Concerning irreducible cuttings of continua Y.
A By
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A subset K of a continuum M will be called a cutting  of M,
or will be said to cut 3, provided that the set of points M —K
is not connected, i e. is the sum of two non-vacuous mutually sep-
arated puints sets; K will be called a cutting of M between two
points 4 and B of I, or will be said to cut 3 between A and B,
provided that M/ — K is the sum of two mutually separated point
sets 3/, and 3/, containing 4 and B respectively. A subset K of
a continuum 3 will be called an irreducible cutting of M provided
K cuts M but no proper subset of K cuts M; K will be called
an trreducible cutting of M between the points A and B of M pro-
vided K cuts M between these two points
subset which does.

These notions are related to the notions of nCouptre du plan®
and coupure irréductible du plan* as used by Kuratowski in
his memoir Sur les coupures irréductibles du“plan %), For the case
where 1 is the entire plane, or indeed where M is any continuous
curve, the above definitions are equivalent?®) to those of Kura-
towski, or to this definition extended in an obvious way to con-
tinuous curves. However, for a continuum in general, such is not
the cuse. If M is not a eontinuous curve, then a coupure of M in
the sense of Kuratowski is not %) necessarily a cutting of M in
the sense above defined. I shall quite frequently have occasion to

but contains no proper

') Presented to the American Mathematical Society May 7, 1927. See also
papers presented Dec. 28, 1927 and Feb. 26, 1928.
*) Fund. Math, vol. 8 (1924) pp. 130—145.

) Cf. R. L. Moore, Math. Zeit. vol. 15 (1922) pp. 254—-260, Theorem 1.
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refer to the above mentioned paper of Kurato wski. In this paper,
among other results, I shall show that a large number of the the-
orems in Kuratowski’s paper concerning the ,coupures du plan¥
subsist for cuttings of any continuous curve,

It will be shown in § 2 that every cutting of a continuouns
curve M between two points 4 and B of M contains an irreduci-
ble cutting of M between these two points. This theorem does not
remain true for continua M in general. Indeed, as shown below, if
A and B are points of any indecomposable continuum M whatever,
then every cutting of M between these two points is reducible.
As shown by Kuratowski (Joe. cit), not every cutting of M,
even if M is in the plane, contains an 1rreducible cutting of M.
However, I shall show, in § 3, that if every subcontinuum of a plane
continuous eurve M is a continwous curve then every cutting of M
coniains an irreducible cutting of M.

In § 1 1 shall show that if K is an irreducible cutting of a bo-
unded plane continuum A such that M— K has at least three com-
ponents, then K itself has at most two components. Hence, only
two kinds of irreducible cuttings of a bounded plane continuum
M exist which cut M into more than two components; these are
continua and point sets which are the sum of two continua (either
of which may reduce to a single point).

The point sets considered are assumed to lie in a Euclidean
space. Theorems 4, 5, 12, 13, 14 and 15 hold only in 2-dimensions,
whereas all the remaining ones are true in n-dimensions.

Definitions and notations. The term continuous curve
will be used to designate any connected im kleinen continuum
{bounded or not). By a component of a point set M is meant a con-
nected subset of M which is not a proper subset of any other con-
nected subset of M. A subset R of a point set M is an open sub-
set of M provided ¥ —R is closed (in M). If B is an open sub-
set of a set M, F,(R) will be used to denote the boundary cf R
with respect to M, i. e., the set of all those points of M—R which
are limit points of R; F(R) will denote the boundary of R with
respeet to the whole space. A cutting K of a continuum M will
be said to be a componentwise irreducible cutting of M provided
that every subset of K which cuts M contains a point in each com-
ponent of K. Obviously every irreducible cutting of a continuum
is also componentwise irreducible. A point P is said to be acces-
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sible from & point set [t provided that if 4 is any point of B
there exists a simple continuous are 4 P such that AP —P(CR.
1. Irreducible cuttings of continua in general.
Theorem 1. Jf K is an irveducible cutting of a continuum M be-
tween the points A and B of M, then K is a closed set of points.

Proof. It has been shown by R. L. Muore!) with the aid of
a theorem due to Knaster aud Kuratowski?) that every cutlting
of a continuum M hetween two of its points 4 and B contains
a closed subset which cuts M between 4 and B. Hence, if K is
an irreducible cutting of M between A and B. K must he closed.

