,..., F, of the set of all
those points which separate X, and Y,, in M such that each of
the intervals X, F,, F, F,, F, Fy,..., F, Y, of t, is .of diameter
< ¢/2. Then the simple cyclic chain in M from X, to F, from
F, to F,, F, to Fy, and 50 on, are subsets of 7,,, no two of them
have more than one point in common, and each of them is of

diameter <(¢e (for each of the arcs X,,,,AII;,, F F,,... is of diameter
< ¢/2 and each maximal cyclic curve of M which belongs to one
of these chains must be of diameter < ¢/4 and contain a point in
common with that one of these arcs which determines the chain

1) See my paper Cyclicly connected continuous curves, loc. cit., Theorem 5.

* G. T. Whyhurn, Some properties of continuous curves, loc. cit., The-
orem 2. : : :

%) This may be proved as follows. In the order from Xu to Ya. on ts
there exists a first point B, whosé distance from Xu ‘is == /4, on the interval
B, Ya a first point B, whose distance from B, is ==¢/4, on B, Ya. a first
point B; whose distance from B, is =¢/4, and so on. Sinece each interval
Bi Biyy of Xay Yo is of diameter 3> e/4, this process must terminate, i. e., there
gxists an integer m such that every point of the interval B, ¥u. is at a di-
stance < e/t from Bn. Each of the intervals Xu, B,, B, B, B, By,..., Bre1Bn
must contain points Fy, F,..., F which separate Xuy and. Yo in M.
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to which it belongs). Then since no two of the chains {7} have

. - - k F ] .
more than one point in common, it follows that Enggfl’,‘ is the sum
jel w1

of a finite number K,.,, K;s, Koys,..., Koy, of continua each of
diameter <C ¢ and no two of which have more than one point in

. . s s L L]
common. In an entirely similar way it is shown that 3 3 W,, is
: | nml {=1

the sum of finite pumber K41, Kipeyoy..., Kuy,y, of continua of
diameter < e and no two of which have more than one point in

‘common. :

It is readily seen, then, that no two of the continua K, K,,...
...Kuate4y have more than one point in common. Now let N, denote
the point set obtained by adding to K, all those components of
M— H, which have a limit point in K, (each component of ¥— H,
has just one limit point which belongs to H,), let N, be the set
obtained by adding to K, all the components of M — H, which
have & limit point in K, but not in K, let N; be obtained by
adding to Hy all the components of M— H, which have a limit
point in K; but not in K, + K,, and so on; in general let N, be
obtained by adding to K, all the components of M -— H, which
have a limit point in K, but not in K, 4 K, 4 ... + K. Then
since all the components of M — H, are of diameter <C e/4, and
since for any 6 >0, not more than a finite number of them are
of diameter > 0, it follows that each of the sets {N,} is a conti-
nuum of diameter <C2e It is easy to see that no two of these

aeks
continua have more than one point in commou. But M = 2 Nj
i=1

hence M is the sum of a finite number of continua each of dia-
meter << 2¢ and no two of which have more than one point in
common,

The condition-is also necessary. For suppose & bounded conti-
nuons curve satisfies the condition. Let C be any maximal cyelic
curve of M and ¢ any positive number. By hypothesis M is the
gum of a finite number of continua K,, Ky, Ki,..., K, each of
diameter < ¢ and no two of which have more than one point.in
common. For each positive integer i<Cn, let N; denote the set of
points common to K; and C. Then?), for each i, N;is either va-

1) Of. G. T. Whyburn, Concerning the structure of a cpntinuous curve,
Amer. Journ. Math., to appear, Theorem 30. :


Yakuza


272 Gordon T. Whyburn:

cuous, a point, or a continuum. Let N,, N, N,,..., N, be the

X .
sets V; which are continua. It is readily seen that C = iE N,,. Since
. =]

for each i<Ck, N, is a subset of K, , therefore each continuum N,
i8 of diameter <C¢ and no two of these continua have more than
one point in common. This completes the proof of Theorem 2.

It is not difficult to prove the following theorem, which is more
general than one part of Theorem 2: If a continuum M is, for
each € >0, the sum of a finite number of continua of diameter <e¢
and no two of which have more than one point in common, then every
subcontinuum of M also has this same property. This theorem may
readily be proved with the aid of a lemma on connected point
sets proved by Knaster and Kuratowski and independently
by the author (see § 6 below). ,

Corollary 1. If every mazximal cyclie curve of a continuous curve
M is a simple closed curve, then for each positive number e, M is
the sum of a finite number of continua of diameter < ¢ and no two
of which have more than one point in common.

Corollary 2. The boundary of every complementary domain of
a plane bounded continuous curve is, for each > 0, the sum of

a finite number of continua of diameter < ¢ no two of which have
maore than ome point in common.

§ 2
Accessibility of the Regular Points of a Continuum.

A boundary point P of a point set B is said to be regularly
accessible?) from R provided that for every positive number ¢ thers
exists a positive number d,, such that every point X of B whose
distance from P is <Cd,, can be joined to P by an arec XP of
diameter << ¢ and such that XP — P is a subset of R,

Fundamental Accessibility Theorem. Theorem 3. If the li-
mit point P of a point set R is not regularly accessible from R,
then there exists a positive number ¢ and an infinite sequence of

HCf G T. Whyburn, Concerning the open subsets of a plane conti-
nious curve, Proc. Nat. Acad. Se., vol. 18 (1927), pp. 660—657.
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points Py, Py, Py,... of R which has P as its sequential Umit point
and such that no two of these points can be joined by any arc of R
which is of diameter <e.

Proof. Suppose P is a limit point of a point set B such that
no matter what positive number ¢ may be there exists no sequence
Py, Py, Py,... of distinet points of B having P as its sequential
limit point and having the property that mo two of these points
can be joined by an are in R of dismeter < e. 1 shall show that
under these conditions the point P is regularly accessible from R

For each positive integer # and each point X of R let G.. de-
note the set of all those points of B which can be joined in R to
X by an are of diameter <C1/n. Now for each positive integer n
there must exist a neighborhood U,, of P (i e. the set of all po-
ints of the space whose distance from P is < > 0) such that
the subset H,, of B which belongs to U, is a subset of the sum
of the elements of some finite collection of the collection of sets
{G..). For suppose, on the contrary, that there exists an integer
k% such that every neighborhood of P contains a subset of R which
is not contained in any finite collection of the sets {&,}. Let
71s T Tgy... be a sequence of positive numbers approaching zero.
Let X, be a point belonging to H,, (such a point exists, since P
is & limit point of R). There exists a point X, in H,, which does
not belong to G,,; there exists a point X, in H,, which does not
belong to G, + Gi,; there exists a point X, in H,, not belon-
ging to G, + G Gy 2nd so on. Then P is the sequential
limit point of the sequence of points X, X, X,,..., each of these
points kelongs to R, and no two of them can be joined in R by
any arc which is of diameter < 1/k. This contradiets our original
assumption, Thus it follows that for each integer # >0 a neigh-
borhood U,, of P exists such that H_, is a subset of the sum of
the elements of some finite collection of the sets {G..}., For each
integer » > 0, let us select some definite neighborhood U, of P
having this property.

