The notion of a directed point in 7 dimensions.
By

Rosalind Cecily Young (La Conversion, Suisse).

The appearance, in analysis, of the symbol x40, 2—0, also
written z, z~ or z,, x_, carries with it a new idea.

It is true that this idea seems to have received no explicit for-
malation up to the present, and that the use of the symbols has
been purely incidental and notational, an abbreviation of language
in the course of reasoning or explanation. But from their mere use
and its gradual extension 1), possible interpretations necessarily arise
in the background of our minds.

We have still to work out these interpretations, to see by pre-
cisely what means the symbols 4 0 and 2 — 0 may be consistently
invested with an existence independant of their incidental use, and
in particular to examine what there may be of truth or untruth
underlying the verbal convention sometimes made 2,
with the symbolical convention, to speak of there
on a footing with the point z.

simultaneously
as actual points,

) In its narrowest form, which seems to have heen
mann’s time, it comprises solely the inclusion
brackets, to f~uute the right-hand and left

carrent as early as Rie-
of the symbols within the functional
~hand limits of the function:

Flz+40) flz—o).
Thence it is extended to the gymbolical ex

pression of the fact of a sequence of
points converging to the point ¢ from the r

ight or left:
T o> x0, 2 >g —0,
and finally to that of other than function

to 2, as for instance right-hand and left.h
3 Cf. L, C, Young,
Mathematics and Mathemat

al limits involving this mode of approach
and derivation of one-variabled functions,
»The Theory of Integration® — Cambridge Tracts in
ical Physics, N° 21 (1927).
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In a paper?!) dealing with functions of boun.ded Yariation in
s-space, I have briefly worked out the interpretations in the one-
dimensional case. Il appears that the two symbols 40 and z—0
should not be considered as on a footing with the point , but rather
as dividing between them the properties of that poi.n.’c.. Or else tb.ey
may be regarded more logically still perhaps as entilies of a superior
order, represented e. g. by monotone sequences of‘rfaal pomts', as
real numbers are represented by sequences of the original fractional
nunﬁer&;e present paper, I propose to deve.lop th_e theory and its
interpretations systematically and in direct n-dxmensxcznal form. I shall
illustrate it by the consideration of continuous funetions of tl.le new
»point*, and indicate the special significance of these functions in
the theory of funetions of position. . .

1. A set of n real numbers =z, %;,...,,, in & given orde‘r,
defines a real point P in space of n dimensiqns; t!:e number x, 18
the &% coordinate of the real point. In one dimension, & real point
is a real number. _ ‘ _

The set of all real points whose n coordinates satisfy a given
linear relation

U+ ayxy ...+ .z, =
is called a plane. The plane

z, =0

is called the k% coordinate plane. Planes whose defining relan;))u.s
only differ in the constant term are parallel (to one anothert). ltl;
vision by a constant throughout the relation of course does not alte
the plane it defines.

The distance between two real points is the s-quatrhe Tootdf&:::
sum of the squares of the differences between their 2™ Looii;h th;
for k=1, 2,...,n This is indepen&e.ant of the order 1:;1 eWBi h o
two points are taken, and the magnitudes, only, not gns,

the differences are involved. . .
A set E of real points is said to be bounded if the distance

i int 4 variation
1} ,Les fopoctions additives d'ensemble, les f‘onctw'ns de. I;?«m';g;eignemm
bornée ‘;t la généralisation de la notion d'espace & 7 dimensioni
mathématique, 1927, Nos. 1—2--8, p. 63.

16
Fundamenta Mathematicae . XIII.


Yakuza


242 R. C. Young:

between any two of its points is bounded, and the upper bound of
this distance is called the span of the set. A bounded set can always
be exhibited as the sum of a finite number of sets each of span
less than a given positive d.

A set of n signs 6,,6,,...,0,, (6,=-, —, or 0), is a given
order, defines a sense @ in space of n dimensions; the sign 6, is
the & coordinate of the semse. A sense is definite if none of its
coordinates are 0. There are 3" senses in space of n dimensions,
2% of which are definite.

Two senses, like two points, are only said to coincide if their
k™ coordinates, for each k, are identical. Two senses are said to be
opposite (to one another) if their %™ coordinates, for each k, are
either opposite signs (the one -, the other —), or both 0. The sense
opposite to a given sense @ is thus unique; we may denote it by — @,

Let us agree to define the sum of two signs as follows:

the sum of two equal signs is again the same sign;
the sum of any sign 6 and of 0 is again 6; .
the sum of -4 and — is O.

The sum of fwo senses @, and @, is then defined as the sense
having for its A" coordinate the sum of the & coordinates of the
two given senses, and is written @, 4 @,. The sum of ©, and — 6,
is also written @, — @, and is called the difference between the two
senses @, and @,, in that order.

A pair of real points in a given order, P;, P,, say, is denoted
by Py P,. It has for span the distance between its two points and
it has a sense, whose A" coordinate is the sign of the difference
between the A" coordinates of P, and Py, in that order (excess of
the latter over the former). The absolute value of this difference is
called the L™ component of the span.

'lh‘hg two pairs P, P, and P, Py ave said to have the resultant PP,
If #/ P, has a sense O, and P, P, a sense 0,, then P, P, has a sense
8 whose %" coordinate is the sum of the kth coordinates of 8,
and 6,, unless these coordinates are opposite signs, when that of @

may be 4+, — or 0 according to the relative positions of P, and 2,.
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If ©, and 6, only differ in places where the coordinate of one
is 0, then we have therefore

®=6, 1L 6,

Another useful rule is that when the £ components of the
spans of P, P, and P, P, do not coincide, the k™ coordinates of the
senses of P, P, and of the pair P, Fy or P, P, which has the largest
k" component, coincide, unless the latter coordinate were 0.