Corollary 1a. Every irreducible cutting of a continuum is a clo-
sed set of points.

Theorem 2. Let K be an irreducible cuiting of a continuum M
between the points A and B of M, and let M, and M, be any two
mutually separated point sets such that M, Y4, M, D B, and M,
+ M,=M—K. Then M,+4 K and M, K are continua.

Proof. It follows with the aid of Theorem 1 that M, } K and
M, 4- K are closed sets. Suppose, contrary to this theorem, that one
of them, say M, -+ K, is not connected. Then A, K=N, + N,,
where N; and N, are mutually separated sets and N, contains 4.
Since 3 is connected, K. N, 0 and K.N,=0. Hence K.N,
is a proper subset of K. But 7 —K.N, is the sum of the two
mutually separated peint sets N, and M, -+ N, which contain 4
and B respectively, contrary to the fact that A is an irreducible
cutting of Jf between 4 and B. Therefore M, +K and M, + K
are continua.

Corollary 2a. If K is any irreducible cutting of a continuum
M, and M, and M, arc any two mutually separated point sets whose
sum is M — K, then M, + K and My, -+ K are continua.

Theorem 3. If A and B are any two points of an indecompos-

able continuum M, then every cutting of M between A and B is re-
ducible.

=

) R. L. Moore, Concerning upper semi-continuous collections of continua
whick do not separate a given continuum. Proe. Nat. Ac. Sc., vol. 10 (1924,
pp. 356—360 Lemmal; Knaster and Kuratowski, Sur les ensembles conne-
xes, Fund, Math,, vol. 2, {1921) pp. 206—2565. Theorem 37. Moore's lemma is
stated and proved only for the case of M hounded. However, by the method of
inversion it is not difficult, with the aid of Knaster and Kuratowski’s the-
orem, to show that the lemma holds without the restriction of boundedness on M.
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Proof. Suppose, on the contrary, that there exists an irreducible
cutting K of M between some two points A and B of M. By def-
inition there exist two mutually separated point sets A, and M,
such that M, D)4, M, DB and M, M,= M — K. But by The-
orem 2, M,+ K and 3/, K are continua, and sinee (M, K) -
+ (M, + K) =M, this contradicts the fact M is indecomposable.

Corollary 3. Every cutting of an indecomposable continuum is
reducible.

In the light of Theorem 3, it might be supposed that some

'basic relation exists between the indecomposability of a continuum

M and the fact that not every cutting of M between two points
of M contains an irreducible cutting of M between these two points.
In connection with such questions, the following example is of
interest.

Example. There exists a plane bounded continuwm M every sub-
continuum of which is decomposable which contains two points A and
B such that every cutting of M between A and B is reducible.

Let T be a non-dense perfect set on the interval (0,1) of the
X-axis, and let 4 be the point (§, 1). For each point X of T, let
L. be the straight line interval from 4 to X. Let M= = L,. Then

X<T

M is a bounded continunm, every subcontinuum of M is decompos-
able, and if B is any point of 7} it is easily seen with the aid
of Theorem 2 that every cutting of M between 4 and B is re-
dueible.

This example, however, still leaves open the following questions.

(1) If a continuum M has the property that for every two points
A and B of M it is true that no irreducible cutting of M between
A and B exists, then is it true that M is indecomposable or that it
contains an indecomposable continuum? (2) If every cutting of a con-
tinuum M is reducible, is M necessarily indecomposable?

Theorem 4. IF the closed componentwise irreducible cutting K
of a plane bounded continuum M hos more than two components,
then M —K has just two components. Hence, M — K is the sum of
two mutually separated and connected point sets.