Let') ¢ be any definite positive number. There exists an inte-
ger i, such that 1/ny <e/4. The set of points H, ., is contained

1) Compare the proof from this point on with that given in my paper
Concerning the open subsets of o plane continuous curve, loc. cit,, to prove
Theorem 1.

Fundamenta Mathematicae t. XII. 18
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in the sum of the elements of a finite collection G, of the sets

{G..}- There exists an integer ng > 1 such that r,; <r,, and such that
each point of 'H',.(,M" belongs to at least one of the sets of the col-

lection G, which has P for a limit point. I shall show that every
point X of B whose' distance from P is <7, can be joined to P
by an are XP of diameter < e and such that XP — P belongs
to B. Let X, denote any such point of B, i. e. any point of
H,“é .- The point X, belongs to some set g, of the eollection @,

which has P for a limit point. There exists an integer 7, > 2u;
and such that », <1/2r, and also less than 1/2 the diameter of
go- Then since H, , is contained - in a finite number of the sets

{G,.}, it readily follows that there exists at least one of these sets
g, which. contains a point in g, and has P for a limit point. Let X,
be a point belonging to g, .g,. There exists an integer n, > 2n,
such that r, < 1/2r, and also less than 1/2 the diameter of g,.
Then, just as above, there exists a set g, of the collection {G,,}
which contains a point in g, and has P for a limit point, Let X,
be a point of g,.g,. There exists an integer ny > 2n, such that
7., << 1/2r,,, and so on. This process may be continued indefinitely,
giving an infinite sequence of point sets g, g;, gs,... having the
properties that for >0, g, has P for a limit point, is arcwise
connected, and contains the points X, and X,.. For each integer
n>>0, g, contains an are X,X,,,. From the properties of the sets
9os J1» oy it veadily follows that the point set P X, X; -
X; Xy + X, X,+... is closed and that it contains an are X,P
from X, to P which lies, except for the point 2, wholly in R.
It is readily seen that this are is of diameter <Ce But now X
was any point of B whose distance from P is <<r/. It follows
that P is regularly accessible from R.

‘We have shown that if no positive number ¢ and no sequence
of points P, B,, F,.... exist satisfying the conditions of Theorem
3, then P is regularly accessible from R. Hence if P is not regu-
larly accessible from R, a positive number ¢ and 'a sequence of
points satisfying the conditions of Theorem 3 must. exist. The
trouth of Theorem 3 is therefore established.

Theorem 4. If P is a regular point of a continuum M, then

P is regularly accessible from every complementary domain of M to
whose boundary it belorgs. :
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Lemma 1. If P is a regular point of a plane continium M then
for each € > 0 there exists a simple closed curve J which encloses P
and such that J. M is finite (of power n, in case P is a point of
order n of M).

Lemma 1 is readily established with the use of a theorem of
R G. Lubben’s?). '

Proot of Theorem 4. First let us suppose that M is a plane
continuum, Let P be any regular point of M and let B be any
complementary domain of M whose boundary contains P, and sup-
pose, contrary to Theorem 4, that P is not regularly accessible
from R. Then by Theorem 3 it follows that there exists a positive
number ¢ and an infinite sequence P, P,,... of points of R ha-
ving I as its sequential limit point and no two of which can be
joined by any arc of R of diameter <Ce. Now, by Lemma 1, there
exists a simple closed curve J of diameter < ¢/4 which encloses
F and such that J. M is finite. There exists an integer k such that
if i is >k then P, is within J. For each integer i >k, R con-
tains an are P,P,. Each arc PP, contains an arc P;Q,, where @,
is a point of J and such that P,Q;— 0, is within J. No two of
the ares {P,;} can have a common point. Hence the set of points
{Q.} is infinite. Then since J. M is finite there exist points @,
and @, of this set such that one of the arcs 0.X0Q, of J from ¢,
to. Q, contains no point of M. But then the set of points P,Q.-
0.XQ, -+ P,Q, is an arc of diameter <e¢ which lies wholly in R
and contains two points of the sequence P, P,, P, .. This is con-
trary to the definition of this sequence. Thus the supposition that
Theorem 4 is not true for the case of a plane continuum leads
to contradiction.

That Theorem 4 is true in a space of n(n=> 3) dimensions is
a corollary of the Theorem 5 below. .

Zarankiewicz?) has shown that in a Euclidean space E, of
of n(n>=3) dimensions every one dimensional3) continuum M is

1) R. G: Lubben, The separation of miutually separated subsets of a con-

tinuum by curves (abstract), Bull. Amer. Math. Soc. vol. 32 (1926), p. 1.14.
%) C. Zarankiewiesz, Sur les points de division dans les ensembles con-

" mewes, Fund. Math. vol. 9 (1927}, p. 43..

%) In the Menger-Urysohn sense. Cf. P. Urysohn, Mémoire sur les mul-
tiplicités cantoriennes, Fund. 3ath. vol. 7, p. 66, and K. Menger,. Monats-

hefte f. Math. u. Phys. 1 (1928), 8. 148. -
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accessible from E, — M. It is to be noted that Theorem 4 is not
a corollary to the theorem of Zarankiewicz For in Theorem
4 it is not assumed that the continuum J be regular or that it he
one dimensional — it is merely assumed that it be regular, and
hence one dimensional, at the point P in question. Furthermore
Theorem 4 is true in two dimensions, whereas Zarankiewicz's
theorem is not. The following extension of the theorem of Zaran-
kiewicz is of interest.

Theorem 5. If P is any one dimensional point of a continuum
M in a Euclidean space of n dimensions (n 2> 3), then P is regu-
larly accessible from every complementary domain') of M whose
boundary contains F. :

Proof, Let B be any complementary domain of M whose boun-
dary contains P, and suppose, contrary to this theorem, that P is
not regularly accessible from RE. Then, by Theorem 3, there exists
a positive number ¢ and an infinite sequence Py, Py, F;,... of points
of R which has P as its sequential limit point and such that no
two. of these points can be joined by any arc of B of diameter
<e. Now since P is a 1 dimensional point of M, there exists
a domain D of diameter < ¢/2 which contains P and whose boun-
dary N has only a null-dimensional set in common with M. Let
K denote the boundary of the unbounded complementary domain
of N. Then since K.M is a subset of N.M, therefore K.M, is
null - dithensional; and as K is the common boundary of two
.n(n 2> 3) dimensional domains, then by a theorem of Urysohn’s?)
K—K:M is connected. ‘Now as K is of diameter <C ¢/4, and
K—K.M is a connected open subset of K which contains no
point whatever of M it is easy to see that there exists a domain
@ of diameter <C¢/2. which contains K — K .M but contains no
point whatever of M.