A succession (i. e. any countable, more than finite set, in ecun-

table order)
P P,..., Py...

of real points is said to be a monofone sequence if m has an
invariable sense for all 2. This sense is called the sense of the sequence.
The adverb strictly is added to the word monotone if this sense is
definite. In a monotone sequence, if two of the points coincide,
then all coincide. The repetition of a single point constitutes an
improper monotone sequence. In a proper monotone sequence no two
points coincide. In one dimension every proper momftone sequence is
definite. A monotone sequence of real points P, in n dimensions
may be described in terms of one-dimensional monotone sequences
by saying that the k'™ coordinate of Py, for each i, deseribes o mo-
notone sequence of real numbers, whose sense is then the k* eoor-
dinate of the sense of the given sequence.

A succession

P, P,..., P;...

of real points is said to have ihe unique limit P, if. the ‘span of
P, P, tends to zero with 1/i. Each of its sub-successions then has
the same unique limit P,. In particular this is the case with every
monotone sub-sequence of the succession. Since every sucajssian of
real points contans wonotone sub-sequences, it follows tha(’2 if every
monotone sub-sequence of a succession has the same unique limit
P,, the given succession has the unique limit .‘Pg. — Thus B meces-
sary and sufﬁcz'ent ‘condition for a given .s:uccesszon of real points to
have the unique limit P, is that each of its monotone subsequeuces
should have the unique limit P,

A bounded monotone sequence of real points P, always bas

a unique limit P, which is called the limit of the sequence. The
16*
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sense of Py P, is the same for all 4, and is opposite to the sense
of the sequence. If a succession of real points Pi, of unique limit P,
without being ifself necessarily monotone, salisfies the condition that
Eﬁ, has an invariable sense, then every monotone_ s_‘ﬁtbsequence of the
succession has the sume sense, opposite to that of P, P..

From a set & of real points !), not merely finite in number, we
can always form successions and hence monotone sequences of its
points. The limits of bounded proper monotone subsequences of a set
E are called the limiting points of the set. A limiting point of E
may, or may not, belong to E. A bounded set which contains all
its limiting points is a closed set. Points of a set which are not
limiting points of the set are isolated points of the set. A closed
set without isolated points is a perfect set. ‘

The set of the A" coordinates of the points of a set is called
the &t projection of the set.

We also recall the definition of the limit of a succession of sets. A succes-
sion of sels K, of real points is said to have the umigue limit E if every point
of E belongs fo all but a finite number of the sets E,, and every point belonging
to more than a finite uumber of the sets K, is a point of E,

The k'™ projection of K, then describes a succession of linear sets whoge
unique limit is the k' projection of E,

If E, is the set of all points whose k* projection for each k& belongs to a given
set ¢*), and the k™ projection ¥ of K, deseribes for each k a succession having
4 unigue limit' e®, then E, describes a succession having as unigne limit the set
of all pointa whose k* projection bhelongs to ek, k=1, 2,.., n)

2. A real point P and a definile sense @, in space of » dimen-
sions, together constitute a directed point & in that space. The
real point £ is the position of the directed point & the definite
sense @ is the sense of the directed point. The /* coordinate of the
position of &), together with the A*" coordinate (4 or —) of its
sense, constitute the & coordinate of &; it is a directed point in space
of one diwension, or a directed number. Two directed points only
coineide if they have the same position and the same sense, i. e.
if their &% coovdinates, for each k, are identical in position and
sense. As there are 2" definite senses in space of n dimensions,

every real point in n-space is the position of 2 directed points.

. arnd - ) e gea o
i in an wnordered set, repetitions of clemenis wre inidistingunishable and
therefore not admitted.
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To represent a directed point &, of position P and sense 6, in the space of
real points, we have in principle two chief means:

a) to take the set of all real points P’ for which P Z7 has the definite sense
®. This is ealled the open guadrant of index O at P,

b) to take any monotone sequence of real points whose limit is P, i, e any
monotone sequence of real points of sense — 8 and limit P,

In one dimension these two modes of representation corresponi to the two
main schemes for the represeatation of a real number by rational numbers:

a’) as a Dedekind section of the realm of rational numbers, with the modifi-
cation that, if the threshold between the two sides of the section is formed by
a rational number, this is excluded from both sides.

b’) as a pair of strictly monotone sequences of rational nuwmbers, of opposite
senses, whose term-by-term difference tends to zero (mest of intervals).

The difference is now that the two sides of the Dedekind section (and the
two sequences forming the nest: are regarded us representing two different directed
numbers. ’

A third method, a modification of &), resembles still more closely the original
Dedekind definition of real number:

A closed quadrant at P of index 6, is defined as the open quadrant at P of
index @ together with its limiting points; the latter are the real points P’ for
which the sense of PP’ has its k® coordinate, of each k, either equal to that of
®, or zero.

If we omit from the closed quadrant at P, of index €, those of these limi-
ting points I” for whick the sense of PF has its };{h! ].-_gh‘_“’ k;h coordinates {where
the ki are arbitrary fixed integers less than n, and ¢==1} all zero, we obtain,
a half-open quadrant at P of the same index 6.