Proof. Since by hypothesis K has more than one component
and is a componentwise irreducible cutting of M, therefore if H
is any component of K, M—H is connected and hence lies wholly
in one complementary domain of H; and for not more than one
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component H of K is it true that J/—H lies in a bounded comple-
mentary domain of H. Hence, by the principle of inversion, we may
assume, without loss of generality, that for each component H of
K, M—H is a subset of the unbounded complementary domain of
H. For each componens H of K let H, denote the continuum H
plus all of its bounded complementary domains, and let G denote
the collection of all the continua [H,] thus obtained. Then since K
is closed, it follows with the aid of a heorem of R. L. Moore's 1)
that @ is an upper semi-continuous collection of bounded continua.
Clearly no one of thesc continua separates the plane and no one
has any point in common with M — K. Hence, if S’ denotes the
space whose elements ave the continua of the collection @ plus
all the points in the plane which belong to no element of G, by
a result of R L. Moore's?) § is homeomorphic with the ordi-
nary euclidean plane, and axioms 1—8 of R. L. Moore's paper
,,.On the foundations of plane analysis situs* %) are satisfied. Then
since K is a subset of a totally disconnected set of elements in S

and M —K is not connected, it follows by a theorem of R. G'rf
Lubben's ), that there exists a simple closed curve J of elements
of § such that J. M=K and both the interior. and the exterior
of J 'contain points of M—K. Let I and E denote the interior and
exterior respectively of J. Then I and £ are ordinary point sets

a.nd if M, and }, denote the point sets 7. M and E.M respec-’
tlvely,. M, and M, are mutually separated. I shall show that each of
them is connected. Suppose M, is not connected. Then M, + E+4+
=4 J— K is not connected, and by application of R. G. Lubben's
theorem quoted ahove, there exists a simple closed eurve J; of ele-
ments of S’ such that J,.(M, +E -+ J— K)=0, and both the

1fzterior and exterior of J, contain, points of M,. Hence J, must

lie, except for those elements which belong to G, wholly ixll LIt

follows that there exist two elements (,points*) 4 and B of G ;md

an parc AXB of elements of J; such that (1) AXB — (4 +B)(CI.

(2) each of the two domains R, and R, into which AXB divide;

!) Concerning wupper semi-conti ! ?
Math, Som oo (119325)’ s —nzggs collections of coniinua, Trans, Amer.
2 Loe. cit.
%) Trans, Amer. Math, Soc., vol. 17 (1918}, pp. 131184,
i} The separation of mutually separated subsets of a conti
Boll, Amer. Math. Scc., vol. 32 (1926), p. 114 {abstract).

by curves,
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I contains points of M,. Let 4 "B and AZB dencte the two
q,ares® of J from 4 to B. Since by hypothesis K has at least thres
components, therefore one of the segments 4AWB-— (1 - B) and
AZB— (A4 B), say AWB— (4 B), must contain a component
C of K. Let J, denote the ,simple closed curve AZBXA and
suppose R, is its interior. Then since J; does not contain G, .J;. K
is a proper subset of K which contains no point of the component
C of K. But 0k R,.M¥M—J,. K, and clearly R, . W/ and
M—(J,.K + RB,.M) are mutually separated point sets whose sum
is M —J,.K. This contradicts the hypothesis that K is a compo-
nertwise irreducible cutting of A, and therefore 1/, is conncated.
That 3, is connected follows by a similar argument, after pe.for-
ming an inversion of the plane. The truth of Theorem 4 is there-
fore established.

Corollary 4a. If K is a closed componentwise irreducible cutting
of a bounded plane continuum M such that M—K has at wast three
distinct components, then K is either a continuum or the sum of two
continua (either of which may reduce to a singie point).

Corollary 4Vb. Let H, L, and N be bounded continua in the
plane such that (1) HL=H.N=L . N=2K, (2) H- K, L—A,
and N— K are connected point sets. Then K is either a continuum
or the sum of two continua.

Proof. Let M denote the continuum H -+ L -4 N. Then since
each component of K contains a limit point of each of the connec-
ted sets H— K, L — K, and N—K, it follows that K is a closed
componentwise irreducible cutting of M. And since M — K has the
three distinct components H — K, L— K, and N— K, then by cor-
ollary 4a, K is either a continuum or the sum of two continua.

Since every irreducible cutting of a continuum is alsc compo-
nentwise irreducible, and since, by Corollary 1a, every irreducible
cutting of a continuum is a closed set of points, we have the fol-
lowing theorem.

Theorem 5. If the irreducible cutting K of a bounded plare
continuum M has more than two components. then M— K has just
two components, and hence M — K is the sum of two mutually sepa-
rated connected point sets.