Now there exists an integer k& such that if i >k, then P, lies
in D. For each integer ¢ >k, R contains an arc P,P,. Each such
arc must dontain at least one point of K (since it is of diameter
=>e¢), and hence for each i >k, the arc P,P, contains an arc P,Q,,

*) There can exist at most one complementary domain of M whose boun-
dary contains P — a fact immediately - obvious in view of Urysohn's The-
orem (P. Urysohn, loc. cit. p. 94) that the common boundary of any two
domains in 7(n>>3) dimensions is at least 2-dimensional.

) P, Urysohn, loc. cit. p- 123.
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where @, is on K and P, — (), contains no point of K. Now let
a and b be two integers >k Then as ¢, and @, belong to K
they belong also to G. The domain G contains an are Q,(, which
is necessarily ot diameter. < ¢/2. But then the arc P,Q,4-0.Q.-
P,Q, is of diameter < e and lies wholly in R (since G contains
no point of M), and it contains two distinet points of the sequence
P,, P,, P,,... But this is contrary to the definition of this sequence.
Thus the supposition that theorem 5 is not true leads to a contra-
diction.

§ 3

Some Particular Types of Regunlar Curves.

If P is a point of a continuous eurve M, then M will be said to be
a baum im kleinen at the point P provided that for each ¢>0
there exists a connected open subset U of M which contains P, is
of diameter < ¢ and is such that U is a baum curve (i. e. an
acyelic continuous curve). A continuous curve which is a baum im
kleinen at each of its points is called a baum im kleinen®).

Theorem 6. If P is a point of a continuous curve M at which
M is not a baum im Fkleinen, then for each positive e M contains
a simple closed curve every point of which is at a distance less than
€ from P.

Proof. Let K denote the set of all those points whose distance
from P is —¢/2, and let N be the componeént of M — M. K
which contains P, Then N is a counected open subset of M and
N 'is a continuous curve, But N is not a baum curve, for M is

"ot a baum im Kkleinen at P. Hence N contains a simple closed

curve J. Every point of J is at a distance <le from P. This com-
pletes the proof of Theorem 6

Theorem 7. If the continuous curve M does not contain any
infinite collection of mutually exclusive simple closed curves, then'M
is a reqular curve which is a baum im kleinen at all save possibly

a finite number of its points.

1 Cf. K. Menger, {'ber reguldre Baumkurven, Math. Ann., vol. 95 (1926-
1927) p. 874 (footnote). :
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Proof. Suppose, on the contrary, that M contains an infinite set
of points @ at no one of which ) is a baum im kleinen. The set
Q contains an infinite sequence of points P, P,, Pi,... having
a sequential limit point P. By theorem 6 it follows that there exists
in M a simple closed curve J; every point of which is at a di-
stance from P; less than the least distance from P to the set of
points P, 4 P; ... Likewise M contains a simple closed curve
Jy every point of which is at a distance from P, less than the

_least distance from P, to the set of points J, + P+ P, ... In
general for each >0 M contains a simple closed curve J; every
point of which is at a distance from P, less than the least distance
from P, to the set of points [21'].],, + 3 P, It is easy to see that

nwmi-f1
no two of the simple closed curves J, J,, J;,... can have a com-

mon point. But by hypothesis M contains no infinite' collection” of
mutually exclusive simple closed curves. Thus the supposition that
M contains an infinite set of points-at which it is not a haum im
kleinen leads to a contradiction. ,

. Now obviously every point of the contiruous curve M at which M
is a baum im kleinen is a regular point of M. Hence by the proof
given above. the non regular points of M must be finite, But by
a theo‘rem of Menger's?), the set of all the non-regular points of
a continuum is either null or else it contains a continuum. Hence

the non-regular points of M are null and J is therefore a regu-
lar curve. )

Corollary. {Of also Theorem 1). If no maximal cyclic curve
of a continuous curve M contuins anm infinite sequence o.f mutually
e.z.z:clusz've simple closed curves. then M is a Menger regular curve which
is baum im kleinen at all save possibly a countable number of points,

< .Theorem 8. If every point of a bounded continuum M in a plane
i regularly accessible from S -— M, then M is a continuous curve

_ Proof. Let D denote any complementary domain of I/ and B
its box'mdary. Then from our hypothesis it foliows that every point
of B is regularly accessible from ). Hence, by a theoreln.‘:of the
author’s®). every point of B is accessible from L from all sides in the

:) g Menger, Grundzilge einer Theorie der Kurven, loc, cit., Theorem 8.
b .) G. T. Why'b urn, Concerning the open subsets of plane conlinuous cwrve,
roc. Nat. Aead. Se., vol. 18 (1927) pp- 650—657, Theorem 2 ,

&
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sense of Schoenflies!). Now if ¢ is any positive number, not

more than a finite number of the complementary domains of M
are of diameter > . For suppose, on the contrary, that there exists
an infinite sequence Dy, D,, D,,... of the complementary domains
of M each of which is of diameter > ¢ Then by & Theorem of
R. G. Lubben’s?) there exists an infinite sequence R,, R,, Ry,...
of these domains baving a sequential limiting set T' of diameter
>e¢ which is a continuum belonging to M. Let X, ¥ and Z be
three distinet points of 7. Then each of these points must belong
to the boundary of — and therefore be accessible from — all save
4 finite number of the domains E,, R,, R,....; for otherwise there
would exist an infinite sequence of points P,, P,, P,,.. having
one of these points, say X, as a limit point and that, for each i,
P, belongs to E,, but such that no one of these points can be
joined to X by any arc which lies, except for the point X, in
§— M, contrary to the fact that X is regularly accessible from S— AL
Hence there exist three of these domains R,, B,, B, such that each
of the points X, ¥ and Z is accessible from all three of these
domains. But this is contradictory to a theorem proved by the
author®). Thus the supposition that there exist infinitely many com-
plementary domains of M each of diameter > e leads to a contra-
diction. Then by a theorem due to Schoenflies?) it follows
that M is a continuous curve. ’

Theorem 9. In order that every point of a mon-dense continuous
curve M in a plane S should be regularly accessible from S— M it is
necessary and sufficient that M should contain no infinite collection
of mutually exclusive simple closed curves.

Proof. The condition is necessary. For suppose, on the contrary,
that there exists & non-dense continuous curve M in a plane S

1) A. Schoenflies, Die Entwickeluny der Lehre von den Punkimannig-
Jaltigkeiten, zweiter Teil, Jahr. der Deutschen Math.-Ver, Erginzungsbinde,
vol. 2 (1908), p. 215. :

3 R. G. Luhben, Concerning Limiting sets, {abstract] Bull Amer. Math.

Se., vol. 32 (1928), p. 14 )
3) Cf. abstract of my paper, Some theorems concerning domains and their
boundaries, Bull. Amer. Math. Soc., vol. 32 (1926), p. 200, This theorem has
heen generalized and will appear in my paper On irreducible cuttings of
a continuum. ’
4 A. Schoenflies, loc. cit.
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every point of which is regularly accessible from S — M but which
contains an infinite collection G of mutually exclusive simple closed
curves. It is readily seen that there exists an infinite sequence
Ji; Jaye.. of curves of G and a point P of M such that either ey
for each positive integer ¢, J, encloses J,;; -+ P and P is a limit
point of a sequence of points P,, P, Py,... where P, belongs to
S—M and lies in the domain between J, and Jia or (2) Pis
without every ove of these curves and is-a limit point of a sequence
of points P, P,,... where, for each i, F, is a point of S— ]/
within Ji. In either case it is elear that no point P, of the sequence
Py, P,,... can be joined to P by any arc which lies save for the
point P in S— M. Then since P is a limit point of the set of
points P;.- P, 4 Py + ... belonging to S — M, it follows that £
is not regularly accessible from S — M, contrary to hypothesis.
Thus it follows that the condition of theorem 9 is necessary.

