150 Stefan Mazurkiewicz.

est evidemment un continu et on & 4 X T =a. Donc e est acces-
sible dans B, ¢ q. f d.

6. Un probléme ce pose: le théoréme reste-t il vrai si on sup-
prime la condition que 4 est fermé? Le résultat suivant me parait
probable: Si I'ensemble 4 (C R, est homéomorphe d’un sous-en-
semble vrai du R,_,, alors R, — 4 est un semi-continu.

Varsovie, 4/X 1928.
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On Continuous Curves which are Homogeneous
except for a Finite Number of Points.

By
T. C. Benton (Philadelphis).

1. Introduction. It is the author’s purpose to classify all the
plane continuous curves which are homogeneous except for a finite
number of points. This has only been completed in the case where
the non-homogeneous points may be made to correspond to each
other. If the number of non-homogeneous points is greater than 3
it is found that a bounded continuous curve is the sum of a num-
ber of curves which are homogenesus except for two points. It is
shown that a continuous curve, homogeneous except for two points
is a finite number of ares (not two) joining the two points. Then
the general case is solved by replacing each one of the two
point curves, whose sum is the given curve, by an arc joining the
two non-homogeneous points. The resulting curve can then be either
a simple closed curve or in special cases a more complicated curve
which is in one-to-one correspondence with the projection of the
edges of one of the regular or semi-regular solids upon ome of its
faces in such a manner that none of the projections of edges have
any intersections except the projections of the vertices of the solid.

The paper is an extension of the results of S. Mazurkiewiez?)
who proved that a bounded continuous curve which is homogeneous
at every point is a simple closed curve.

The author is deeply indebted to Dr. J.R.Kline who suggest-
ed the problem and gave invaluable assistance in the working

1) 8, Mazurkiewicz: Sur les continus homogénes. Fund. Math, vol. 5
(1922) p. 131. This article will be quoted by paragraph thus: 16M.
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out of it, and in preparing the paper. He wishes to express his
thanks for all that Dr. Kline has done to help him,

2. Notations. One-to-one, continuous correspondences having conti-
nuous inverses and having the additional property that they cause a set
X to correspond to itself?) will be denoted by Greek lower case lot-
ters with an X subscript, 7y, @y,... Also the notation Tylx]=y
means that if © and y are points of 47, then x corresponds to y
under the correspondence 7, which makes M correspond to itself.

The notation MC N [or »(_:N] means that i/ [or p] is a sub-
set [or point] of N.

The notation M means plus all its limit points,

H|{M,N]=M N+M.N, so that H[M, N]=0 means that M
and N are mutually separated.

Definitions. (i) If for a,, a,, any pair of points of a continuous
eurve I, there exists a m, such that m, [a;] =a,, M is said to be
4 homogeneous continuous curve.

(it) If a continuous curve M contains a set of points ¢, ¢s,.., c,,
such that for each ¢, there is some 2, for which no 7, exists giving
%yl = ¢;; and if for every pair of points a,, a, neither of which
belongs to ¢;, ¢y,.., ¢,, there does exist a @ such that @,la,]=aq,;
then M is a continuous curve, homogeneous except for the points
Ciy Cayuney Cp

3. Theorem 1. 4 bounded continuous curve M which is homo-
geneous except for one point ¢ consists of a Jinite [Z= 2] or countably
injinite number of simple closed curves having only ¢ in common and
such that only a finite number of these curves are of diameter greater
than any assigred positive number.

3.1 No homogeneous point of M is a cut point of M.

Proof. Let # be a homogeneous cut point of M. Let y be another
homogeneous point of J, By definition of M there exists a m, such
that 7,(z) = y. Sinee z outs M, M—z =M 4+ M, where

!) Especial attention is called to the fact that the correspondences are assum-
ed to be on the curve alone and that th

ey are not correspondences of the whole
plane inio itself. For examples of corrsspondences of a carve into itself which
cannot be extended to the whole plane and a discussion of this whole problem see,
H. M Gehman, On extending o continuous (1-1) correspondence of tno plane

continuous curves to g correspondence of their planes, Trans. Amer. Math, Soc.
Vol. XXVIII, pp. 252265,
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HM,, Myy=10. Then Ty (M — z) = M —y = my( M) + 7, (M),
And sinee 7, is continuous H{my(M,) . 7y(M,)} =0. Therefore yis
a cut point of 3. Hence every homogeneous point of M is a cut
point of M and ¢ is the only non-cut point. This contradiets the
theorem that every bounded continuous eurve has at least two mon-
eut points ¥),

8.2. my(c) =-c. This follows as a special case of the more gen-
eral theorem that in any continuous curve homogeneous except
for n points the correspundent of any c-point must be a c-point.
To prove this let 7,(c)=2 where z is some homogeneous point
of the curve M. Then if n' is the inverse of T, Wy (z) =c. From
the definition of homogeneity, if y is any other humogeneous point
of M there exists a w, such that ,(y) = . Then 2 {wu(y)y =c¢
or if nz' ¢y, =@, we have @,(y)=-c. Hence ¢ is a homogeneous
point but this contradicts the assumption so the theorem is proved.

3.8i. The point ¢ is a eut point of M.

Proof. Suppose ¢ not a cut point of M. Let S be the whole
plane. Then §— M= %’ B. where each 3, is a complementary domain

of M. Sinee every point of M is non-cut if ¢ is (3.1), it fullows
that the boundary F(B,) of 8, is a simple closed curve by 2 13 M.

We shall first show that under the assumption that ¢ is a non-
-cut point F(8,). F(8,) must be totally disconnected. Let us suppose
that this set contains a connected subset other than a single point.
Then it follows that one, and hence all, of the homogeneous points
must be ordinary points ) and hence must be the ends of at most
two arcs which lie in M. As M is bounded one of the two domains
B: and f, is bounded, let 8 be the bounded one. If 8, is not the
whole exterior of f,, then there is a point and hence at least one
domain §; (j=£%) outside the simple closed curve F(8,). If 8, should
be unbounded then we may invert about a point of §; keeping F(8))
invariant and get 8, bounded, so we shall assume that §, is bound-
ed at the outset. Now not all the points of F(8,) are also points
of F(8). Let k be an interior point of the arc @ common to F(8)

Y) 8. Masurkiewicz: ,Un théoréme sur les lignes de Jordan®, Fund, Math,
vol. 2 (1921) pp. 119-130.

%) If p is an interior point of an arc of M and is not a limit point of any
points of M except sets lying on that are, p is said to be an ordinary point of M.
This definitien is eqaivalent to that due fo Janisze wski; Thesis p. 64.
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and F(B,). while & is a point of F(8). Then on each of the arcs
hy,l there is a point p, (i==1,2) such that there goes from this
point an arc of F(f,) which has no point of F(8) on it except p,
These points must be distinet and hence cannot hoth be e¢. Hence
there is at least one homogeneous point which is not ordinary.
Thus it follows that F(B,).F(f,) is a totally disconnected set if ¢
is not & eut point.

Now by a very simple modification of 3= 16 M it can be shown
that M==3F(§,)+c. Then by applying the argument of 4 17—21 3/,

it may be shown that the removal of #(8,) does not disconnect M

while the removal of a simple closed curve which contains a point
of M—(ZF(B)-Fc) does disconnect M.
1

3.3 Let a pointz be taken which is homogeneous and belongs
to some ;) and also a point y homogeneous but not on the bound-
ary of any domain, Take n, so that m,(z) =y. The curve F (8
does not cut M, but =, {F(8)), which contains y, must cut I Hence
the correspondence is not continuous and we are led to a contra-
dietion if we assume that ¢ does not cut J7.