In one dimension, there are no half-open gquadrants, every quadrant is either
open or closed. The whole of the one-dimensionsl space can be expressed as the
sum of two quadrants, at any given point Z,, bhaving no common point, If the
one guadrant, of index 6, say, is open, ths other, of index — 6, ie closed. The
two quadrants are said to form a Dedekind section atf x, of sense 6, in the one-
dimeunsional realm of seal numbers, and the open quadrant of the two, whose
index gives the sense of the section, is called the principal quadrant of the section.

At every real point-number, there are two Dedekind sections, corresponding
to the two definite senses 6 = - and § = —, and these may be taken to repre-
rent the two directed numbers, having for position thaf real number and for sen-
ses those of the respective sections.

In n-dimensions, a quadrant of index & at P (of coordinates ¢y and z;) is
the set of points whose k™ projection, for eachk, is a quadrant of index 8 at xy,

In n dimensions, the whole of the space of real points can again be expressed
as the sum of quadrants, at a given point P, no two of which have & common
point. This subdivision of space will be called a Dedekind section of sense € at P
A(nf coordinates 8k and zy) in the n-dimensional realm of real points, if each of
ite quadraniz has for & projection a guadrant of the Dedekind section of index
83 at zy. Thus the quadrant of index €, (of k* coordinate §;), of the Dedekind
section at P, of index @, is the set of points whose k™ projection is & quadrant
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of index @ atau, open if @, and 6, coincide, closed if they are opposite. The qua-
drant of index @ of the section is open and is called the principal quadrant of
the section; the quadrant of index — ® is closed. Every other quadrant of the
section is haif-open

The Dedekind section of sense (@ at P may also be defined as the set of 2=
quadrants, each of a different index (9, and such that for any point P’ of such
a quadmnt whenever the kt coordinates of & and @’ coincide, that of the sense
of PP¥ coincides with them. Thus tho semse of PP’ has the k™ coordinate of
@, exc:pt possibly for values of k for which the k& coordinate of ‘@ @, is 0;
and for thess it may also have the kt coordinate Q.

The Dedekind section of sense ) at P may again adequately vepresent the
directed number of position P and sense @. The difference between this and the
ordinary Dedekind conception is that, in the latter, the sections of various indices
would be axiomatically identified, instead of being distinguished and maintained
distinet.

The seeond and third of these modes of representation afford the readiest
illustrations where sets and s:quences of directed points are concerned, while the
first and second are most convenient for the construction of functions of a diree-
ted point.

A p‘ur of directed points in a given order, &, &, say, 18 denoted
by § &, &, If P, be the pcmtlon ®, the sense, of & the span of 7.9,
c‘nncxdes with that of P, P,, i. e. is the distance between the posi-
tions of the two directed points, and the sense of o?u/s has its A%
coordinate coinciding with that of the sense ‘of P, P, when not 0,
and otherwise with that of @, — @,.

This is the n-dimensional form of the convention that. in space
of a single dimension, the sense of a pair of directed points is that
of the pair of their positions, unless these coincide; and the sense
of a pair of points whose positions coincide, is the difference bet-
ween their two senses, in the same order.

The cense of the pair §.9, of directed points in n-space, may
then be deseribed, in terms of the sense of pairs of directed num-
bers, as having for its k% coordinate, for each k, the sense of the
pair of k't coordinates of & and of &, in the same order.

It follows that, if the %" coordinates of the senses of & é o/z and
&, ate the same, say 6. or the one is 6, and the other O, then
that of the sense of & &, is again 6,. It is only when the two
former coordinates are opposite definite signs, that they do not
determine the latter absolutely, which may indeed be -, —, or 0,
according to the positions of & and &,. Thus the same rule applies
to the sense of & & when those of & &, and & &, are given, as
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in the case of pairs of seal points (q. v.). In particular, if the ki
coordinates of the two given senses, those Qf:‘:iTc‘:/“: and JTJZ , only dif-
fer where the one is O, then the sensé of the resultant 7,9, is the
sum of the two given senses.

Given two directed points & and &), whose pair has a definite
sense 0, a dlrected point & is said to be strictly between & and &)
if 9,6 and &, have the same definite sense 6. (For this the po-
gitions of & and &, must be diatinet) & in still said to be between
& and &, if the senses of cV/"—e/ and &9, only differ from that of

83, by the substitution of the sizn 0 for some of its eaordinates,
in particular, the points & and & themselves are between & and &
in accordance with this definiton, as also the 2°~7 other points whose
kth coordinates, for each 4, coincide with the k% coordinate of &
or of &.

\Vhen 7 i3 between &, and &), ils k'™ coordinate is between the
kt coordinates of & and &, in accordance with the one-dimensio-
nal form of the definition.

The set of directed points between two puints & and &, whose
pair has a definite sense ©, is called an inferval; & and &, are
opposite endpoints of this interval; its other endpoints are the 2"
other points whose L% coordinates, for each k, coincide with the A
coordinate of & or of &,. Each pair of endpoints whose sense is
definite is a pair of opposite endpoints of the interval; each end-
point of the interval belongs to one and ounly one such pair, whose
sense, when the endpoint in question is placed second in the pair,
is the index of the endpoint. Thus an endpoint & has the index 6
in the interval, if &5, for each & of the mterva], has the definite
sense @ or a sense obtained from @ by the substitution of 0 for
some of its coordinates. The span of a pair of opposite endpoints
of an interval does not depend on the sense of the pair; it consti-
tutes the span of the interval and is the maximum of the span of
any pair of puints of the interval

Every interval, in n-dimensional space of directed points, has 2°
endpoints; it may have no other points. This will be the case if
the endpoints all have the same position, and its span is then zero.
In every other case the positions of opposite endpoints are distinet
and the span is positive.