The condition is also sufficient. For suppose a continuous curve
M contains no infinite collection of simple closed curves, and sup-
Jose, contrary to this theorem, that M contains a point P which is
not regularly accessible from S — M. Then there exists a positive
number e such that for every positive number d points of § — M
exist whose distange from P is << which cannot be joined to P
by any are of diameter < ¢ which lies, save for P in § - M
Now let @G denote the set of all those points of S— M which lie
in some complementary domain of M whose boundary coutains the
point P. Then by the above quoted theorems of Schoenflies and
the author it readily follows that P is regularly accessible from G.
Hence there exists a positive number d, such that every point of
G whose distance from P is < d, can be joined to P by an are
lying except for P in @ (and hence in S — M). There exists
a point P, of §— M whose distance from P is <4, ‘which cannot
belong to @, because, by supposition, P is not regularly accessible
from §— M. The boundary of the complementary domain of M
which contains P, contains?) a simple closed curve J,. The curve
J, cannot contain P, for P, does not belong to @. Now it has
Just been shown that P is a limit point of the collection of all
those components of S— M which are not subsets of G. And as P

) Cf. R. L. Moore, Concerning continuous curves in the

plane, loc. cit.,
Theorem 4.
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ig not a limit point of any one such component it must be a limit
point of their sum. Then since, by the above theorem of Schoen-
flies only a finite number of the components of J are of diame-
ter > any preassigned positive number, it follows that there exists
a component D, of S — M every point ot which is at a distance
from P less than the distance from P to J, and whose boundary
does not contain P. The boundary of D, contains a simple closed
carve Jp. Likewise there exists a component D, of §— ¥ every
point of which is at a distance from P less than the distance from
P to J, + J, and whose boundary does not contain P. The houn-
dary of Dy contains a simple closed curve J;. This process may
be continued indefinitely, giving au infinite sequence of simple
closed curves Jy, J,, Jy,... which belong to J. But it is readily
seen that no two of these curves can have a ecommon point, and
by hypothesis M contains no infinite collection of mutually exelu-
sive simple closed curves. Thus the supposition that the condition
of this theorem is not necessary leads to a contradiction and the
proof is complete,

Theorem 10. If the bounded non-dense continuum M in a plane
S-is regularly accessible at each of its points from S — M then M
is a regular curve which is a baum im kleinen at all save possibly
a finite number of its points. :

Theorem 10 is an immediate consequence of - Theorems 7, 8,
and 9.

Theorem 11. If M is a plane non-dense coutinuous curve and
denotes the collection of all the complementary domains of M, then
the limiting set') T of the collection G is tdentical with the set of all
those points of M at which M is not a baum im kleinen.

Proof. It is clear that T'is a subset of A/ Let P be any point
of T. Then M is not a baum im kleinen at P. For there exists an
infinite sequence of domains D, Dy, Dy,... of G such t!)at. if, f-'or
each 4, P, is a point of ), then P is the sequential limit p.o.mt
of the sequence of points Py, P,, P;,... Now, for each positive
integer 4, the boundary of D, contains?) a simple closed curve J.
Then since P helongs to the limiting set of the collection of curves

1) j, e. the set of all those points which are limit points of some set of
points containing just one point in each element of G.
%) Cf. R L. Moore, loe cit.
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[/}, and since at most s finite number of these curves are of dja.
meter greater than any preassigned positive number, it follows that
every open subset of 1/ which contains P must contain at least
one of them. Hence A7 is not a baum im kleinen at P.

We have just shown that M is a baum im kleinen at no po-
int of T. Now let P be any point of M at which M is not a baum
im kleinen. Then P must helong to 7. For, by Theorem 6. there
exists in M a simple closed curve J, every point of which is at
a distanee <1 from P. Since M is non-dense, there exists a point
Py of S— M which is within J,. By Theorem 6, there exists a sim-
ple closed curve J, in ) every point of which is at a distance
from P less than 4 the distance from P, to P, There exists within
J, a point P, of S— 3. By Theorem 6, A contains a simple clo-

sed curve J; every point of which is at a distance from P less:

than } the distance from P, to P. The curve J; encloses a point
Fy of S—M. This process may be continued indefinitely, giving
an infinite sequence P,, Py, P,,..., of points of M which has P as
its sequential limit point. Now if P, and P, are any two distinct
points of this sequence, ¢ > j, then the simple closed curve J; en-
closes F; but does not enclose P,. Hence P, and P, belong to dif-
ferent complementary domains of 1/, and therefore P belongs to
the limiting set of the collection G and hence belongs to 7. Thus
we have shown that 7" is identical with the set of all those points
of M at which M is not a baum im kleinen.

Theorem 12. If P is a point of order w Yoof a cyclicly con-
nected continuous cuwrve M, then M is uot a baum im lleinen at P.

Proof. Suppose, on the éontrary, that M is a baum im kleinen
at P. Then since P is a regular point of M, there exists a con-
neeted open subset K of M which contains P and is such that K
is an aeyclic continuous curve, and furthermore K — K. 1. e. the
Mboundary of K, is finite. Let the points of K — K be denoted
by P, P,..., P,. Then, for each integer n <{m, K contains an
are P, P. Let N denote the sum of this finite set of arcs [P, Pl
Then N must be identical with K. For sappose there exists a com-

Y If P is a regular point of a continuous cuive M but there exists no in-
teger 7 such that for each € >0 a connected apen subset of M exists which
contains P and whose Jl~l)0undary contains not more than » points, than P is

said to be a point of order w of M. Cf. K. Menger, Grundzilge einer 1heorie
der Kurven, loc. eit.
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ponent B of K — N. Since N contains the set of points P; -+
+ P, +...+ P,, it follows that R is an open subset of M. Then
since, by a Theorem of the author’s '), the M-boundary of B must
contain at least two points, it is readily seen that K must contain
a simple closed curve, contrary to the fact that K is acyclic. Hence
N is identical with K. Now since K is the sum of m ares having
P as a common endpoint, it readily follows that, for each e > 0,
there exists a connected open subset of M of diameter <C ¢ which
contains P and whose M-bouudary contains at most m points. But
this is contrary to the hypothesis that Pis a point of order w of IL
Thus the supposition that Theorem 12 is not true leads to
a contradiction.