3.4. Let M—c¢= 3 M, where each 1 is a maximal connected
=1

subset of M/ —c. Each of the sets N;= M,4-¢ is a continuous
corve!). Since ¢ cuts M, n is greater than 1.

35. N is a simple closed curve.

Proof. Take the point ¢ as a center of inversion ).

By 3 2317, it follows that N,--c is inverted into an unbounded
set which is homogeneous at every point, and hence is an open
curve. But by inverting again we see that the original set must be
& simple elused curve.

Since M =c¢+ 3 M, there can be only a finite number of the

1
, . . .
sets N, of a diameter greater than any assigned positive number
since M was a continuous curve. Hence the theorem is proved.

4. Theorem 2. A bounded continuous curve M which is homo-

geueous except for two points ¢, ¢y, consists of a finite number of

arcs (== 2] joining ¢ to ¢; and having no other points in common.

) H. M. Gehman: Annals of Math, 1997 p. 111, Theorem 8.

) C. Kuratowski: ,Sur lo méthode d'inversion”. Fund. Math, Vol. 4.
pp. 151—163,
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Assume that ¥ is more than a single are from ¢, to ¢, Such
a set will of course be a solution to the problem but it will be
convenient to rule it out at the start and investigate only the more
complicated cases.

4.1. No homogencous point of M is a cut point of M.

Proot. If one homogeneous point of 3 is a cut point every one
is. Then if ¢; and ¢, or ¢, or ¢, are cut points 3 has no or one
non-cut points, which is impossible 1). If both ¢, and ¢, are non-
cut points and every homogeneous point of M cuts 3/, then M is
an arc %), which was just ruled out. Hence 4.1. is established.

4.2. No point of M is a cut point of M.

Proof. Suppose ¢, is a cut peint. Then M-—c,=%M,, where
n is greater than 1, and H[M,, }M]=0, and each M,is a maximal
set. Let M, be the set which contains c,. Now 3/, ¢, is a contin-
uous curve 8). The set M) ¢, contains ¢, so there exists an are
e xe, in M, except for ¢,. Let x, (C M, and take m, so that
wy[z)=x,. Then m,[¢,) = ¢, or ¢,. Case i. m]e,]=1¢;. Then
|6, 7] = ¢, 2. Now the are ¢,z, does not contain ¢; for szz' would
then cause ¢,z )¢, which is not true for the original choice of x between
¢, and ¢, on the are. But then z, is joined to ¢, by an are of J/; not
containing ¢,. Hence J; is not a maximal set contrary to hypothesis.

Case #. my[e;] = ¢,. Then myje] = ey, 50 my[re,] = 2065, As be-
fore r,c, does not contain ¢, so }, is not maximal

Hence neither case is possible so ¢, is not a cut point. The same
proof holds for c,. Therefore the theorem 4.2 is established.

4.3. M contains the interior of no simple closed curve.

Proof. If M has an interior point z, let C be the outer bound-
ary of the domain which contains z. Let y be a point of the
boundary C. Then no m, can make zz,[r]=y, since a boundary
puint is a limit point of the exterior of ¢ but an interior point is
not. Now ( has an infinite number of points so A has more than
two non-homogeneous points contrary to hypothesis.

4.4. If S is the whole plane, S— M = 23§, As no point of Y
is a cut point of M, F[3,] is a simple closed curve. If F[g,). F[]

1) see ref. under 3.1.
" ?) R. L, Moore: ,Report on continuous curves*. Bull. Amer. Math Soc.
1923, p. 334, Definition 1.
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contains an are, every point of M -—¢ — ¢, is an ordinary
point. Further, the arc common to #(8,] and F[8;] must be an are
from ¢ to ¢, because the end points of this arc are meeting places
of at least three ares and are therefore not ordinary points. (Proofs
of these theorems are in 4 11—14 M),

If FiB,]. FIB] contains an arc, M is a finite number of arcs
joining c; to c,.

Proof. F[f] and F[B] both contain ¢, and ¢y since the are
which they have in common does so. Let (M and z is con-
tained in neither F[8,] nor F[). Then z can be joined to ¢ by
an arc J; not containing ¢,, because ¢, i8 not a eut point. Then
Jy {F([8.]) 4 F[B]} consists of only ¢;, since any point of this pro-
duct eannot be an ordinary point and J, does not contain ¢s. Also
z can be joined to ¢, by an arc J, and J; does not cuntain .
Then J,.J, =2, since any other point of J, . J, would not be ordinary,
but J;.J, does not contain ¢ or ¢, and hence every point of JI.J:
must be ordinary. Then  lies on an are from ¢ to ¢,. Since 2
was any point of M the set M must be composed of ares from ¢,
to ¢, and there are at most a finite number of these arcs because
M—c;—c, cannot have more than g finite number of maximal
con.n.eeted subsets which are of diameter greater than any assigned
positive constant.

4.5. If no two domains have an are common to their boundaries
then F[8,]. F[8] will be totally disconnected. Call this set F. By,
#16M, M=3F(|B]. We shall now show that M= o4 e, +
—{-%‘F[ﬂ{]. Let us take 2 in B: and y in B,. There exists a chain

Cy every Iin].:: of which is a circle of diameter less than e and
no I}nk of which contains either ¢ or ¢. It is elear that no link
is disconnected by a totally disconnected closed set lying entirely

Wll‘hlhn it or on its boundary. Arrange the countable sets Fy in some
definite order and label them F,, F,, F,,

X - .

" b) I}ft 4 anzl B are distinct points, then a simple chain from A to B is defin-

com;’ ;iL_. Moore as a finite set of regions R, R, ..., B, such that [1] R,
08 4 if and only if 5= 1, [2] B; contains B if and only if i=wn, {8] if

I<i<nand 1< ;
onl\y P’ p L <j<€n[i<], then R, and E; have a point in common if and

-~ Then using precisely

J=t41,

The region Ry is said to be the &

On the foundations of
[1916] p. 134.

) th region of the chain, See R. L. Moore:
plane Analysis Situs; Trans. Amer, Math, Soc. vol. 17
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the methods used by Moore?) it is possible to obtain a sequence
of chains () C,, G,... such that [1] the chain C,=0C, [2] each
link of the chain C,,, lies, together with its limit points, whdlly in
some single link of C,; [3] if a link z of Coyy lies in a link y of
C.; then every link that follows z in C,,, liesin y or in some link
that follows y in C,; [4] every link of €, is a circle of diameter
less than e/2"; [D] no point of the set F, lies within C,. The com-
mon part of these chains is an are C* from & to y which has no
points in common with ¢ 4 ¢ + Fu. Now S=1¢ ¢ +
+ 2B+ FB]y so C*.S=C*.[ —{—02]—}—‘2'0.{13‘.—}—1?[5,}} and
C*.[ey+6]=0. If C* {f;+F[B]} be denoted by A4, then;
A A=C[B,. B+ CAF(B] . B} + C {FIB]- B} + C.AFI8). FIB]} =0,
since the first three terms are always 0, and C was constructed so
that the last term was 0. But then C= 34, which contradicts
3

Sierpinski's theorem %) so M — I F[§] must contain more than
k

¢, ¢, and hence must contain at least one homogeneous point.
4.6. We shall now prove that, under the assumption that no
two complementary dumains have an arc in ecommon to their bound-
aries, we arrive at a contradiction by showing that M must be
equal to SF[B]. Let z be a point of I/ -—%’F[ﬁ,—!, different from

¢, and ¢, and let ¢ be less than the smaller of the following pum-
bers, /yd[z, ¢,] and /5 d[z, ¢), where d[z, y] is the distance between
z and y.