A set & of directed points is said to be bounded, if the set £ of
the positions of its points is bounded; and the span of & is defined
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a8 equal to that of E. The set of the k' coordinates of the points

of & is the k™ projection of & and the span of this projection of &

is always =< that of & itself. A hounded sel can always be exhibited

as the sum of a finite number of sets of span less than a given 6> 0,
4. A succession of directed points

Ty Fyyeeny Ty

in space of n dimensions, 1s said to be monotone, or to be a mono-
tone sequence, if the pair c/‘o/‘_l_l has an invariable sense fur all :.
This sense is called the sense of the sequence. The adverb strictly is
added to the word monofone when this sense is definite. If two of
the directed points of the sequence coincide, then all do, and the
sequence is called an improper monotone sequence; otherwise it is
a p?'OpP?‘ monotone sequance.

In one dimension, every proper monotone sequence is definite.
A monotone sequence of directed points & in # dimensions may
be described in terms of one-dimensional monotone sequences, by
saying that the k" coordinate of &, for each k, describes a monotone
sequence of directed numbers, the sense of which sequence is the kth
coordinate of the sense of the given sequence.

Any pair of points of a monotone sequence, in increasing order

of their indices, has the sense of the sequence. Tt follows algo that
all the intermediary points of a monotone sequence, between two
given mnou-consecutive ones, are actually befween these. In particu-
lar, no two non-consecutive points cf a proper monotone sequence
can have the same position.

In a proper monotone sequence of directed points &, the posi-
tions & of the directed points themselves form a proper monotone
sequence of real points, if we omit the repetitions (at most once)
which may occur in the positions of consecutive directed points.

The succession of positions of the directed points in a bounded
monoforte sequence thus certainly has a unique limit P,. The ¥inmeit
& of the bounded monotone sequence ot directed points &, is then
defined as the directed point having the position P,, and the sense
whose k™ coordinate is upposite to that of the sense of the sequence
when this is =0, but coincides, when this coordinate is 0, with
the corresponding coordinate of the sense of &, which is the same
for all 4. An unbounded monotone sequence has no limit.

When & describes a strictly monotone sequence of limit &,
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every point & having the position of & describes a strictly mono-
tone sequence with the same limit &. And in generu! when & de-
seribes a monotone sequence of sense @ and limit &,, so does any
point & having the position of & and a sense differing from the
sense of & at most in coordinates corresponding to definite coordi-
nates of &.

With this definition of the limit &, of a bounded monctone se-
quence of directed points &, we ensure that, while the span of 6,8,
tends to zero, ifs semse remains invariable and coincides with the sense
of the sequence.

In fact, for values of k for which the k™ coordinate of the
sense of the sequence (i. e of § 07,_L1) is #O. it eoincides with
that of the sense of PPW,, hence of PP and therefore, since it
is 4= 0, with that of &&.

For values of k for which the it coordinate of the sense of
the sequence is 0, that of the semse of &, coincides with that of
sense of &, by definition, and so that of the sense of &, & is also 0.

A succession of directed points

is said to have the wumigue limit &, if &, & has, for all i> N, a sense
whose kit coordinate coincides with that of &, or is O, while the
span of &&, tends to zero. Every subsuccession then has the same
unique limit. It is clear that no twé points ecan satisfy the conditions
simultaneously; in fact, the succession of the positions P; of the
points & has as unique limit the position P, of &, which is uni-
quely determined; while the sense of & must have its & coordi-
nate coinciding with that of the sense of PP P‘, for every i for which
this is = 0, and otherwise with that of the sense of &, and is the-
refore also determinate.
The points & are said to tend to the limit &, and we write

i
D D
= Fye

The k% coordinate of & then tends to that of & in accordance with
the one-dimensional form of the definition.

A bounded monotone sequence always has a unique limit which
coincides with the limit already defined. Since every succession of
directed points has monotone subsequences, it follows that a necessary
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and sufjicient condition for a given succession of directed points to
have the wnique limit & is that each of ils monotone subsequences
should, have the limit &).

The second mode of representing & directed point furnishes a good interpre-
tation of the notion of limit. We have ind:ed the theorem:

A necessary and suffivient condition for a succession of directed points & of
position P and sense (), to have the unique limit &, of position P, and sense
B, is that, if P/ be awal point of any strictly monotone sequence ,repre-
senting® &), jor which P P! hus spun less than a certain positive J;. then every
monolone subsequence of the real points P ,represents* -

We may, of course, omit from consideration the points which coincide in po-
sition with &

Let g, be chosen equal to the smullest among the [;th components of the span
of }3(-/5;, for that ¢, which are wot zero; 61 is positive and tends to zero with 1/‘_

From any given sequence representing &, choose P so that

span PP/ < 4.

Then @ forttori each component of this span is less than d, and therefors
less than the corresponding component of the span of fv’O_P:, excepting when this
component is zero, Therefors (cf. pp. 247 and 243) the jtb coordinate of the sense
of PP/, resultant of P:E and lﬁ-':’; concides with that of the sense of P_P:
when this is =0, and if either is known to coincide with that of the sense of &,
80 is the other.

On the_iﬁ_l,er bund, for values of }; and ; for which ths Lth component of
t. . span of P, P, is zero, the [;th components of the senses of PO__P:’ and of _P‘_P"b —
which latter is thut of &, — coincide, and, if either is known to coincide with
that of the sense of &,. then so is the other. ’

Thus there is complete equivalence between the two hypotheses:

1} The definite coordinates of the sense of E‘P‘ coincide with the correspon-
ding ones of &) for those of its coordinates which are 0, the corresponding ones
of & and & coincide.**

2) The sense of POP" coincides with that of .