Corollary &a. If the irreducible cutting K of a bounded plane
continuum is totally disconnected and contains more than two points,
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then M —K is the sum of two mutually separated and connected
point sets.

It is to be noted that for cuttings K of a continuum which are
totally disconnected, the properties of being an irreducible cut-
ting of M and a ,componentwise irreducible cutting of M“ are
equivalent.

Theorem 6. Let K be an irreducible cutting of a continuum M
between the points A and B of M, let P be any point of K and R
any bounded domain containing P, and let N denote the component of
M.[R+-F(R)] which contains P. Then if K.F(Ry=0, K.N is
a cutting of N.

Proof. By hypothesis M — K = M, 4 M, where M, and M,
are mutually separated and contain A and B respectively. By The-
orem 2, M,+4- K and M, K are continua. Then since N.K and
F(B) are bounded and (N.K).F(R) =0, it follows with the aid
of two theorems of Miss Mullikin's ) that M, N30 and
M,.N34=0. But N—N.K=M, N=M,.N, and clearly M, N
and M,. N are mutually separated point sets. Hence N.XK is a cut-
ting of N.

Corollary 6a. Let P be any point of an irreducible cutting K
of a continuum M, let B be any bounded domain containtng P, and
let N be the component of M.[R+4F(R) containing P. Then if
K.F(R)y=0, K.N is a cutting of N.

Ezamples are easily constructed showing that Theorem 6 is
not true in the absence of the condition that K F(R)y=0.

2. Irreducible cuttings of continuous curves. The-
orem 7. In order that a closed cutting K of a continuous curve M
between the points A and B of M should be an irreducible cutting
of M between A and B it is necessary and sufficient that if R, and

R, denote the components of M — K containing A an

‘ d B respectively
then F,(R,)= F.R)=K ?),

1Y Certain theorems relating to plane connected point sets, Trans., Amer.
Math. Soe., vol. 24 (1922), pp. 144—162, Theorems % and 1. These theorems hold
in n-dimensions,

%) For the case where M is the entire euclidean space,
alent to a theorem of Kuratowskis (Ct. Sur les
plan, loc. cit.).

this theorem is equiv-
ipures irréductibles du
The same is trne of Theorems 8 and 9 in this section. The

methods of proof and lemmas used are similar to those used by Kuratowski
to prove his theorsms.
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In proving Theorem 7, use will be made of the following easily
established lemma.

Lemma 7a. If R is any open subset of a continuous curve M,

and M— B =0, then Fy(R) cuts M between every pair of points

belonging to R and M—R respectively.

Proof of Theorem 7. The condition is sufficient. For if H is
any proper subset of K, and P is a point of K— H, then since
PC Fu(R,) and P Fy(R,), therefore P+ R, -+ R, is cconected;
and hence H does not cut 3/ between 4 and B. The condition is
also necessary. For suppose one of sets F,(R), and Fy(R,), say
Fu(R,), is &= K. Then since F,(R,)(C K, F,(R,) is a proper subset
of K. But by Lemma 7a, F\,(R,) cuts M between 4 and B, con-
trary to the fact that A is an irreducible cutting of A/ hetween A
and B.

Corollary 7 a. In order that a closed cutting K of a coutinwuous
curve M should be irreducible it is necessary and sufficient that if
R is any component of M — K, then Fy(R)= K.

Examples are easily constructed to show that the condition of
Theorem 7 is not necessary in the absence of the stipulation that
the continumm 3 is a continuous curve.

Theorem 8, Every cutting K, of a continuous curve M between
the points A and B of M contains an irreducible cutting of M be-
tween A and B.

Proof. By a lemma of R. L. Moore's?), X, contains a closed,
subset K which cuts A between A4 and B. Let D denote the com-
ponent of M— K which contains 4. Then by lemma Ta, F,(D)
cuts M/ between A and B. And if R, denotes the component of
M—F,(D) which contains B, then by lemma Ta, F,(R,) cuts M
between A and B. But if R, denotes the component of M—F,(R,)
which contains 4, then since R, contains D and F,(R,)C Fy(D),
it follows that Fy(R,) = F,(R,). Hence, by Theorem 7, F,(R,) is
an irreducible cutting of A/ between 4 and B,

Theorem 9. If the cutting K of a continuous curve M contains
no interior point relative fo A and is such that M —K has only
a finite number of components, then K contains an irreducible cut-
ting of M.