By applying an argument similar in all respects to that used
by Mazurkiewicz we may show that z taken with any other
point of M, will not eut J7; then by using the homogeneity of the
point z, we can show that no pair of puints of M can cut M un-
less it be the pair composed of ¢ and ¢,. Thus it will follow that
of the puints common to the boundaries of two complementary
domains at most one can be a homogeneous point 3).

As z is not on the boundary of any complementary domain,
there is a simple closed curve @ of M, which is of a diameter less

1) Cf. R. L. Moore: Foundations of Analysis Situs, loc. cit, Theorem 15,
p. 137,

) see 3.2. #it.

3) The argument referred to liere is found in the article of Mazurkiewicz
loe, cit. pages 142—143.
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than ¢ and has 2 in its interior ). The non-homogeneous points are
in the exterior of Q. As M contains the interior of mo simple closed
curve, there must be a point not in M within Q. Hence there is
a complementary domain 8, within ¢, and this complementary
domain has the property that all its boundary points belong to the
homogeneous points of M. Then by applying the argument of M a-
zurkiewicz in # 20?) we may show that F7[§,] does not cut M,
for any domain whose boundary has a point in common with F [B.]
must have homogeneous points in common and thus can have but
& single point in common, the essential fact in the argument re-
ferred to.

The point 2z must be on a simple closed curve of M 3), since z
is ot a cut point or an end puint. z is not a eut point (4.1). z is
not an end point because if it were it would have to have a cut
point in its neighborhood 4) and A7 has no cut points.

By s 21J, K, any simple closed curve containing 2, must cut
M. Take y contained in F[)] and 7, so that Ttyly] = 2; then
T {F[8,]} is a simple closed curve through z and hence must cut M,
But §, does not cut and hence m,[g,] cannot cut. So there is a con-
tradietion and no point of M —{e4cs+ JF(B,)} can exist.

4.7. Now there is a real contradiction hetween the assumption
in the first sentence in 45 and the result of 4.6, since the one
required the set M to be more than the sum of the boundacies of
its complementary domains while the other shows that I is just
that sum. Hence there must e some arc common to two houndaries

of complementary domains and the result of 4.4 is the only pos-
sible set of the required type.

IL

5. Let M bea bounded continuous curve having ¢;, ¢,,... ¢, (11>>2),
as non-homogeneous points and all other points homogeneous. By
3.2 it follows that m,[e] =g.

5.1 M contains at least three non-cut points.

) See G. T. Whyburn: Continua in the plane, Trans. Amer, Math, Soc. vol.
29 [1927] Theorem 7.

%) Loc. cit. page 144,
%) Loc. cit. Theorem 292.

4 _H. M. Gehman: Concerning endpoints of Continnous Curves. Trans. Amer.
Math. Soc. vol. 30 [1928] p. 182, corollary 24a.
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Proof. Every continuous curve has at least two non-cut points
and if only two it is an arc joining the two non-cut points. But an
arc has only two non-homogeneous points and M is supposed to
have 7, so the theorem is proved.

5.2. If every homogeneous point cuts M, M contains no simple
closed curve.

Proof. This follows from the results of Mazurkiewicz?).

5.8. If every homogeneous point cuts M, one and only one of the
points ¢y, Cy,..., ¢,, may cut M and M is a set of arcs which have
only that point in comunon.

Proof. It will first be shown that one point ¢, must cut .
Suppose no ¢, cuts M. By 5.1 there are three non-cut points in M and
by hypothesis they eannot be homogeneous; so let ¢,, ¢, ¢;, be these
points. By 5.2, M is acyclic so the non-cut points of A7 are end
points. Then, since every ¢, was supposed non-cut, there must he
n endpoints in M. There must be at least one branch point as there
are at least three endpoints. But 'a finite number of end points
implies a finite number of branch points ). Hence only a finite
number of the homogeneous points are branch points and the rest
must be ordinary eut points, which is a contradiction since a branch
point cannot correspond to a cut point which is ordinary in a con-
tinuous correspondence. Hence there must be a eut point among
the ¢-points.

It will now be shown that not more than one of the c-points
cuts M. Suppose ¢; and ¢ are cut points of 3, while ¢ is a non-
cut point and therefore an end point of M. Join ¢; to ¢, by an are
L, in M. Since ¢, cuts M it is not an end point of M and there-
fore there is another arc L, distinet from [, which has ¢, for an
end point. There can be no point of the c-points “on the arc from
¢ toe;. Forife, be the first ¢-point distinet from ¢,, and ¢, be the last
c-point distinet from ¢, on the are ¢ ¢, take A a homogeneous point on
¢, ¢,and A’ a homogeneous point on ¢, ¢,. Let 7, be the correspondence
which gives n,[h]=F~'. Then 7,[c,]==¢, orc, But this is impossible since
neither ¢, or ¢, are endpoints of M. Therefore no ¢, ean exist. Now ¢; and

8, Mazurkiewicz: ,Un thioréme sur les lignes de Jordan®. ¥Fund. Math.
2, p. 119—-130.

%} K. Menger: ,Uber Regulive Baowmkurven®. Math, Annslen. 96 [1997]
pp. 572582, See also Wazewski: Annales Soc. Pol, Math, 2 [1923] p. 48—170.

Y
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¢ can be joined by an arc of M, but ¢, was the first ¢c-point on the
are ¢, ¢, and ¢, was an end point of 3/, hence ¢, must be on ¢ ¢
or ¢, would not be an end point. Also ¢; is not an end point since
it is a cut point. Take the c-point ¢, nearest ¢; in the order ¢, ¢,c, ¢
Then if 2 (C are ¢ ¢, and ' C are ¢,c; and. 7, is chosen so that
7ty[h] =k, it follows that m,[c,] =¢, or ¢;, neither of which are
end points and hence m, is uwot continuous. Hence ¢, does not exist.

5.4. If the homogeneous points of M are non-cut points of M,
then M has at most one cut poin.

Proof. Let ¢, cut M so that M —¢, = I M,,, where sach M, is
i

& maximal connected subset of M—¢, and i>>2. Let us suppose
that e, is in M, and ¢, cuts .