Corollary. If the cyclicly connected continuous curve M is a buum
im Kleinen at one of its puints P, then there exists an integer n such
that P is a point of Menger order n® of 1L .

" Theorem 13. If a cyclicly connected continuons curve I containg
infinitely many points of order w, then M contains an infiniie col-
lection of mutually exclusive simple closed curves.

Theorem 14. If a cyclicly connected continuous curve M con-
tains a point of order w, then M contains infiuitely many (not ne-
cessarily mutually exclusive) simple closed curves.

" Theorems 13 and 14 are immediate consequences of Theorems
6, 7 and 12. -

Theorem 16. [n order that a cyclicly connected rontmm?u.s curve
M should be u bawm im kleinen it is necessary and sufi%c'lent (1)
that M contain mo iufinite collection of mutually exclusive simple clo-
sed curves and (2) that M contain no point of m'df'z’r w

Proof. That coudition (1) is necessary fol.lows 1mmed1ate‘ly from
the fact that 3/ is bounded. Condition (2) is necessary Vf)y virtue of
Theorem 12. I shall proceed to show that these conditions are suf-
ficient. Let P be any point of a cyelicly connected continuous
curve J/ satisfying the conditions, and let € be any positive nugx-
ber. By Theorem 7, M is a Menger regular curve. Then sm.c:] v
condition (2), P is not a point of order w of Al there exllls an
integer n such that P is a point of order n of M. By a theorem

1 G. T. Whyburn, Cyclicly connected continuous curves, loc. eit., The-

orem 9. )
3 Cf. K. Menger, loc. cit.
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of Menger's') there exists a subset N of M which is the sum of
n arcs having P as common endpoint and no two of which have
any other point in common. I shall now show that P is not a limit
point of M —N. Suppose the contrary is true. Now as P is a po-
int of order n of M, obviously P is not a limit point of any sin-
gle component of M — N. Hence there exists an infinite collection
G of components of Jf -~ N such that P belongs to the limiting set
of the wollection G. Now since N contains 2) at least two limit
points of each element of @, it follows that either (1) there exists
one arc t of the finite set of ares of which N is the sum such
that ¢ contains at least two limit points of éach element of an in-
finite subcollection G, -of the collection &, or (2) there exist two
of these ares ¢, and f, such that there exists an infinite collection
G, of the elements of G each of which has one limit point in each
of the arcs #, and t,. In case (1), let g, be an element of ;. Then
since t— P contains at least two limit points of g,, it is readily
seen that g, + (t — P) containg a simple closed curve J;. Since J,
cannot contain P, and since, for each e >0, not more than a finite
number of elements of G are of diameter ®) >> e. there exists an
element g, of G, which has all of its M-boundary on an arc &
of ¢ which contains no point of J;. Just as above, g, s, contains
a simple closed curve J, which does not contain P. The curves
J, and J, can have no point in common. There exists an element
gs of G, which has all its M-boundary on an arc s; of ¢ which
contains no point of J; -} J,, and so on. This process may be con-
tinued indefinitely, giving an infinite collection of mutually exclu-
sive simple closed curves J,, J,, J;,..., belonging to M. But this
contradicts hypothesis (1). Now in case (2), let d, and e, be ele-
ments of G, It is easy to see that d —-¢ % -7 contains
a gimple closed curve J, which does not contain P. There exist
elements d, and ¢, of G, whose M-boundaries are subsets of pu-
bares @, and b, respectively of #, and ¢, which contain P but con-
tain no point of J;. Then the set of points dy—e-+ay +5, con-
tains a simple closed curve J, which does not contain F. This pro-

{) Zur allgemeinen Kurventheorie, loc. eit., Theorem p. 98.
2} This follows from the fact that M is cyclicly connected Cf G.'T. Why-
burn, loc. cit

%) Cf. W. L. Ayres, Concerning continuous curves and correspondences,
loc. eit.. Theorem 1.
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cess may be continued indefinitely, giving an infinite collection «
Y, giving lection of

mutually exclusive simple closed curves J,, J,, J;...., belonging to
M. This again is contradictory to hypothesis (1). Thus, inany case,
the supposition that P is a limit point of M — N leads to a con-
tradiction. Now since P is not a limit point of 4 — N, there exists
a connected open subset KX of # of diameter < ¢ which contains
P and is a subset of N. Since N is the sum of a finite number
of ares having only the point P common to any two of them, it
is clear that K is an aecyclic continuous curve. Therefore M is
a baum im kleinen at each of its points P, and our theorem is
proved. "

Theorem 16. If Pis a regular point of order n of a plane con-
tinuum M, then P belongs to the boundaiies of not more than n com-
plementary domains of M. _

Theorem 16 is readily proved with the aid of Lemma 1 to The-
orem 4. We have the following

Corollary. If the regular point P of o plane continuum M be-
longs to the boundaries of infinitely many complementary domains of
M, then P is a point of order w of M.

§ 4
The Ramification Points of Curves.

A point P of a continuous curve J/ is said to be a ramification
point?) of M provided there exist three ares in M having the
point P in common but such that no two of them have any other
point in common. '

Theorem 17. The set of points of ramification of each maximal
cyclic curve of a continuous curve M which contains only a finite

number. of simple closed curves %) s finite.

1) Cf. W. Sierpinski, Comptes Rendus, vol. 160 (1913), p. 302.

?) Continuous curves containing only a finite number of simple closed cur-
ves have been studied by Alexandroff, Kombinatorische Eigenschaften von
Kurven, Math. Ann. vol. 96, (1926), pp. 512—bd4, W. L. Ayres, Concerning
continuous curves of certain types, Fund. Math, vol. 11, Kurato wski and
Zarankiewics, A theorem on connected point seis, Bull. Amer. Math. Soc., vol.
33 (1927), p. 576, Cf also G. T. Whyburn, On a problem of W. L. Ayres
Fund. Math,, vol. 11. )
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Proof. Let C be any maximal eyelic curve of M. In my paper
On a problem of W. L. Ayres') 1 showed that C is the sum of
a finite number 8, Sy, Sy,..., S, of mutually exclusive arc seg-
ments plus their endpoints. Let K denote the set of all points [X]
of ¢ such that X is an endpoint of some one of the segments
Sy, Sgy..., S,. Then clearly K contains not more than 22 points.
Furthermore every ramification point of C belongs to K. Hence the
ramification points of C are finite. .

Theorem 18. For cyclicly connected continuous curves M, the
Sollowing properties are equivalent: (@) M contains only a finite num-
ber of simple closed curves, (8) M is a baum im kleinen, (y) M has
only a finite number of points of ramification.

The proof of Theorem 18 is not difficult with the aid of The-
orem 17, Properties (a) and (§) are equivalent %) for all continuous
curves, cyclicly connected or-not.

Theorem 19. In order that the ramification points of a conti-
nuous curve M should be countable it is necessary and sufficient that
the ramification potnis of each maximal cyclic curve of M should be
countable.