!) Cf. reference to R. L. Moore in proof of Theorem 1. and note on the
unbounded case in the same footnote.

Fundamenta Mathematicae. T. XIII. %
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Proof. Let the components of #—K be denoted by Z), E,...., E,.
By R. L. Moore's lemma just quoted, K contains a closed subset
K, which cuts M. Then M — K, has at most n components. For if
not, it would have one component B which contains no point of
M — K, because, for each i<Cn, E; lies wholly in some single com-
ponent of M — K,. Then R K. But if P is a point of R, then
since J/ is connected im kleinen it follows that P is not a limit
point of M — K, Hence P is an interior point of K relative to M,
contrary to hypothesis. Hence the closed subset K, of K cuts M
into just a finite number of components; and with the aid of in-
ductive methods similar to those used by Kuratowski to prove
an analogous theorem for a ,coupure du plan* (Cf Kuratowski,
loc. cit). The proof of Theorem 9 is easily completed.

The question as to whether or not Theorem 9 remains true on
the omission of the condition that ,K contain no interior point re-
lutive to M“ is very interesting. This raised the following interes-
ting questions: (1) Does every contfinuous curve contain an irreducible
cutting of itself 2 Y) (2) Does every open subset of a continuous curve
M contain an irreducible cutting of M?1). These questions are
related to question (2) stated above just before the statement of
Thevrem 4.

We may extend the notion of ,irreducible cutting between two
points® to closed sets as follows,

Definitions. If 4 and B are mutually exclusive closed sub-
sets of a continnum 17, the subset K of A/ is said to be a cutting
of M between 4 and B, or to cut M between 4 and B, providez
M—K is the sum of two mutually separated point sets M, and
M, containing 4 and B respectively; & is said to be an irreducible
cutting of M between 4 and B provided X cuts M between A and
B but no proper subset of K cuts M between 4 and B.

Theorem 10. 1If 4 and B are any two mutually exclusive closed
subsets of a continuous curve M, and K, is any bounded cuiting
of M between A and B, then K, contains an irreducible cutting of
M beiween 4 and B. ‘

In proving Theorem 10 use will be made of the following
lemmas.

t} Since this paper was written, Mr. J. H. Roberts has shown that for plane
continuous curves the answer to both of these guestions is affirmative.

icm

Irreducible cuttings of continua. 51

Lemma 10a. If K, and K, are any two closed mutually exclu-
sive subsets of a continuous curve M one of which is bounded, then
K, is contained wholly in the sum of a finite number of the compo-
nents of M — K, 1).

Proof Suppose, on the contrary, that there exists an infinite
collection R,, B,, Rs,..., of components ot M — K, each of which
contains a point of K,. For each i>0 let P, denote a point of
K,.R, and let H denote the set of points P, F—-Ps+...
Then H is bounded. For if K, is bounded, H is bounded because
H is a subset of K,; and if K, is bounded, there exists a hyper-
sphere S enclosing” K,, and since A is a continnous curve, only
a finite number of the components of M — K, can contain points
without S; and therefore H is bounded, since all save possibly
a finite number of its points lie on or within S. Hence, in any
case, H is bounded; and since it is infinite, it must have at least
one limit point P. The point P cannot belong to Ky, for PCHC K,
and K,.K, = 0. Hence P belongs to some component R of M—K.
But this is impossible, since M is connected im kleinen and R con-
tains at most one point of H. Thus the supposition that lemma 10a
is false leads to a contradiction.

Lemma 10b. Let K be closed cutting of a continuous curve M,
let G, and G, be mutually exclusive subsets of M — K each of which
is the sum of a finite number of the components of M — K, and let
A, and A, be closed subsets of Gy and G, respectively such that A,
(i==1, 2) contains at least one point in each component of G,. A nec-
essary and sufficient condition that K be an irreducible cutting of
A between A, and A, is that Fy(G)) = Fy(G;) = K.

Lemma 10b is an obvious extension of Theorem 7.