Now every one of the sets M,, must contain a ¢-point which
cuts AL For suppose that M, contains no such c-point. There is an
are lying, except for ¢, entirely within M,, and joining ¢; and c,.
Now let ¢, be the first cutting c-point after ¢, on the arc ¢, zc,.
If there are any non-cutting c-points on this arc between ¢; and
¢, let them be denoted by ¢f, ¢;,.... ¢;, and let them occur in the
order ¢, ¢ c;... ¢, ;. Let = be a homogeneous point between o
and ¢, while y is a homogeneous point of Myy; let 7y be a [1—1]
continuous correspondence, which has n[z] =y. Now the connected
set ¢ oc; ¢3... ¢, & —C, — ¢,, as it contains no point whose corres-
pondent under 7, can be ¢, must go entirely into the set 37, But
Zule] and 7,[G,) must be cut points and must also be contained

in My, which we know is My;+c,. It follows that 7,le,] and
mu(ts] must both be ¢, and the correspondence cannot be [1—1).
Thus we have reached a contradiction if each of the sets 1A, does
not contain a c-point which cuts M,

Let M, —c, = 2; M1, where some of the sets My, cannot have

¢, 8s a limit point, otherwise the set M —¢; would be connected.
Let those sets of 1, which have ¢, a8 a limit point be I ME,

k

while those that fail to have ¢ s a limit point are 3 Mf,. Then

. . - ’
€ +§4 e+ ?M,, (15 1) is a maximal connected subset of M—c,.

As before each of the sets of 3] 1y must contain a c-point which
i
cuts M. Let that c-point which is in A/ ny and cuts M be ¢,,. By

i
o .
considering A, —¢,, and proceeding as before we get ¢, and €
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lying in the same maximal connected subset of M— ¢, and also
other maximal connected subset of 3/-—¢;, each of which must
contain at least one cutting c-point, ‘and each distinct from the set
which contains ¢, and ¢,. Continue this process. As the number
of ¢-points is finite, there will be a stage where we reach a c-point,
¢®, which when it is removed from M leaves maximal connected
sets which are such that not all of them contain cutting c-points.
Thus we have reached a contradiction if we assume that more than
one ¢-point ean cut M.

5b5. If M—ec¢, = My, + My, ...~ M,,, each I, is a homo-
geneous continuous curve except for the c-points which it contains,
and no point of this cwrve can cut .

Proof. M, + ¢, is a continuous curve.

If [M,,] denotes all homogenecus points of M in My, M, -+
+ ¢, =[] -[—}?r; where g’c; gives all the e-points in 17, -+ ¢,.

k=1 k=1

The set M.+ ¢, is a closed sef, soif 1 and A’ are points in [df;,],
and m, is selected so that m,[h]=~', then m,[M,, +¢,]=[M,,]+
-+ gnﬂ[c;] Also .‘jﬂim[(‘k]= Elc,". For, suppose for some % in A7,

k=1 k=1 k==l
7u[k| = &, where k' is in M,;. [j=E%]. There is in M, an arc hzk.
Evidently m,fc,] =r¢,. sicce a cut point must correspond to a cut
point and ¢, is the .only cut point in M But any are from a point
of M,, to a point of A, must contain ¢;. Hence m,[hzk] contains
¢,. So there is on hxzk a point z such that m.f2]=c¢ and then 7,
is not (1—1). This is contrary to assumption.

Suppose that ¢, cuts M, -+¢,. Let M, ¢, =c¢, + My and

. 7

let M,y D¢, Now;

Moo= [ My 4 My oo+ My g + My My a4

741

and M —c, is disconnected which contradiets 5.4, Hence ¢, cannot

eut M, +¢,.
5.6. If M has ¢; a cut point and M —e¢, =3 M,, then each

M,, contains just one c-point which will be called c.y.

Proof. Suppnse M;; D¢, and ¢;. By 5.5 there is an are froxn ey
to ¢, not containing ¢ sinee ¢ is not a cut point of Mu'{“_fy
Also there is an are from ¢, to ¢, Now ¢, and ¢; are not cut points
of M by H4. Therefore if h(C¢yc; and k' (C ¢, ¢, and m, is chosen
11

Fundamenta Mathematicae. T. X
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so that m,[h] =4’ there is a contradiction bheeause either Tyley] or
7iy[rs] must be ¢, which is impossible. Heunce only one of the points
¢, and ¢y can exist,

5.7 If M has a cut point ¢y, it is a set of n— 1 continuous

a—1

curves 2 N, homogeneous except for two points ¢, and Cip1y Where
fem]

each N; contuins the same number of arcs joining ¢, to ¢

Proof. This follows easily from 5.5 and 5.8.

5.8 The case where no point of M is a eut point is now to be
considered. # 13M shows that the boundary of any complementary
domain is a simple eclosed curve. By a simple modification of 4.5
and 4.6 [use ¢, instead of ¢, J-¢,.] it results that two comple-
mentary domains must exist which have an arec common to their
boundaries and from this result together with # 14 M all homo-
geneous points are ordinary points of M.

58.1. If M—3e¢,=Z= M, then M, contains two and only two
c-points. Each of the M, is a marimal connected subset of M—3¢,

Proof Let h be a homcgeneous [ordinary] point of M, Then
h is on an arc of M, which precedes to a new c-point, one at either
end. Let these be ¢, and ¢;. Now the arc ¢y ¢y has no other ¢-points
on it. Therfore % cannot be joined to any point of M, not on ¢, ¢,
by an arec mnot containing at least one of the two points ¢, or e,
Let A" be a point of M, not on this are, then A’ cannot be joined
to k2 by an are of M, hence I, is disconnected, which is false.
Therefore each X, is an arc joining two c-points.

59. If M contains no cut point then either (8) every ¢, can be
made to correspond to c, by sume m,, or (#8) the c-points fall into
two sets such that those of one set correspond but a point of one set
cannot be made to correspond to ome of the other set.

Proof. Let M ——‘Ec,:EM,. Let 7, be some correspondence
which gives m,[e,] =¢, where JFL Now myle] e, for every
possible 7, for, if it were, take hC M; and &' C M, and m,, so that
7iulk) =Fk'. Then m,[M]= M, since these are arcs joining two
c-points by 5.8. Let ¢, and ¢, be the c-points of M. Then let
ulea] = ¢ and myfe,] =c,. Suppose M, was chosen so that ¢y was
one of the c-points, Then let ¢y be ¢;. There must be an E not
containing ¢, for if not, ¢, would be a cut point of M. There are
then two cases, 4 every c-point can be made to correspond to ¢,

i1
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or i) some point exists which does not correspond to ¢,. Supposs
¢, is such a point. Then let M, contain ¢, Let ¢, be the cther
c-point which is a limit point of A, Let A, contain ¢, and ¢
There exists a v, which, if A(C M, and b’ (C M,. gives w,[h] = K"
From this it follows that w,[c,]=¢, since it cannot be ¢, and
Yulc] = ¢,. Now let M, contain ¢, and ¢, and suppose that both ¢,
and ¢, can be made to correspond to ¢;. Then take A (C M, and
¥ C M, and @, so that ox[h]="1'. Then g@,[c,] has to be either ¢,
or ¢, but then ¢, can be made to eorrespond to ¢, which is a con-
tradiction. It follows that in this case onme c¢-point of a given M
corresponds to ¢, and the other canmot.

IIL

Every c-point can be made to correspond to ¢,

6.1. Suppose all the arcs of M which join ¢ to ¢;, which ares
are M, of 5.8.2, together with the two p. ints ¢, and ¢; be called A
Then if 7, be taken to make two homogeneous points of 3f; cor-
respond, it follows easily that z,[c]=c¢, and @,[c]=¢ or @,[c]=¢,
and my[c]=r¢. Hence m,[M,]= M, and this set is a continuous
curve except for the two ¢ points or else the set is vacuous. Also
any M, has exactly the same number of ares from ¢ to ¢ as any
other M,, has from ¢, to ¢,. This results from the fact that M; can
be made to correspond to M, by some sz, which is easily shown.