Proof. The condition is obviously necessary. I shall show that
it is sufficient. Let K denote the set of all the ramification points
of M. Let K, be the set of all points {X} such that X is a rami-
fication point of some maximal eyclic curve of M. Then since 3)
M has only a countable number of maximal cyelic curves and
since, by hypothesis, the ramification points of each of these are
countable, .it follows that K, is countable. Now let K, be the set
of all those points {¥} of K— K; such that ¥ belongs to some
maximal cyclic curve of M. Then each point ¥ of K, is a cut
point of M; for if not, then since Y is a ramification point of A/
it follows readily with the aid of a theorem of R. L. Moore’s 4)

that ¥ is a ramification point of some maximal eyclic curve of M,

contrary to the fact that'Y does not helong to K,. Hence each
point of K, is a cut point of M/ which belongs to some simple clo-

) Loc. eit.

) Cf. K. Menger, Uber regulire Baumkurven, loc. cit. p. 574 (footnote).
In this conneetion see also Kuratowski and Zarankiewicz loc. cit.

%) G. T. Whyburn, Cyclicly connected continuous ‘curves, loc. cit., The-
orem 6.

*) R L. Moore, Concerning continuous curves in the plane, loc. cit.
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sed curve in 1/, and therefore, by a theorem of the author's ,
K, must be countable. Let K, be the set of points K — (K, 4 K,).
Then no point of Ky can helong to any maximal eyclic curve of
M. And since each point Z of K, is a ramification point of M it
easily follows - with the aid of the above quoted theorem of R. L.
Moore's that, for each point Z of K, M — Z is neither connected
nor the sum of two connected point sets. Therefore by a theorem
proved by Kuratowski and Zarankiewicz?) and indepen-
dently by the author %) it follows that X, must be countable. Then
since K is the sum of three countable sets K, K, and K, there-
fore K is countable. ‘

Theorem 20. If for each positéve number ¢ the continuous curve
M contains not more than a finite number of simple closed curves of
diameter > ¢, then the ramification points of each mazimal cyclic
curve of M are finite, and the ramification points of M are countable.

Theorem 20 is an immediate consequence of -Theorems 17 and
19 and of a result in my paper On a problem of W. L. Ayres 4,

Theorem 21. If no mazimal cyclic curve of a continuous curve
M contains an infinite sequence of mutually exclusive simple closed
curves, then the ramification points of M are countable.

Proof. Let C be any maximal cyelic curve of M. Then by hy-

‘pothesis and Theorem 7 it follows that C is a baum im Kkleinen

at all save a finite set of points. K. Then if U is any open subset
of M containing K, then since M is a baum im kleinen at each
point of 0 — U and since the ramification points of every baum
is countable %), it readily follows that the ramification points of C
belonging to C— U are countable (finite in fact). Then with “this
fact established, by choosing a suitable sequenee of open subsetz U,,
Uy Us,... of M converging to the set K it easily follows that the

;) G. T. Whyburn, Concerning continua in the plane, Trans. Amer. Math.
Soc., Vol. 29 (1927) pp. 869—400, Theorem 29, )

%) Kuratowski and Zarankiewicz, 4 theorem on connected point sets,
Bull. Amer. Math. Soe., vol. 83 (1927), pp. 571575

3 G. T. Whyburn, Concerning the cut points of continua, presented to
the Amer. Math. Soc. Sept. 8, 1927. Offered to the Trans. Amer. Math. Soc.

%) Loc. cit. It is there shown that each maximal cyelic curve of a conti-
muous curve satisfying the condition of Theorem 20 contains only a finite num-
ber of simple closed curves. ,

5 Cf, Wazewski, Ann. Soc. Pol. Math., vol. 2 (1928), p. 169; K. Meu-
gor, {ber reyulire Baumkurven, loe. cit., p. 676.
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ramification points of C are countable; and since C is any maxi-
mal cyelic curve of M, therefore by. Theorem 19, the ramification
points of M are countable.

The same method of proof yields the following theorem.

Theorem 22. If each maximal. cyclic curve of a continuous curve
M is a bawm im kleinen at all save possibly a countable number of its
points, then the ramification points of M are countable.

Theorems 20, 21 and 22 are decidedly more general theorems
than that of Alexandroff!) to the effect that the ramification
points of a continuous curve containing only a finite number of
simple closed curves are countable.

Theorem 23. Every non-reqular point of a continuous curve M
is a ramification point of M. Indeed, if A is a non-regular point
of M, then there exists a point B of M such thal if n is any inte
ger then M contains at least n arcs from A to B no two of which
have in common any points other than A and B.

Proof Let 4 be any non-regular point of a continuous curve
1. Then there exists a point B of M which is not separated in A
from 4 by any finite subset of A, for otherwise?) A would be
a regular point of . Then by a theorem of N. E. Rutt's3) it
follows that if # is any integer there exist in M at least n arcs
from A to B such that no two of these arcs. have any other point

in common, Then by taking n =23, it follows that 4 is a ramifi-
cation peint of AL ;

Theorem 24. If the sel K of all the ‘ramification points of a con-

1 P. Alexandroff, Uber kombinatorische Eigenschaften allgemeinen Kur-
vgn, Math. Ann. vol. 96 (1926), p. 262, corollary 4. See also W. L. Ayres,
Continuous curves and correspondences, loe. cit, Theorem 12; and Kuratow-
3ki and Zarankiewicz, 4 theorem on connected point sets, loc. cit., p. 75

*) This statement is proved precisely asin the proof of Theorem A. (abo- °

ve). See G. T. Whyburn and W. L. Ayres, On continuous curves in n di-
menstons, loc. cit. Theorem 3. '

3 N. E. RButt, Concerning the cut points of continuous curves, ete. (ab-
stract), Bull. Amer. Math. Soc.,, vol. 83 (1927), p. 411, Butt's theorem states
that if there exist in & continuous curve M exactly # indeper dent ares between
two points 4 and B of M, then there exist in M n points which separate 4
and B in M. This theorem has heen uved only for the case uf the plane.
Hence Theorems 23 and 24 are established only for the plane. However they
are true in n-dimensions provided Rutt's theorem is true in n-dimensions.
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tinuous curve M is punctiform?), then M is a Menger regular
curve; :

Proof. By hypothesis and Theorem 23, the set B of all the
non-regular points of M must be punctiform. But by a theorem of
Menger's?). B is either null or else it contains. a continuum, The-
refore B must be null, and hence M is a regular curve.

Corollary. If the ramification points of a continuous curve M
are countable, then M is a Menger regqular curve.

§ 5.

The Disconnection of Regular Curves.

Theorem 25. If a continuum M is disconnected by the omission
of every one of -its countably infinite subsets, then M ?’s a Menger
regular curve which containg only a finite number of simple closed
curves (hence is a baum im kleinen).