And these represent precisely the two hypotheses:

1) Every monotone subsequence of the directed points A has the limit @‘/’0,

2) Every monotone subsequence of the real points P, represents &),

Th1s the theorem is true.

Another simple illustration is provided by the third mode of representing a di-
rected point, in virtue of ths following theorem:

A necessary and sufficient condition for the succession of directed points
&, of positions P, and senses @l., to have the unique limit gj’o’ of position Po
a-mi sense @, s that the quadrant of any given index &' in the Dedekind sec-
tion representing &, should describe a sequence of sets (of real points) having as

unique limit the quadrant of the same index @' tn the Dedekind seetion repre-
senting P
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We first note that, if for a special @(’)’ the quadrant of index @0 in the De-
delrind section representing ¢, describes such a sequence, with a unique limit
coinciding with the quadrant of the same semse in the Dedekind section repre—
senting &, then the same occars for every other @’ In faet, since, in the Dede-
kind section representing 57;’ we have

kth proj of quadrant of index @ =}t proj. of quadrant of index o,
or = its complementary,

according as the fth coordinats of @' is equal or opposite to that of 0, it fol-
lows that the same relation holds =t the limit, when ; — ». Each projeétion of
the quadrant of index @' in the Dedekind section representing & tends to a uni-
que limit, the corresponding projection of the quadrant of index @, in the Dede-
kind section representing &y, or the complementary set, according as the corres-
nonding coordinate of @, is equal or opposite to that of @’, This limit is preci.
sely the projection of the guadrant of index @’ in the D:dekind section repre-
senting &, This is the necessary and sufficient condition (cf. p. 244) for the quadrant
of index @’ in the Dedekind section representing &}, to describe a successsion
whose unique limit is the quadrant of the same index (' in the Dedekind section
representing &), :

Let us choose @ = @0’ the sense of 47, We have to show first that, if &)
describes @ succession with the unique limit & the quadrant ), of index @ in
the Dedekind section of sense @i at P, deseribes a succession of sets, having as
noique limit the quadrant of index @07 1. e. the principal or open quadrant Qo,
in the Dedekind section of sense @, at P,.

Now if P’ be any point of the quadrant (), the fth coordinate of the sense of
P‘—PT is that of @, or 0, (the latterﬂ}z when the Jth coordinate of @, 4@, iz 0).
The same is true of the sense of PP, (exca_p(:> that here _t'he coordinate is 0 only
when that of @, — @, is 0). The senses of P, P, and P, P’ thus both differ from
@0, and hence from onc another, in the one having possibly 0 as a coordinate,
when the corresponding coordinate of the other is definite. The sense of their re-
sultant 23;_]‘5' is therefore the sum of their senses, and can only differ from 60

by hasing a possible O-coordinate, when the corresponding coordinates of P;};:
and ?P” are both 0. But this can never happen, sinco both 8,+ 6, and §,— &,
would have to have that coordinate — 0, which is impossible. Therefore P;ﬁ’
bas the sense @, and P’ belongs to (), e

On the other hand, if P be any point of the quadrant Qo: then PP has
the definite sense ), and the components of its span are, in particular, all greater
than some positive J, =

For all 4> Ny, the pair HFi has its span, and @ fortiori the compouents
of its span, less than the positive d, Hence, for these 4, the resaltant PP ot B P,
and }_’;ﬁ has the sense of the latter, since this i3 definite, — ¢. e. the sense @0_
P belongs to @; for all 2> Ng.

Therefore lim Q;==@,, as asserted.

We have next to show that, ¢f ¢ deseribes a sequence of sets with unigue
Limit Q,, & deseribes a succession of directed points with unigue Limit &}),.

The verification of the fact that the span of ‘P, P tends to zero is immediate.
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For, if P, be a point of @, with span of I_{PE < & then, P, belongs to ¢y for
all > N, and PP has o sense whose kth coordinate is that of ®, or U, whence

kth component span P P, < kth compouent span P;—P:
span Zﬁé span [—’u“[?; < g, for all ¢ > N,.

We have next to ascertain that the kth coordinate of the sense of POF is,
(for all 2> N), equal to that of @, or 0, and that, when it is 0, the correspon-
ding coordinates of @ and @, coincide.

Now if the sensa of P, P had its kth coordinate opposite to _ihat of @0 for
a sequence of values of 4, any point P for which the sense of P, P had that kth
eoordinate 0 and the others coinciding with those of ®,. would, without being
a point of Q,, belong to ¢; for all but a finite number of these values of 4, (con-
trary to the hypothesis lim @;= Q,). In faue should only have to take i suf-
ficiently large to ensure thixf_:he span of Poli_v)ms less than the least positive
component of the span of Py #: the seuses of I5 P and P, P would then have the
same coordinates (those of @u), for all but the particular given k for Wlicg the
latter ‘has kth coordinate O; for this &, the cooiiigates of the senses of P;P and
P Fy would coincide (again with that of ®,); PP would have the sense B,, i e
belong to ©;, for all those 1.