6.2. Definition. The set cbiained by replacing each set M, by
a single arc joining ¢ to ¢ will be called the skeleton set of M
and will be denoted by .

Suppose one of the c-points becomes a homngeneous point in m
then, since every c-point ean be made to eorrespond to any other
[since both can be made to correspond to ¢]. every c-point mustbe
homogeneous. Then = is a simple closed curve. The set M must
therefure be a number of sets [equal to the number of c¢-points]
homigeneous except for two points and these sets are joined end
to end so as to form a ring.

If the c-points do not become homogenenus, the set = will be
a set which is homogeneous except for the same n ¢-points which
were non-homogeneous in M.

11#
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The set m consists of ares joining the n c-points, hence = deter-
mines a finite number of complementary domains and each homo-
genenus point 1s on the boundary of just two of these.

6.3. The boundaries of two complementary domains of m have at
most one arc in common unless their common purt is totally dis-
connected.

Proof. Let F[Q].F[@,] contain the arc ¢, xe, where ¢,xc, is not

a proper subset of any other are from ¢, (o ¢, in F[@,]. F[®,). Case ). If
§—m=@&, -} @&, then as » will have no cut points and is there-
fore a simple closed curve, M must be a set of the type described
in 6.2. :
Case II). If S—m=4@ 4@, then @ and @, may both be
regarded as bounded domains for if one is unbounded the set may
be inverted about a point of &, a domain different from @, or Q,
with F[Q] for the invariant curve so that @ becomes the new
unbounded domain and @ and @, become bounded domains,

Suppose F[&Q| F|@,]—¢;x¢, 5= 0. This set is either totally dis-
connected or contains a maximal are whose end points are ¢ points.
So in every case this set contains a c-point ;.

Now let us suppose that @, and @, were chosen so that inside
the outer boundary of @ - @, there is no other pair of domains
which have more than an are in common to their boundaries. This
choice is possible since there will have to be a new c¢-point inside
every boundary of two domains of the required type and since the
total pumber of c-points is finite there must be a last pair of
this tvpe,

The set » —[r-¢,] is not connected. For there exist ares
ZYi ¢y Tyscs lying except for their end points entirely in @, aund
&, respectively. Now m—[2+ ¢,] is partly within and parily without
the simple closed curve ry, eyy, . Hence this set is dic ,unected.

Take h(Crre, and k' (Ce,2e, where z is inside the outer
boundary of & +&,. Let m, be a transformation which gives
7y} =F'. Now myle, we,] wust be an arc ¢ #’c; which is contained
in cyzeq. Also ¢ig=¢;, ik, sinee ¢; is not on ¢, zry, Then ¢ 2’c;
is the common are of F[@,] and some other boundary of a com-
plementary domain. F[@,] say. The set m — ¢ is connected. There
are now two possibilities.

_ Case I). F', @] does not contain ¢;. Then F[&] — &'1s a connected set,
since the removal of a single point does not disconnect 2 simple closed
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eurve. Also m— ¢;— k' is connected; for m — ¢} is connected and
if m— c;—h' were disconnected between the points g and 7, con-
sider an are from g to » which contains 4’ and to it add the simple
closed curve F[@,]; then since m — ¢ ) F[Q,] it fullows that g and
r can still be joined since F[@,] — 4’ is not disconnected. But then
m — ¢y — h'is disconnected so 7, is not a continuous correspondence,
which is a contradiction.

Case II). F1@;) D ;. Then there is a c-point [r or co} between
¢; and &' on either are cuh’ or c;ol’ of F[&] (since ¢ or ¢ is
between ¢; and h going eithes way around F£[&]:. Sinee F[Q,] is
& simple closed curve, ¢; can be jeined to ez by an are & of F[Q,]
not containing ¢ or A’, for ¢ is not on ¢js’e; and from the choice
of @ and @, F[Q].F|@,] consists of ¢;z'r; only. Then if p and
g are puints of m — ¢ — A’ which cannot be joined by an arc of
this set, take the arc L which joins p to ¢ in . —¢; and add to
it the arc G of F'|@,| which joins ¢} to ¢; and does not contain /. Now
L k" and therefore L D) ¢ k'c;. Hence L-+G is connected but L-+G
is not disconnected by the removal of A’ so p and ¢ can be joined
in m—c;—Ah' which was supposed false. Hence m —e;--h' is
connected. Then the same contradiction follows as in case L

6.4. 1f the set of puints common to the boundaries of two com-
plementary domains is totally disconnected in m, it conststs of only
one point.

Proof. Since there are on'y a finite number of domains in S—m,
it is possible to take @, and & such that no pair of domains
other than @, and @, inside the outer boundary of & 4 & will
have more than one point or an arc in the common part of their
boundaries. If this were not true it would be possible to find an
infinite number of ¢-points in the set. Let & and &, have ¢, and
¢, as the two ¢-points which are common to their boundaries such
that on the arc of F[Q,] which is within the outer boundary of
@, + @, there is no common c-puint between o and ¢, Let x be
a point on F[Q,] such that z is not on the outer boundary of
@, 4 @,, and let y be a point on F[&,] with the same property.
There are now three cases to be discussed: I) e, xe¢, and ¢ 76
have no c-puint other than ¢, and ¢; on them, I1I) one of thesa
ares has a c-point but the other has not, I1I; both have c points
[one or more].
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Case I). Take @, [@;=F@] which has ¢ xe¢, as part of its
boundary. F|@,] e, some c-puint snce F @] is in m and all
domains of m have at least three c-points on their boundaries. Tuke
&,[Q, 4= @Q,] which has ¢,yr, for part of its boundary. Now ¢ e5¢,
on F[&] is not part of F[Q,| because ¢; would be homogeneous
if it were. If ¢, C F[Q,], F\Q,].F|Q,] cannot be an arc because
Fl@,].F[&] D¢ and ¢ and the arc would bave to be from ¢, to
¢y which was just shown to be impossible. Then F[@] and Fla,
repeat the situation with which @ and @, occured, two domains
with at least two points common to their boundaries but no are
common. But this contradicts the way in which @ and @, were
chosen. So this case is impossible.

Case II). Let c,zc, have a c-point ¢;. Suppose the order c¢,zcyc,
while ¢y, has no c-point. Then @, exists with 6,yc, as part of its’
boundary and there must be another are from ¢ to ¢, on F[Q,]
Let this be ¢, pe,. The are ¢;pe, must have a c-point ¢, on it since
Fl@,] has at least three c-points This case also leads to a contra-
dicftion since @ and @, exist with ¢, and ¢, their only common
points,

Case III). ¢;zc, Des; eye, De,. Let the simple closed curve
¢ 656, ¢y be called 0.