Proof of Theorem 10. With the aid of R. L. Moore's lemma
quoted in the proof of Theorem 1, together with the Borel Theo-
rem, it is readily shown that K, contains a closed subset K which
cuts M between 4 and B. Since K is bounded, and 4 and K are
closed mutually exclusive subsets of M. then by lemma 10a there
exists a finite collection R,, R,,..., B, of components of M—K

each containing a point of 4 and such that ACZH’IR,!. Let K,

n=l

f) For the case where M is the entire space, see G. T. Whyburn and
W. L. Ayres, On continuous curves in n-dimensions, Bull. Amer. Math. Soc.
vol. 34 (1928), Theorem 3.

4%
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denote 3 Fy(R,). Then by lemma Ta, it follows that K, cuts M
ne=l

between 4 and B. Since K, and B are closed mutually execlusive

subsets of M, and K is bounded, by lemma 10a a finite colleetion

Dy, D,,..., D, of components of M-— K, exists each containing
k

a point of B and such that B(C Z D,. Let K, denote the set of

{m]

points fS’FM(D‘). Then K, likewise cuts M hetween A and B; and
im]l

since K, (C Ay =3 Fy(R), it follows readily by lemma 10D thut
i=1
K, is an irreducible cutting of M between 4 and B.

Theorem 11. Let K be a bounded irreducible cutting of a con-
tinuous curve M. Then if K is not connected, the components of M—K
are finite in number.

Proof. Suppose, on the contrary, that the collection G of all the
components of 3/ — K is infinite. Now since K is not connected,
it is the sum of two mutually exclusive closed and bounded point
sets K; and K,. Then by a theorem due to W.L.Ayres and the
author 1) there exists a finite number of subcontinua L,, L, ..., L,
of M whose sum separates K, and K, in M, i e, M— (L, +
+ Ly +...4 L.} is the sum of two mutually separated point sets
containing K, and K, respectively. But since each of the continua
Ly, L, .... L, is contained wholly in some single element of G,
and @ is infinite, it follows that there exists an element g of &
which containg no point of L, 4L, +...4 L,. But by Theorem 7
and corollary 7a, F,(g)= K; hence g+ K is a continuum which
contains both K, and K; bui contains no point of L, 4 L, 4-...
-..+L,, and therefore L,4L,+4...+ L, does not separate K,
and K, in M, contrary to supposition. Thus the supposition that
Thecrem 10 is false leads to a contradiction.

It is obvicus from the proof of Theorem 11 that the theorem
remains true if in its statement we substitute the words ,closed and
componentwise irreducible cutting* for the words ,irreducible cut-
ting“. That Theorem 11 is not true, even in case M is the entire
euclidean plane, in the absence of the condition that ,K is not

% G. T. Whyburn and W, L. Ayres, loc. cit.,, Theorem 4.
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connected“ has been shown by Knaster!). That the theorem does
not remain true, in 3-dimensions, in the absence of the condition
that ,K is bounded® is shown by the following example. Using
cylindrical coordinates ¢, 8, {, in 3-dimensions, let C, (n=2,3,4,..)
be defined by the relations 0<C o << 1/n, 8 =n/n, — oo <[ oo,
Let N denote the continuum 3 C,, and let N be the image of N

n=2
reflected in the plane gcos 6 =3/2. Let L,(n=12;34,...) be
a straight line interval joining the point (1/n, 7/n, n) to its image

in N'. Let M be the continuum N - N -+ §;L and let K be the

set of points p=0, § =0, —oo<<f<{oo (the { axis) plus its
image in N’. Then K is an irreducible cutting of i, but obviously
for each value of n, [C,-C. (image of C, in N')+4 L,J— K is
a component of M — K.

It would be interesting to determine whether or not Theorem 11
would remain true in the absence of the condition that K is boun-
ded, for the case where M lies in the plane. Also it would be in-
teresting to know whether or not, under the same conditions, either
K must consist of exactly two points or else M/ — K has exactly
two components, At present I am unable to answer either one of
these questions,

3. Cuttings of plane continuous curves all of whose
subcontinua are continwous curves. In this section use
will be made of the following theorem.

Theorem A. If Ry, R,, and B, are mutually exclusive connected
point sets in the plane S, and G denotes the set of all points in
S—(R, + Ry - Ry) which are accessible from each of the sets Ry,
R,, and Ry, then G contains mot more than two points.