Proof. I shall first show that M is a continuous curve. Sllppf)se
this is not so. Then by a theorem of R. L. Moore's %) there exists
a positive pumber d and a countable infinity of mutually exclusive
.subcontinua of M: W, M, M,,... each of diameter > d and sfuch
that W is the sequential limiting set of the sequence of continua
M,, M,,... Now there exists an uncountable‘ collection G of point
sets {X)} such that each element X of G is a countably infinite
subset of W and such that no two different elements of G have
s common point. Now4) by hypothesis it follows that for each ele-
went- X of G, M — X .is the sum of two m.utua.lly separated sets
S, and S;. One of these sets must contain infinitely many of the
continua M, M,,... Denote one which does by &, and denote

1) A get is- punctiform if and only if it _conts.ins no continun_m.

1) K. Menger, Grundzige ciner Theorie der EKurven, loc. cit. ) )

3) R. L. Moore, 4 report on comtinuous curves from the viewpoint of
Analysis situs, Bull. Amer. Math. Soc., vol. 29 _(1923), pp-. 296-——2};)7.L . .

4) Compare the proof from this poin't on with .ﬂmt given by'rf . Kor
on page 338 of his paper Concerning  simple continuous cu:rves,h ra;ns.m.”l:;e;}
Math. Soec., vol. 21 (1920). See also R.L. Mooreg, Cotwer'mng the cut p o
contingious curves and of other closed and conneoted point sets, Proc. Nat.C mit,-:
-Se., vol. 9 (1928), pp. 101—106, Theorem B¥, a:ntl_ G. T. Whyb u.t;;n3 oo
ning the disconnection of continua by the omission of pars of their p 3
Fund. Math., vol. 10 (1927), pp. 180—186, Theorem 3.

19
Fundamenta Mathematicae, T. XIL
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the other by S.. Then clearly W -— X must be a subset of &,
and therefore S, can contain not more than a finite number of the
continua M,. M,,... Now if X and ¥ are two distinct sets of the
collection ¢, then S, and S, can have no puint in common. For
suppose they do have a point in common. Let K denote the set
of all points common to these two sets. Since K is a subset of S
and W — X is a subset of S,, no point of W— X is a limit point
of K; and since Y is a subset of W — X, therefore no point of ¥
is a limit point of K. Hence no point of S, Y is a limit point
of K. Clearly no point of §,— K is a limit point of K. Then since
M=(S,+ Y4 8§, — K)+ K, it follows that K is closed. But since
K is the common part of the two open subsets S, and S, of M,
therefore K is an open subset of M. Hence K and M — K are
mutually separated sets, contrary to the fact that M is connected.
Thus the supposition that S, and S have a point in common leads
to a contradietion.

Now by the Zermelo postulate, there exists a set of points @
such that (1) for each set X in G there exists in @ just one point
which belongs to §;, and (2) for each point U in @ there exists
in @, just one set X such that S, contains U. Since G is uncoun-
table, @ is uncountable and therefore it contains a point Z which
is a limit point of @ — Z. But there exists in G a set 4 such
that Z belongs to S,. Since no point of H' — Z belongs to S, Z
is not a limit point of H’ — Z. Thus the supposition that M is not
a continuous curve (or rather a connected im kleinen continuum)
leads to a contradiction,

Now by a theorem of Zarankiewicz?), M can contain only
a finite number of simple closed curves. Hence M is a regular
curve — in faet a baum im kleinen.

Corollary. If the continuum M is such that there ewists an in-
teger k such that I is disconnected by the omission of any k of its
points, then 3 is a baum im kleinen (contains only a finite number
of simple elosed curves).

This corollary is a generalization of a theorem of J. R. Kline's?).

Y) C. Zarankiewicz, Sur les points de division dans les ensembles con-
nexes, loc. cit.

%) J. R. Kline, Closed connected sets which are disconnected by the omis-
sion of a finite number of goints, Proe. Nat. Acad. Se., vol. 9 (1928), pp. 7—12,
Theorem A. Kline's theorem contains a superfluous hypothesis, is stated
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Theorem 26. If C is a cyclicly connected continuous curve, then
in order that there should exist an integer k such that C is discon-
nected by the omission of any k of its points it is necessary and suf-
ficient that M should be the sum of a finite number of mutually ex-
clusive arc segments plus their endpoints.

Proof. The condition is necessary. For if there exists an inte-
ger k such that C is disconnected by the omission of any k of its
points, then by the corollary to Theorem 25, C contains only
a finite number of simple closed curves. Therefore, since C is
cyclicly connected, by a theorem of the author’s?), C is the sum
of a finite number of mutually exclusive arc segments plus their
endpoints,

The condition is also sufficient. TFor suppose C is the sum of
a finite number of mutually exclusive arc segments S, S.... &
plus their endpoints, Then let P,, P,,... P, be any k of the points
of C. Let K denote the point set P;, F,,... P,. Now if any two
points of K lie together on the same arc of the set S, 8,..- S,
then clearly M — K ist not connected. And if no two points of K
lie on the same arc of this set, then each of these arcs must con-
tain a point of K, and there exists an integer ¢ <Ck such that §
contains a point P of K. Let A and B be points belonging to the
two segments respectively of S;-— P. Then 4 and B can be joined
by no are which is a subset of M — K, for K contains a point
of each of the segments S, S;,... Sy. Hence by a theorem of
R. L. Moore's?) it follows that M — K is not connected.

Theorem 27. If a continuum M is disconnected by the omission
of any of its countably infinite subsets (or of any k of its points,
where k is some integer given in advance) then there exist two points
of M whose omission disconnects M. :

Proof. By Theorem 25, I is a continuous curve which contains
only a finite number of simple closed curves. Now if M has a cut
point, then clearly M is disconnected by the omission of some two
of its points. If I/ has no cut point then?) A7 is eyclicly connected.

only for two dimensional space, and has a weaker conclusion than that of our
corollary. '
1) On o problem of W. L. Ayres, loc. uit. . )
%) R.L.Moore, Concerning continuous curves in the plane, loc. cit., Theorem1.
3 G.'T, Whyburn, Cyclicly connected continuous curves, loc. cit. Theorem 1.
19*
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Then since M contains only & finite number of simple closed cur-
ves. M is the sum') of a finite number of arc segments 8, &§,,...
S, plus their endpoints. Then clearly for each i<Cn, M is discon-
nected by the omission of any two points belonging to S,.

As a corollary to Theorem 27 we have the following theorem
of J. R. Kline's?: There does not exist, in n-dimensional space,
a continuwum M and an integer k> 9 such that M is disconnected
by the omission of any k of its points but by no k —1 of its points.

Theorem 28. In order that a continuous curve M (bounded or
not) should be disconnected by the omission of any two of its points
which lie together on some simple closed curve in M it is necessary
and sufficient that every mazimal cyclic curve of M should be a simple
closed curve. . ‘

Theorem 28 is an extension of Theorem 6 of my paper Con-
cerning certain types of continuous curves®). It can be proved very
easily with the aid of the properties of the maximal cyclie curves
of a continuous curve+), :

§ 6.

The Connected Subsets of Regular Curves.

Theorem 29. Every connected subset of a Menger regnlar curve
is connected im kleinen.