Suppose there is no c-point within 0. Let ¢, denote the first
c-point on the are ¢;¢,, common to F1Q,] and 0. Now there must
be a complementary domain @, a proper subset of the interior 0,
whose boundary F[@,] is a simple closed curve containing the sub-
BIC ¢,Z¢;, common to 0 and F|@] Let ¢,yr, be that arc of Fl&,]
which does not contain . Now there is no connected subset of ¢, y ¢,

which has ¢, as a limit point and is common to cg ey of ?[Z&Z]
g

and the are ¢g¢, of F[@,] which does not contajn ¢;; if this were not
the case it would be impossible for another are of M to leave ¢

contrary to the fact that every c-point must have at least fc'm:ll3
d1s.imct ares leaving it. Therefore esye; of F[@;] ean have no other
point other than ¢; in common with the are ¢s¢; which is common
to F|@] and 0, otherwise we would contradict 6.3. Now there

must be on ¢ ye, another c-point, ¢,, because every domain

N ———
m_nst' have at least three ¢c-points om its boundary. As ¢, is not
mthln’ 0 it must therefore be on the arc ¢ kcy, common to 0
and F[@]. Now all points of the arc of F|Q] from ¢, to ¢, which
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does not contain ¢, must belong to F[Q,] otherwise & and &, would
have a disconnected set comm n to their boundaries, contrary to
the choice of @ and @, Within the interior of cjc ¢ ¢y there must
be another are leaving ¢; for su far we have accounted for only
three ares leaving c;. Hence there is a domuin @, a pr per subset
of the interior of ¢yeye,eq. Which has as its boundary a simple elosed
curve J, having the are of F[&,] from ¢; to ¢,, which does not
contain e;, as part of its boundary. Let ¢,zc, denote that are from
eg toe, of J, which is common to @, and &, while cywe, is the

other are of F|&,] from ¢; to ¢, Now as above there is on ¢ uwe,
S

no connected subset which has ¢; as a limit point and is common
to ¢;we, and the are cghe, of F[@] from ¢; to ¢ which dues not
S—

contain ¢,. It follows that ¢;we, can have po point in common with

ey hes otherwise we would contradict our choice of &, and &, Now

there must be another c-point, ¢;, on ¢, we, for the boundary of
N— .

any complementary domain has at least three c-points and as no
¢-point is interior to 0. ¢; must be on the are ¢,ve, of F|&,] which
does not contain ¢, and must be different from ¢,. Now the subare
cse, of cgwe, of F[@,] must coincide with the are ¢,¢5 of cyve,
otherwise F[Q,] and F|@,] contradiet cur cheice of @, and @, But
now it becomes impossible for a fourth arc to leave ¢, and hence
we are led to a contradiction if no point of the non-humogeneous
set is within 0.

If ¢’ is the ¢-point inside O there exists a 7y which gives
ntule,] =¢i. In this case mu[c,] must be inside or on 0. For if not
m —¢, is connected and m —c{— ¢; has to be connected because
any are from ¢ to ¢, has to have a point of O on it and points
on one of these arcs can be joined to puints on any other by
passing around 0. But m-—¢ —¢; is disconnected since & and
@, enclose 0 and the exterior of 0 is connected to the interior
of 0 only by points ¢, and ¢;. Hence 7,[m —¢, —cl=m—c—c
must be connected. But it was shown that this was false, therefore
¢, is inside or on 0. [It may happen that ¢; is ¢; or ¢).

Now ¢, and ¢, cannot have an arc joining them in m which
contains no c-points exeept ¢, and ¢, For if there were such an
arc let kb be a homogeneous point of it and let 2’ be a homogeneous
poins of the part of ¢ ¢y from ¢ to the first c-pcint ¢, on this are
¢, is different from ¢, since ¢; is already on this arc] Then if



Yakuza


1638 T. €. Benton:

7y 18 50 chosen that 7,[h] ==4', m,[e;] is either ¢, or ¢, and Tules]
is the other one of these two. Now m — [r 4 ¢,] falls into at least
three separated sets, but m — [¢, - ¢,] can fall into at most two.
For suppose » —[¢, +¢,] = M, + M, + M, ... where M, con-
tains the arc ¢ ¢, and M, contains F'|@]—c,c,. It follows that the
8IC ¢y ¢y ¢ of F[@].0 is also in M,. Then M, + M, +... are in-
side 0, for, as ¢, does not disconnect, all points outside 0 can be
joined to F[@,] and are therefore in M,. Now M, isin 0 and does
not have any points in common with 0 except ¢; and ¢,. The are
¢rhe, of F[Q] must be on the boundary of some complementary
domain, @, which is a proper subset of the interior of 0. Let
¢2¢, be the arc of a simple closed curve forming F[@,] which
does not contain ¢ ke, There can be on ¢,zc; no connected set
p——

having ¢, as a limit point which is eommon to ¢, 2z¢; and the are
N’

& ey of F[@] from ¢, to ¢, which does not contain ¢; otherwise
it would be impossible for four arcs to leave ¢,. Then ¢;z¢, can

have no point’in common with the arc of F[Q,] from ¢, to\c‘jvhich
does not contain ¢,, otherwise we would contradict our choice of
@, and @,. Suppose ¢,z¢, as a point other than ¢, in common
with the are ¢, e,c, of F[&,].0; this point will evidently be a non-
homogenous point and will be denoted by ¢;. Then as F[@,] and
F[Q,] will have ¢; and ¢, in common, from our choice of @ and
@, it will follow that the are ¢,2¢; must follow c, eo of F[Q,]
from ¢; to ¢. But then it follows that all points of ¢,z¢, belong

to M, and ﬂ?e set My must lie wholly in the interior of €y Cs Cy Cpe
But then ¢, is not a limit puint of M, which is contrary to the
fact that ¢, and ¢, together cut M while neither alone cuts. Hence
%2 must not meet ¢,c,c; of F[@,]. Then there must be a point

€g 0D C,2cp. It may easily be proved that ¢, ¢, ¢, 1s not in either M,
S——

or M, Let us suppose that it is in M;. Now' consider the simple
closed curve ¢,cye,c, ¢, c,e

o o The are c,coc, less ¢, and ¢, is in M,
while %Cf4fy 18 1o M,. Hence as ¢, and ¢ cut M it follows easily
that there is a subdomain of the interior of ¢,c4¢, e, cpc, having ¢
and ¢, as boundary points 1). Then this dumai: and @lp contraiiic;

.‘) A proof of this faet may be obtained very easily with the use of an un-
published paper of G. T. Whyburn. For statement of Whyburn's theorem
see Bull. Amer. Math. Soc. vol. 33 [1927] p. 388.
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the choice of @, and ,. Hence the supposition of a set 31 leads to a con-
tradiction. Then M — ¢, — ¢, = M, 4 M, and 7, cannot be continuous.

It follows that ¢ and ¢; cannot lie on an are which has no
¢c-points between ¢; and ¢, But inside 0 all domains have either
one arc or one point which is common to their boundaries. Let ¢
be on the boundary of @. Then those domains which have an arc
or puint in common with F[Q), will have for their outer boundary
a simple closed curve J;. Now if ¢; is on F[Q] there is a c-point
on any are from ¢ to ¢; so that every point of such an are ean
be joined to J;, hemce s —c; —c; is connected. If ¢; is not on
F[@] then every point of = —c;—c; can still be joined to J, for
m—c; dves not disconnect F[Q) and if ¢ is on an arc from F[Q)]
to J, one part of this are goes to F[@] and the other goes to J;
since ¢; and c¢; are not extremities of an are without c-points be-
tween them. If ¢; is on J, then J, —c; is still connected and the
other ares can be joiced to J; by going around the F|@] of which
they are parts. If ¢ is outside J, then every are from ¢ to ¢
passes through J; and hence m is still connected.