Finally we may note that, in the last theorem, The succession described by
&, is monotone, if, and only if, one (at least) of the quadrants in the Dedekind
section representing ), desecribes a monotone increasing sequence of sets. The
index of this quadrant is, of course, necessarily the same for all 4, and, if pro-
perly chosen is that of the principal quadrant in the Dedekind section represen-
ting &, We have only to take the quadrant whose kth projection, for each k,
is either invariable and open, or inecreases with ¢,

From a set & of directed points, not merely finite in number,
we can always form successions, and hence monotone sequences,
of its points. The limits of bounded proper monotone subsequences
of a set & are called the limiting points of the set. Their positions
are limiting points of the set of positions af the points of 8 A li-
miting point of & may, or may not, belong to 8 A bounded set
which contains all its limiting points is a closed sef. The set B of
the positions of its points is then closed. An unbounded set is mot
elosed. Poinis of a set which are not limiting points of the set are
isolated points of the set. A closed set without isolated points is
perfect. The set of the positions of its points'is then also perfect.
A set & is said to be complete, if all the points having the position
of a point of & always belong to &.

The set of the k't coordinates of the points of a set is eal-
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led the k™ projection of the set. The k% projection of a closed set
is closed.

The common part of two closed sets is closed.

An interval is a closed set, and, if its span is positive, it is
a perfect set. It is not necessarily complete.

The common part of an interval and a given set & is ecalled
a portion of &.

Every portion of a closed set is therefore a closed set. The span
of a set is the upper bound of the span of any pair of its points.
A bounded set can always be exhibited as the sum ') of a finite num-
ber of portions of the set, each of span less than a given 6.

The neighbourhood of span & of a directed point &, (6} 0) is
the set of all directed points &, with

span S5 < d,

belonging to monotone sequences of limit & This will comprise all
those points & for which &&" has span less than 6 and sense dif-
fering from that of & only in so far as some of the coordinates
which are definite in the latter may be O in the former. This
neighbourhood is thus fan-shaped. It contains & and every neigh-
bourhood of & of span less than J. And it contains a neighbourhood
of each of its points 2).

5. A pumerical value (finite real number) attached to each di-
rected point & defines a (numerical) function of that point, say f(&)-
In general only the values of the function at points of a given set
are considered. A fumction f(&) is said to be bounded in a set & of
directed points. if the set of its values in & is bonnded. The span
of this set of values is called the oscillation of f(&) in & To say

) Two or more sets & are said to have for sum the set of all the points
which belong to one af least of the set &,

%) If we wished to introduce a paralilel to the open set of the modern theory
of sets of real points, we should define it as a szet which contains & neighbour-
hood of each of its points. But this would invelve the complication that a sct
could be both open in accordance with this definition, and closed; thus, for in-
stance, an interval each of whose endpoints had its index opposite to its semse.
This shows that the terminology .open set® is not a happy one in the present
connexion.
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that f(&) is bounded in & is equivalent to saying that is oscillation
in § is finite.

A function 7(&) is said to be continuous in & at a point &, if,
for every (proper or improper) monotone sequence of points & of
& with limit &), f(&,) tends to the same unique limit f(&). Thus
(&) is ,continuous in 8* at every isolated point of & and at a li-
miting point & of & it is continuous in & if

lim /(&) = /i), (% in &)
g
(of. p. 249).

If (&) is continuous in & at every point of & we say simply
that f(&) is eontinuous in & It is then also continuous in every
subset of & If § is a fundamental set, which has been specified
once for all in a certain connexion, functions of & which are con-
tinuous in 8 are spoken of as continuous functions, in that connexion.

Theorem L

It (&) is continuous in a closed set & it is bounded in 8.

For it then assumes a closed (hence bounded) set of values in &,
sinee every sequence of these values has a subsequence correspon-
ding to a monotone sequence of points of § and therefore every
limit of such a sequence of values is a value of the function in &

Let
w(ty, ty,..., t)=w,(T)

— where £, is any real number, and 1 << ¢ =<#, — denote the upper
bound of the difference between the values of f(&) at any two
points of & which coincide in all but ¢ of their coordinates, these ¢
coordinates differing, but only in sense, and occupying the assigned
positions #, 4,..., £,1). When, for a given T, such points do not
exist in &, we equate 1(T) to O for that T. The quantity w(fy,%,.., %)
is a.nom-negative function of position in real space of ¢ dimensions,
whose. generic point 7 has the " coordinate ¢.. Il is certainly
always finite, if /(&) is bounded in 6.

1) Thus for g=1, w(¢) is the upper bound of !f(c‘i”) _f(@")l for all pairs
of points of § whose positions P = (2, ,, .., 2,) coincide, and lie on one of the
straight lines a;=1¢ (i=1, 2,..,, n), while their senses @ = (gl ... By 8,) and
&'=(6,, 6,,., 6",.... §,) only differ in their ih coordinates, @ =6, Similarly

for any ¢, when g indices 1, 4,,..., {, take the place.of the one index 1.
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Lemma. If 8 is closed and (&) continuous in 8, then w, (1)~ 0
whenever T, describes a strictly monotone sequence of points in real
space of q dimensions.

We shall show that any strictly monotone sequence of points
T: contains a subsequence for which w,(7} - 0. This implies that
w,(T;) > 0 for every such strietly monotune sequence.

Given any strictly monotone sequence of real points 7}, to each
T, for which w,(7;)>> 0, there correspond two points &, &' of 8 —
differing only in the ¢ coordinates of their sense corresponding to
which their position has the ¢ coordinates of T. — and such that

&) — F&@)| > §0,(T).

For each of the (7:) ordered combinations k,, %,..., k, of ¢

of the integers 1, 2,..., n, let us pick out the indices 7 for which
&' and & have precisely their %, coordinates evineiding in posi-
tion with the s coordinate of 7, but differing in sense. As, to
every index i, corresponds one, and only oue, such combination,
at least one of the combinations corresponds to an infinity of the
indices 1.