A proof for Theorem A will be found in my paper » Concerning plane closed
point sets which are accessible from certain subsets of their complemeni®?).
A very interesting proof of Theorem A based on the results of the present paper
is as follows: Suppose, contrary to Theorem A, that G contains three points X,
Y and Z. Let 4, B and C be points in By, B, and R, respectively. By hypothe-
sis there exist ares AX, AY, 4Z, BX, BY, BZ, CX, CY, and CZ such that
AX 4 AY 4 AZC R+ X+ Y+ 2 BX+BY4+BZ(CR,+ X+ Y4 Zand

1) B, Knaster, Quelgues coupures singulidres du plan, Fund, Math., vol. 7
(1925), pp. 264—289.
2} Offered to Proc. Nat. Acad, of Beiences.
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CX4CY+CZCR,+X+Y+Z Let H L and N denote the continua
AX 4 AY 4 AZ, BX+4BY+ BZ, and CX - QY -+ CZ respectively, and K
the set of points X+Y -+ Z Then H.L=L.N=H,N=K and, clealy
H—K, L—K and N—K are connected point sets. Flence by corollary 4b to
Theorem 4, K is either a continuum or the sum of two continua — a conclusion
which i absurd, since A consists of exactly three points.

Theorem 12. Every cutting of o plane continuous cuwrve M every
subcontinuum of which is a continuous curve contains an irreducible
cutting of M.

Proof. Let K be any cutting of M. Then K cuts M between
some twe points 4 and B of M; and by Theorem 8, K contains
an irreducible cutting K; of M between 4 and B. Let B, and R,
denote the components of M — K containing 4 and B respectively;
and let B, be any other component of M — K,. (If R, does not
exist, then obvionsly K; is an irreducible cutting of M), By Theo-
rem 1, Fy(R,)=F,(R,)=K,; and simce F,(R)CK, and, by
a theorem of the author’s!), the houndary with respect to M of
every connected open subset of M is accessible from that open sub-
set, it follows that every point of K, is accessible from each of
the three sets R,, R, and X,. Therefore, by Theorem 4, K, con-
tains at most two points. By lemma Da, K, cuts M. Hence either
K, is an irreducible cutting of M or it contains a cut poini of M,
which is necessarily an irreducible cutting of M. Therefore K con-
tains an irreducible cutting of M.

The following example shows that Theorem 12 is not true in
3-dimensions.

Example. There exists, in 3-dimensions, a continuous curve M
every subcontinuum of which is a continuous curve and a cuiting K
of M which contains no irreducible cutting of M.

Using cvlindrical coordinates, ¢, 8, £, let K denote the interval
of the [-axis from 0 to 1. For each positive integer n, let K be
subdivided into a set I, of n equal intervals by inserting »—1
points of division on K (i. e, we effect a rational subdivision of K).
For each 2> 0 let us construct, in the plane § = z/n, an equilat-
eral triangle on each interval of the collection I, as a base, and
with each of these triangles as a basis construct a Sier pinski

) G. T. Whyburn, Concerning the open subsets of plane continuous curves,
Proe. Nt. Acad. 8¢, vol. 13 {1927}, pp. 660—657, Theorem 3.
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regular curve !); let C, be the sum of all such regular curves thus
constructed.
Let M denote the continuum

K +‘§ C,.