Now s — [¢; 4 ¢;] is disconnected but m — [¢; + c3} is not, there-
fore m, iz not a continuous correspondence which is contrary to
hypothesis. From this contradiction the theorem follows.

6.5. If k be the number of arcs of m which meet at a c-point,
k i3 not greater than 5.

Proof. Suppose first that each domain of m has only 3 c-points
on its boundary. Start with one c¢-point from which go & ares.
These ares reach % distinet c-points because if two ares end in the
same c-point there would be either a domain with only two ¢-points
on its boundary, which was ruled out in the definition of m, or
a simple closed curve with only two c-points on it but other ¢-points
inside it, which was shown impossible in 6.4. Now each adjacent
pair of the % arcs must lie on a comnlementary domain and the
other arcs of these domains form a simple closed curve ¢, Now ¢
has exactly % c-points since each domain has 3 ¢ points on its bound-
ary. From exch of these & c-points go -3 new ares lying outside ¢;. Let‘
¢; and ¢; be adjacent c-points on ¢;. The first arc from ¢, on the side of
¢; and the first arc from ¢ on the side of ¢, must unite to form
a new domain or else there would be a domain with more than
3 c-points on its boundary. The c-point where these arcs meet will
be spoken of as a double c-point. For each c-puint on ¢ there.can
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be only one double ¢-point for let ¢, and ¢ give ¢, as their first
double e-point and let two other ares, one from ¢, and one from
¢ give a second double puint ry. Then there can be no ¢ points
0B C;Cy, Cifn, G0 OF ¢ but from ¢, go k— 2 ares which cannot
go into the domain bounded hy ¢c¢e, and therefore must go tu ¢,
but if & is greater than 4 there will result domains with only two
c-points on their boundaries, which is impossible in . Suppose
% >4 so thal there cannot be more than one double ¢c-point coming
from a c-point on ¢;. Then from each ¢ puint on ¢, come k —5
new ares which end in single e-points. Now form the outer bound-
ary of all the dumains formed with these ares as parts of their
boundaries; which boundary will be a simple closed curve ¢y, hav-
ing % double c-points and k[k— 5] single ¢-points. By continuing
this process there will arise a curve ¢. Let », be the number of
double ¢-points on ¢, and m; the number of single ¢ points on ¢,
The total number of ares leaving ¢, is #, [k — 4]+ m, [k — 3). Let
4y be the number of double ¢-points on ¢iyy and myy; the number
of single c-points. Then My == m; -+ 2. Hence on Ciyy are
[k —4] 4+ m,[k— 8] — [m, ++ n] or w,[k — 5] m, [k — 4] c-points;
Or ¢y, contains n,[k— 6] 4 m [k — 5] more c-points than ¢, Hence
if k>0 there will be an increasing number of c-points and
will have more than n c-points, contrary to hypothesis.

Now suppose any domain has more than three ¢-points. Suppose
this adds a c-point to ¢, [if this happens first in ¢,, start there|.
From this ¢-point go k—2 ares which must end in c-points. Now
onfy two of these c-points can be points of the previously con-
stracted set, if k> 4, for only the two outer arcs ean unite with
ares from uther c¢-points on ¢, Hence there must be at least k—4
new c¢-points on ¢, due to the existence of this c-point. Hence if
the number of ¢ points on the boundary of some of the domains
is greater than 3 there will be more c-points on each of the curves
€y Cyye ele. and therefore if 4> 5 the number of c-points increases
more rapidly than before. So & cannot be greater than 5.

6.6 »— F[Q] is connected for any .

Proof. In the interior of @ - F[@] surround this set by a sim-
ple closed curve Z such that every point of Z is at a distance less
than e from some point of F[@]1). Take ¢ so small that no c-point

1) Zoretti: Sur les fonctions analytiques uniformes, Journ, des Math., [1905)
pp. 9—11.
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in the exterior of F[Q] is on Z. Let @,, Q,,... be the set of com-
plementary domains of = which have ares of their boundaries
common to F[&Q]: and let @,,, @,... be the set which have points
of their boundaries common to F'[@] but no ares. These domains
are bounded by simple closed curves which lie partly inside and
partly outside Z on account of the choice of e. Let @,;, Quiy @uezs-- -
@,y @.» be the domains which have ¢, on their boundaries where
¢, is a e-point of F[@]. The arc common to F|Q,] and F[Q.]
will be called ¢; ¢, etec That common to F[@,,] and F[Q,,] will be
called ¢4 ¢, ete. Then Z cuts all these ares between ¢, and ¢,. So
any two points of these domains outside of Z may be joined by
an arc lying entirely outside Z By allowing ¢ to approach 0, Z
will become F[Q] and therefore » — F[@Q] is & connected set.

6.7. If F|Q,| is the boundary of @, a complementary domain
of M; then 7, {F|@,1} must be a complementary domain boundary.

Proof. If n,{F[Q]} = C, not the boundary of a complementary
domain, we have »» — C is disconnected, but »— F|@,] is connected
50 m, fails to be continuous, which is false.

6.8. Either every complementary domain boundary can be made
to correspond to any one boundary by some m,; or the boundaries
fall into two classes such that the members of a class may cor-
respond to each other by some m, but not to members of the other
class, and the domains which have an arc of their boundaries in tom-
mon with one domain belong to the class of which that domain is not
a member.

Proof. If every F[@] cannot be made to correspond to F[Q],
let F[Q.] be one which does not. Then take 4’ on F[&] and A
on F|@]. Now we get =, so that m,[h]=4~". Now the arc D &
is on only two boundaries of complementary domains; F[@,] is one
and let the other be called F|@,]. Sinez F[@] does not correspond
to F[Q,] we must have =,{F|@|= F[Q]. Then take A" on the
next arc of F[@,] and that must cause F[Q,] [the other boundary
& to correspond to F[Q,]. Hence all the bounding domains
which have an arc in commeon with F|@,] must correspond to F'[&,].
Also the domains which bound F[@,] say, must all correspond
to F[Q,) and by this process we can exhaust the whole set with
only the two sets since if & is any point of » we can find 7,[k]=F
and one domain which has k on its boundary must correspond
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to F[@] and the other to the other domain which belongs to the
second set.

7. The forms of the set m will now be investigated in the case
where every domain can be made to correspond.

Let p be the number of ares from each c-point. p<(d by 65.
Let & be the number of ¢c-points on each domain.

Choose a particular F|@] which is divided into k& ares bv the
k ¢ points on it. Bach of these ares is part of the buundary of some
other complementary domain, Such domuins will be said to be of
type one. Then there are boundaries which have ouly one ¢-point
in common with F|@] These will be said to be of type two. By
6.5 and 6.4 there are no dumains other than these two types.

The outer boundary of all of these dumains is a simple closed
curve C, since m — F[@] is connected. On C; each domain of type
one has k—2 c-points and each of type two has k—1 but on
account of overlapping at the ends count each domain of type one
as contributing £ —3 and each of type two as contributing £ — 2,
If p ares leave each point there must be p—3 domains of type
two at each c-point on C;, hence the total number of ¢-points on
C, must be k[k - 3]+ k|p—3] [k — 2]. Now consider the domains
which have an arc or point in common with ¢, and lie outside C,.
Their outer boundary will be a simple closed curve C,. Continue
this uaril a simple elosed curve C, is reached.

If /[C) denote the interior of C,, some c-points of C, will have
3ares of [C,+ I[¢}]].m leaving them and others will have only two.