No two of the points & having these indices i then have the
same k'™ coordinate, for any r (since no two 7} have the same st
coordinate); and so the sense of any monotone subsequence of the
points &' having these indices i has its k' coordinates (r=1,2,.. q)
all 4= 0. At the same time the point & corresponding to & only
differs from it in its k'™ coordinates, (r=1, 2,..., 9); hence (by
p. 249); that monotone subsequence of points' &' and the correspon-
ding points & tend to the same limit &, a point of & f(&)) and
f(&') both tend to f(&). Thus for some subsequence of the indi-
ces §, |[f(&)— (&) and a fortiori w(T), tends to 0. Q E.D.

It follows that the set of points 7 at which ,(7) = &> 0 con-
tains no strictly monotone subsequences. It must therefore be di-
stributed over a finite number of planes parallel to the coordinate
planes in the space of 7. For if, given any finite number of points
T of that set, the planes through these points parallel to the coor-
dinate planes, did not contain the whole of the set, there would be
a further point 7' of the set, such that 7,7 had a definite sense
for every i. Hence we could form by induction a succession of
points 7; of the set, each of whose monotone subsequences was
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strictly monotone, and there would be strictly monotone subsequen-
ces of the set. Thus

Corollary. If 6 is closed, and f(&) is continuous iu &, w (T) is
< & except at most at points T of a finite number of planes parallel
to the coordinate planes in the space of T.

For each ¢ there are thus a certain finite number K, of excep-
tional values ¢{? such that, if w,(T)=¢, one of the coordinates
of T is equal to one of these c{?.

If & and & be any two points of & occupying the same po-
sition P (of k" coordinate z,), and whose senses coincide in all
but their &', k',..., k' coordinates, say, (1 <g¢=<<n), and T
denote the real point in space of ¢ dimensions having the coordi-
nates x,, ,,..., z, , then by definition,

w(T) Z | (&) —F(&)].

The latter difference can therefore only be ¢ if one of the
coordinates z, of the position P, corresponding to which the senses
of & and &” have opposite k™ coordinates, coincides with one of
the exceptional values ¢ Thus

For two points &', &, of 6, having the same position P, we can
only have

1H&) —F(&")| =«
if some (say the k™), coordinate, of P has one of a certain Jinite
‘number of exceptional values, while the corresponding (i. e. the koth)
coordinates of the senses of & and & are opposite.

Let the exceptional values, in order of magnitude, (without
turther reference to the index g¢), be

6 <6 <o <Cxy
and let ¢, <Te¢,, cx>ce, be bounds of the kth projections of the
positions of the points of & for every k.
Let A be any real point in n-space whose kth coordinate, for
each &, has one of the exceptional values ¢, (1 <Xi,<<K) or the

value ¢, 1), and let B be the point whose kit coordinate, for each
k, is Chia-

) L e. one of the nodes, in the quadrangular network of planes parallel to
the coordinate planes:

Ly==Cyy €y €yy.n. OF Cig.

There are (K —1) of these planes parallel to each of the n coordinate planes,
and therefore (K — 1)» nodes.
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Let @ be the directed point of position 4 having the sense
of 4B, i. e. with all its coordinates 4, and let @ be the dirscted

‘point of position B having the opposite sense.

Between @' and &' there are nmo two points &' and & of &
with the same position P, for which

[1(&)— F(&)| = e

For, if & is between @’ and &", its k% coordinate is between
(c,k, -) and (441, —), and the only exceptional values ¢, with which
the position of this coordinate may coincide are €, OF ¢, 1;, and
for these the senee of the coordinate is determined and unique.

The point 4 (and hence @’ and the corresponding &) hzay be
chosen in & finite number (k— 1) of ways. In the interval of end-
points &', &"” so determined, |f{&") — f(&")| is always < e, when
& and &” coincide in position.

Now every point & of & belongs to ome, and only one, such
interval; for it determines uniquely, for each %, a value ¢, such
that its & enordinate is between. (e, 4 and gy, —).

Thus & may be divided into a finite number of portions in sach
of which, whenever & and & have the same position,

(&) —f(a") <«

We thus obtain the following theorem:

Theorem IL

If (&) is continuous in a closed set 8, ‘the latter is the sum of
a finite number of closed subsets, (portions of the set) in each of which
the maximum difference between values of f(&) at poinis occupying
the same position, is always less than &, a given positive number?).

Now if f(#) is continuous in a closed set & and its values for
points of & having the same pusition always differ by less than ¢,
the oscillation of f(&) cannot be =& in subsets of & of span as
small as we please.

1) With the interpretation of the motion of function of a direeted point given
below in section 6, this thsorem expresses the generalisation of a well-known
theorem in the theery of functions of bounded variation. It is usually proved there
by means of the hypothesis of bounded variation, whereas the above shows that
it is independent of this hypothesis and depends only cn the unicity of the limits
of the funetion in every open quadrant at every point, on which the definition
and continuity of the corresponding function of P depends.

Fandamenta Mathematicae. T. XIIL 17
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Otherwise there would be two points & and & of & with

@) —f@n > (1—3),

whose pair had a span less than d,, where 60 with 1/i.

We could pick out a subsequence of the indices 7, so that the
corresponding &' and & bhoth formed a monotone sequence. Their
Lmits &’ and &, occupy the same position (by p. 248) and are
points of &, and

17(&%") — (&) =e

This is contrary to the hypothesis about f(¢&). Thus

Theorem III

If fi&) is continuous in a closed set & and its values at points
of & having the same position always differr by less than e. the oscil-
lation of f(&) is less than & in every subset of 8 of span less than
a cerfain posiiive J,.