nm=l

Then every subcontinuum of M is a continuous eurve, ande
is a cutting of M. But K contains no irreducib.le euttl'ng of M For
suppose, on the contrary, that K contains an xrrfaduclble cutting H
of M. Clearly H must contain at least one point P which is an
interior point of the interval K [i. e., a point different f1'~om either
(0, 0, 0) or (0,0, 1)} There exists an integer n, and an'mterx{al gy
of the collection of intervals I, such that P is an interior point of
J,. Let N, be the Sierpinski regular curve WhiehY was co%xstruc-
ted in the equilatersl triangle with base J;. Sinc'e l\'l——Jl.m con-
nected and N, —J, C M — K, therefore N, — J, lies wholly in some
component R, of M-—H. And if B, is any otﬁher compouent D.f
M — H, (R, =k R,), then since, by Theorem 7, ffM(R,.);—-. H:)_ P it
easily follows that every neighborhood of P cc{ntams zlxpomt of
R, which does not belong to K. Hence there exists an integer 7,
and an interval J, of the collection of intervals I, Sl.lch tl.mt’s (l?
J,.J; contains an interval I, (2) if N, ‘denotes th.e Slerp1‘n5k1
regular curve which was constructed in the equilateral trlar_xgle
whose base is J,, (see above), then N,——LCH_,. And since
Fy(N,—J) =1, #n F Ny —Jy) =, it 'follows t.hat F(R)DI
and F,(B,) DI Hence H I But there exists an integer 7 an.d
an interval J, of the collection of intervals ‘La su‘c¥1 th.at Jy is
a proper subset of I; and if N, denotes the Slerplnsk.l regular
curve constructed in the equilateral triangle whose base is Jy (see
above), then N;—J; is an open subset of I{ and, by ‘lemma 7a,
Fu (N, —J,) is a cutting of M; but F,,,(N%—Js).-zlfs is a proper
subset of H. and H, by supposition is an 1rredu§1b§e cut.t'mg of M.
Thus the sﬁpposition that K contains an irreducible cutting of M,
leads to a eontradiction.

1) Cf. W. Sierpidski, Prace Matematyczno-Fizyezne, vol. 27 (1915); Com.—
ptes Rendus, vol. 160 {1915), p. 303. See also Knaster and Kuratowski,
Bull, Amer. Math. Soe. vol. 33 (1827) pp. 106, 107.
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Theorem 13. If K is an irreducible cutting of a plane continuous

curve M every subcontinuum of which is a continuons curve such that
M—K has more than two components, then K contains at wmost
two points.

Proof. By hypothesis M—K has at least three components R,
B,, and R By Corollary 71, Fy(R)=F,(R)= F(R)= K.
Hence, by the above quoted theorem of the author’s. each point of
K is accessible from each of the sets &,y R, and R, Therefore,
by Theorem A. K contains at most two points.

Theorem 14. Let M te any plane continuous curve, let K be any
wrreducible cutting of M between the points A and B of M, let R, and
B, be the components of M — K containing A and B respectively; and
suppose that every point of K is accessible from each of the sets R,
and R,. Then either K contains tio points whose sum cuts M (and hence
K contains an irreducible cutting of M) or M—K = R, R, (and hence
IC dtself is an irreducible cutting of M), '

Proof. Suppose R, R, is not identical with M— K. Then
a component R, of M— (R 4R, R,) exists. Now F,(R) eon-
tains not more than two points; for if it did, it would contain at
least three points X, ¥, and Z each. accessible from R.. But
Fu(R)C K, and hence, by hypothesis, each of the points X, ¥,
and Z is accessible from R, and also from R,. But this is contrary
to Theorem A. Hence Fy(R) contains at most two points; and since,
by lemma 5a, F,(Z) cuts M, it follows that K contains two points
whose sum cuts M. This completes the proof,

Corollary 14a. Let K be an irreducible cuttin
uous curve M such that M — K has more than fwo components and such
that there exist two of these B, and Ry such that every point of K is ac-
cessible from both R, and R,; then K contains at most two points.

Theorem 15. If every point of the irreducible cutting K of a plane
continuous curve M is accessible from at least two components of M—K

then either M—EK has just two components or K contains not more than
two points.

g of a plane contin-

Proof. Suppose M—K has at least three components, Then K
mast he countable. For if & ig uncountable. it readily follows that
there exist components &, and R, of
subset £ of K such that every point of £ is accessible from both R,
and &,. Now by hypothesis M— & has at least one component R, dif~
ferent from &, and from E,. And since, by Corollary 7a, F,(R)=K,

M — K and an uncountable

icm

Irreducible cuttings of continua. 57

then every point of E is accessible from R, and R, and is ha 13111;1)t
oint of R;. But this is contrary to a theorem of t‘hef a;lllt czr :ha»;
pTherefore K must be countable. Now by Theore_m 4 1t. 0 OWatab]e
K has at most two components. And therefore, since K is countable,
it must contain at most two points.

; hi e ac-
1) G. T. Whyburn, Concerning plane closed point sets uhmhL affonow
. T, s ’ e &
sible from certain subsets of their complements, loe. cit., se.e re;m;‘heom N
f""s proof of Theorem 1. The theorem here used is an extension o m
ing .

(above).
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