Let

m; = the number of points with 3 ares of {C4-1[C]}y.m
B== n b n v 2y, n
4 =m,~+n, the total number of c¢-points on C,.

To caleulate £, notice that each of the m, - n; points gives one
domain of type one, each of the m, gives p—4 of type two and
each of the », gives p—3 of type two, hence:

b T e nd (=8 fnlp— 4+ nlp — 3]]. [k 2]
&i80

M = mp — 3]+ n[p—2);

since each of the arcs leaving C, ends in a ¢-point of the required

kind on C,,.
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Let
=ty —1,
= [m, + n} [k —4]+ [m[p — 4] + n[p—3]] . [k —2]
= [+ 1) e — 4] + [p— 4] [ —2]) + [k — 2}

Now 7,y == tiyy —— Mgy 80 Mgy — My =1ty —2m,,.

Therefore

Wy — Wy = [, 1] |k —3] 4w, ilp—4 le_..Q] _,2[])__3}}_}_
4o {[p—3]Tk—2]—2[p—2]\
Case 1. p=23. Then |
dy=n, [k —4]—2m;;
My = m 12k —Bd] 4 wlk — 5.

Mgy
Therefore if i is greater thun O, 7, 1s greater than Migy and
d, is always positive so the numhber of c-points must increase
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without limit, which is contrary to the original assumption that the
set had only » points of » non-homogeneity. The only possible sets
are those for which % is 3, 4, or 5. These sets are shown in
figures 1, 2 and 3.

It should be pointed out that £ ==D5 is not sufficient to make
t, increase because if k=15, n,, — m; may vanish due to n,=0,
and this indicates a stopping of the set which actually happens.

Case IL p=4.

d,=2n[k— 3]+ m[k — 4].

If k>4, d, is positive. If k=4, n,., =[m+n][1]+2n;, and there
are no minus signs 80 n,,; Will not be 0 and therefore d, is positive.
Hence the only possible case is k== 3. This set is shown in fig. 4.

Case III. p=5.

dy=2[m, +n] [k — 8] + n[k—2].

If & is greater than 8, # must increase but if k=3 and 7
vanished this case could occur and it actually does exist as shown
in fig. b.

7 2. Consider the next case where w contains two classes of
complementary domains.

Let

p =the number of arcs from each ¢-point.
k=, » n c-points on each domain of class I.

¢ ==

n n n n n n " n n II'

Then ke, and p<h, k>3, e>38.

Build uvp a simple closed curve Ciyn where C,, is the outer
boundary of those domains of class I which have either a point or
an are of their boundary ecommon to the boundaries of domains of
class II, which in turn have either a point or an are in eommon
with C,. Take a domain of class I as a start and this definition
serves as an induction definition to build up the curves. It has pre-
viously been shown that domains which have an are of their bound-
ary common to a domain of class I must be of elass II and vice
versa [6.8] Hence there must be an even number of domains and
hence of arcs meeting at each c-point. It follows that p=4.

Let
m==10. of cpoints on C, which are of order 4 in m (G 1[C)

L n 9 n non n nnn2n n
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D, = the outer boundary of the domains of elass II which horder on C,
P =no. of c-points on D, which are of order 4 in m(D,--I[D]).

% = n » n n o n n n on on 2 n
%, = total number of ¢-points on D,.
L= n n o » G

Now each point of order 2 in =(C,+ I[C]) on C, will give rise
to one point of order 4 in (D, + I[D,]) on D, Therefore ¢, =n,

‘Then

wy==[n; —m][e— 1] 4 m;[e— 2] = n,Je— 1] — m,.
P = t— gy =, — 1, = n;[e — 2]— m,.

So
b =I[p— @l [b—1] — ¢[k— 2] =p[k—1] —g.

= (nJe — 2] —m)[k— 1] —n, = n,(Je — 2][k—1]—1) —m[k —1}.
Moy = p, == (e —2) —m,.
Hepy = by —myyy = n(le— 2] [k — 2] — 1) — m[k —2].

Now

ny —myy =n,(e—2] [k—2] —1—[e —2)) —m [k —1],

which can be reduced to
= |, —m] [k—1] 4 n,(k[e — 3]— 3[e —2]).

Now for i=1, n,—m =k hence this formula shows by in-
duction that n.,>m,, if >3, e>>8 because the (k[e— 8] —
—3[e——2]) is 4. Therefore #4, is always positive and the set
cannot have a finite number of ¢-points.

Consider the cases where k and e are not both greater than 3.

a k=23, e=4
ny =3 Hy =3
my, =0 niy = 6 mg = 0.
Hence this set stops. It is shown in fig. 6.
b. k=3, e=h.
7, =23 =6 ng =3

m, =0 my = mg =9 m, =0

Hence this set stops. It is shown in fig. 7.
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e. k= y 6= 3.
n =4 n, =4
my == my = g == 0

This set is shown in fig, 8.

d k=5 e=3.
#, =25 ny =10 nyg =5

-

my =0 my= H mg =5 my =10

This set is shown in fig. 9.
8. k= 6, e=3.
by = wilk — 2] —mifk — 1) =[n,—~m] [k —2] - m,.

Also if ¢—1 is inserted in the formula in place of 4, m, and
n, can be found in terms of m_, and n,_,. From the old formula
for my, -—my,; comes the following: n,—m,=m,_;.[2k—B]
+ .y [k—Db], dlso my=m,_, —m,_,.

Therefore fy,=m,_, [2k* — 9k +11] + n,_ [k — Tk + 9],

It k26, 2k — 9%k 4 11>19, k*— kY>3 Hence t,, is
always positive and the set cannot exist.

f k=3, ez=6.

Ry~ 1, = 0, [e — 4] — m,.
Mg —Nyy =Ny [e—4] ~m,, = nfe— 3] [e—4) —m|e—4| —nfe—2]+m
which reduces to
= [e— 5] [tya— n) + mfe — 6],

From the values of ¢ it follows that the n’s increase as an
arithmetic progression or faster. Hence there are an infinite number
of c-points in the set unless the value of m, can become negative.
By the same methid a formula can be obtained for the m,s which
shows that they also inerease in an arithmetic progression or faster
so there is no possibility of a negative value for an m,. Hence there
are no sets of this type.

8. It follows that M hus either a simple closed curve or one of
these possible m sets for its skeleton set, hence all the sets which
are homogeneous except fir # c-points and which have the addi-

tional property that every c-point can be made to correspond to
one c-point have been clussified.
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9. By the process of inversion it is possible to extend the
results of this paper to unbounded continuous curves. By inverting
a two point, non-homogeneous, continuous curve in such a way
that one of the non-homogeneous poinis is the center of inversion
it can easily be shown that an unbounded continuous curve, homo-
geneous except for one point is a finite number [<= 2] of rays with
only that point in common.

By inverting any of the sets found previously, other than the
two-point set, it can be shown without difficulty that none of the
new sets are homogeneous but if an unbounded set with more than
one non-homogeneous point existed it would have to invert into
& bounded curve which was homogeneous except fur one more
point than was non-homogeneous in the unbounded curve, and by
inverting it again it would have to be possible to recover the orig-
inal curve which contradiets the first statement. Therefore no other
unbounded continuous curve homogeneous except for a finite number
of points all of whose non-homogeneous points can be made to car-
respond, ean exist.
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