Since we can express § as the sum of a finite number of por-
tions of &, each of span less than J,, it follows, in particular, that
& is the sum of a finite number of closed sets (portions of the given
set) in each of which £(&) has oscillation less than e. Combining
this with Theorem II, we obtain the analogue of the uniform con-
tinuity theorem of the theory of functions of position 1):

Theorem 1V.

If f(&) is conttnuous in a closed set &, the latter is the sum of
a finite number of closed subsets (portions of the set) in-each of which
the osctllation of f(&) is less than €, a given positive number.

6. A function f(&) whose values in a set & are independent of
the sense of & constitutes a function of position in the ordinary
sense, in the set £ of the positions of the points of 8.

More generally, given any function f(&), considered in a set &,
we can deduce from it a function of position by taking the mean
of its values fur each group of points of & having the same posi-

!} In the theory of functions of position, the analogue of Theorem 111, from
which the uniform continuity theorem is deduced, may conversely be inferred
from the latter, because the oscillation of a continuous function of position in the
sam of two sets betwoen which the distance is 0, is always at most equal to the
sam of iis oscillations in the two sets. In our case, Theorem Ill is more precise
than IV, and cannot be dednced from it.
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tion P. We shall speak of this as the associated function of position
of f(&),

The limits of a function of position for strietly monotone se-
quences of positions, of the same (definite) sense — @, and limit
F,, and belonging to a set K. are called its limils at P, in the open
quadrant of index @, in K. (When E is a specific fundamental set,
which does not change in the course of a discussion, its mention is
omitted). Each such limit of the associated function of position of
a given f(&), considered in a set & is the mean between some
limits of /(&) for sequences of points of & of limit & =(P,, 8,),

In particular, if f(&) is continuous in & at &, the associated
funetion of position has the upique limit f(&) for every strietly
monotone sequence of positions in E, of sense @, and limit P,

Therefore:

The associated function of position of a function f(&) considered
in a set 8 in which it is continuous, has a unique limit in each open
quadrant in the set E of the positions of the points of 8 aud for
the quadrant ai P of tndex O, this limit is the value of 7i& af ihe
point of 8 of pusition P and sense 6.

Given a funetion of position F(P) whose limit in each open
quadrant in a set E is finite and unique, this limit constitutes
a function of each strictly monotone subsequence of E, depending
solely on the limit and sense, say P and — @, of this subsequence.
If P denote the directed point of position P and sense @. the limit
in question constitutes precisely a function of & say f(&), in the
set & of points each having the position P of & limiting real point
of Z, — one which does not correspond merely to not strictly mon-

" otone subsequences of £ — and the sense of a strietly monotone

subsequence of K, of limit P; or, in the language adopted for the
second mode of representation of directed points, in the set & of
directed points ,represented“ by subsequences of E. Using also the
criterion (p. 2560) which serves to interpret in this language the
notion of limit, we easily prove that:

This function J(&) i8 continuous in &'

For, if & describes any monotone sequence of points of & ten-
ding to & point &, of &, of position P, the criterion says that, if
we choose any real point P; sufficiently near to P, in the strietly

17+
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monotone subsequence of the points of £ representing P, every
monotone subsequence of the points £/ represents &.
By the definition of f(&), we may choose P; so near P, that

1
(P — £(&)] <

and, by the definition of F(&),
lim F(P,) = /(&),

(because this is true fur every monotone subsequence of the points Py

Hence also :

lim /() = 718)
o Q. E. D.

Thus there is a complete correspondence between the continuous
functions of a directed point and the functions of position with
unique limits in every open quadrant at each point.

Each continuous function of a directed point represents the limit,
in the corresponding open quadrant, of a function of position with
unique limits in cach open quadrant at cvery point. And each func-
tion of position of this type defimes uniquely a continuous function
of a directed point representing its limits in the open gquadrants.

Concerning triodic continua in the plane.
By
R. L. Moore (Austin, Texas, U. S. A

In a recent paper') I defined the term friod and showed that
there does not exist, in the plane, an uncountable set ot mutually
exclusive triods. In the present paper I will generalize this notion
and establish a correspondingly more general theorem.

Lemma. If the metric space S contains a countable collection of
compact point sets Sy, Sy, Sy,... such that every compact subset of S
is contained in the sum of a finite number of point seis of this col-
lection, then every wncountable collection of closed and compact subsets
of S contains an uncountable subcollection G such that if e s any
positive number and g, is any poini sei of the collection G then there'
exist uncountably many point sets g of G such that every poini of g
is at a distance less than e from some point of g, and every point
of g is at a distance less than e from some point of g.

Proof.2). Let £, denote the compact point set S, -8 +...4 S..
For each pair of natural numbers m and », K, contains a finite point
set S, such that every point of E, is at a distance less than 1/m
from some point of S,,. Let T denote the eollection of all point
sets X such that, for some m and 2. X is a subset of §,,. Each

1) Concerniny triods tn the plane and the junction poinis of plane continua,
Proceedings of the National Academy of Sciences, vol. 14 (1928), pp. 85—88.

) For the case where the space S is Euclidean space of a finite number of
dimensions this lemma may be proved (even though the requircment that the point
sets of the collection G be compaet is removed) by a modification of an argument
given by Zarankiewicz to prove a related theorem. Cf. Casimir Zarankie-
wiez, Sur les points de division dans les ensembles connexrs, Fuudamenta Ma-
thematicae, vol. IX (1927), Theorem 2, page 6.
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