Proof. Let H be any connected subset of a regular curve 1

and let P be any point of M and e any positive number. Since
M is a regular curve, there exists a connected open subset U of
M which contains P, is of diameter < ¢, and whose M-boundary
B is finite. Now by a theorem proved by Knaster and Kura-
towski®) and independently by the author®), it follows that the

1) G. T. Whyburn, On a problem of W. L. Ayres, loc. cit.

3 J. R. Kline, loc. cit. Theorem 5. Kline does not state whether-or not
this theorem is true in #-dimensions.

%) Proc. Nat. Acad. Se., vol. 12 (1926), pp. 761—767,

9 Cf & T. Whyburn, Cyclicly connected continuous curves, loc. eit.
) %) This theorem is as follows: If the subset N of a connected point set M
8 the sum of a finite number, n, of connected point sets, and if M — N is the
sum of two mutually separated sets M, and M,, then M, 4+ N is the sum of n

connected point sets. Cf Knaster and Kuratowski, Remark on a theorem
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components of the point set H.(U-+ B) are finite in number.
Hence if K denotes that one of these components which contains
P, then P is not a limit point of H — K. Therefore there exists
a positive number J,, such that every point of H whose distance
from P is <4, belongs to K. And since K is of diameter < ¢,
it follows that H is connected im kleinen.

Theorem 30. If each mazimal cyclic curve of -a continuous
curve M is a baum im kleinen at all save possibly a finite number
of its points, then every connected subset of M is arcwise connected.

Proof. Let C be any maximal cyelic carve of M. I shall first
show that every connected subset of C iz arcwise connected. Let
H be any connected subset of C, and let K denote the set of all
those points of H at which C is not a baum im kleinen. Then by
hypothesis K is finite. Since each point of C at which C is
a baum im kleinen is a regular point of C, it follows from a the-
orem of Menger’s') that C is a Menger regular curve. Hence, by
Theorem 29, H is connected im kleinen. Then since C is a baum
im kleinen at every point of H — K, and since?) every ccnnected
subset of a baum is arcwise connected, it readily follows that H
is arcwise connected im kleinen?®) at every point of H— K, and
that every component of H — K is arewise connected im kleinen
at every one of its points. Then, by a theorem of the author's?),
each component of H --- K is arcwise connected. Now let P be
any point of K. Let G denote the sum of all those components of
H - K which have P as a limit point Now~*if K is any compo-
nent of G, then since K is arcwise connected, and every subcon-
tinuum of C is a continuous eurve, then by a theorem of the au-

of R L. Moore, Proc Nut. Acad. Sc.. vol. 13 (1927); G. ' Whyburn, On
the separation of comnected goint sets, (abstract), Bulletin of the Ame_r‘ican
Mathematical Society, vol. 33 (1927), p. 888, This theorem is a generalization
of a theorem of mine in my paper, Concerning the disconnection of continua
by the omission of pairs of their potnt, loc. cit., Theorem 1

Y Grundzitge einer Theorie der Kusven, loc. cit. )

N (f, R L Wilder, Concerning continuous curves, ¥und. Math., vol. 7
(1926), Theorem 20. L

%) 4 set M is arvwise counected im kleinen at une of its points P it for
each € > 0 a 6, > 0 exists such that every point of M whose distance from
P is < 0y can he joined in M to P by an arc of diameter < e.

4 G. T. Whyhuin, Concerning the complementary domuins of continua (to
appear), Theorem 12,
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thor'st}, Pis regularly accessible from E, and hence E-} P is arcwise
connected. Hence it follows that G - P is arcwise connected, and
therefore, by another theorpm of mine?) G 4 P is arewise con-

nected im kleinen. But since H is connected im kleinen, it follows

with the aid of a theorem of R. L. Wilder's?) that P is not a limit
point of H—(G + P). Hence H is arcwise connected im kleinen
at every point of K. It was shown above that H is arewise con-
nected im kleinen at every point of H— K. Hence H is arewise
connected im kleinen at every one of its points. Then since H is
connected, it follows by a theorem of the author’s4) that H is are-
wise connected.

I have just shown that every connected subset of each maximal
cyelic curve of I is arcwise connected. Therefore, by a theorem
of mine?), every connected subset of M is arewise connected.

Theorem 31. If no maximal cyclic curve of a continuous curve
M contains an infinite collection of mutually exclusive simple closed
curves, then every counected subset of M is arcwise connested.

Theorem 31 follows immediately from Theorems 7 and 30.

Theorem 32. If the ramification points of each mazimal eyclic
curve of a continuous curve M are finite in number, then every con-
nected subset of M is arcwise connected.

Theorem 32 is an immediate consequence of Theorems 1% and 32.

Problem. If the ramification points of each maximal cyclid curve
of a continuvus curve M are countable in number, then is every con-
nected subset of M arcwise connected?

!) Loc. cit. Theorem 15.

) G. T. Whyhurn, Concerning certain types of continuous curves, loc.
cit. Theorem 5.

3 A Theorem on connected point sets 1wchich are connected im kletnen, Bull.
Amer. Math Noe., vol. 82 (1926), pp 338—340.

4 G. T. Whyburn, Concerning the complementary domains of eontinua,
loc. eit.. Theorem 12.

8 G. T. Whyburn, Concerning the structure of a comtinuous eurve, loc.
cit., Theorem 83. This theorem is as follows: In order that every connected
subset of a continuows curve M should be arcuise connected it is necessary

and sufficient that every connected subset of each maximal eyelic curve of M
should be arcwise connected.

University of Texas, Nov. 14, 1927,

e ————————————
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A éeparation theorem.
By
R. L. Moore (Austin, Texas, U, S. A).

In my paper Concerning the separation of point sets by curves )
it is stated that if 7" is a totally disconnected closed subset of the
boundary of a simply connected domain D and there exists a con-
tinnum K containing 7' and such that K— T' is a subset of D then
there exists a simple closed curve J containing 7' and enclosing
K— T and such that J—T is a subset of D. That this proposi-
tion does not hold true, in the form in which it is stated, even for
the case where T' is a single point on the outer boundary of D,
may be seen with the aid of the following example.

Example. Let T, 4, B and C denote the points (0, 0), (2, 0),
(2,2) and (0, 2) respectively.- For each positive' integer n, let' F,
denote the point (1, 1/n) and let T, denote the point whose abscissa
is 1/n and whose ordinate is (2n--1)/(n*-+-n). Let M denote the
continuum composed of the straight line intervals T4, 4B, BC and
CT together with all the straight line intervals of th.e sequence
TF,, TF,, TF;,... Let K denote the sum of all the intervals of
the sequence T7;, TT,, TT;,... Let D denote the_bounded com-
plementary domain of the continuum M. There exists no simple
closed curve J containing T and enclosing K — T and such that
J— T is a subset of D. ' .

The following modification of the proposition in question ho}ds
true and suffices as a substitate in some of the applications in which
the use of that proposition may seem to be indieated.

1) Proc. Nat. Acad. Se., vol. 11 (1925), pp. 469—476.
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