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ce qui prouve que la suite (3) converge uniformément sur N, con-
trairement & la propriété de cette suite. La condition 3° est dome
vérifiée et le théoréme A est vrai.

L’équivalence des théorémes A et B est ainsi démontrée.

Le théoréme A étant vrai (d'aprés MM. Banach et Kura-
towski), si 2% =1, il résulte d’équivalence des théordmes 4 et B,
que le théoreme B est vrai, si 2 =1, (ce que jai démontré diree-
tement sur une autre place ).

1) Comptes Rendus des Séances de la Sociétd des Sciences et des Lettres de
Varsovie, Classe III, 1928, p. 84—87.
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A Characterization of Those Subsets of Metric
Separable Space Which Are Homeomorphic with
Subsets of the Linear Continuum ?).

By
Leon W. Cohen (Ann Arbor, U. S. A).

The questions connected with the mapping of sets of points on
the linear continuum have been the subject of much investigation.
Veblen®) and Lennes?) defined arcs in the plane homeomorphic
with closed linear intervals; the latter establishing the ecorrespon-
dence in non-metric terms. Janiszewski4) gave ancther definition
of arc in the plane. Sierpinski?’) settled this question in n-di-
mensional space. Papers by Zoretti®), Riesz") and Denjoy?¥)
on totally disconnected sets in the plane led Moore and Kline®)
to the following

Theorem: Necessary and sufficient conditions that a bounded,
closed, plane point set M be a subset of an arc are that every closed
connected subset of M containing more than one point be an arc and
that mo point of am arc t except its end-points be a limit point of
M—t.

1) This paper is substantially a thesis submitted to the University of Michi-
gan in May 1928 in partial fullfilment of the requirements for the degree of
Doctor of Philosophy. :

1) 0. Veblen: Trans, Amer. Math. Soc. vol 6 (1905) pp. 83—98.

%) N. J. Lennes: Amer. Jour. Math. vol 33 (1911) pp. 287—362.

4) 8. Janiszewski: Jour. de I'Ecole Polyt. ser. 2, vol 6 (1912).

5) W. Sierpiniski: Aanali di Math, ser. 3, vol 26 (1916) pp. 131 -151.

% L. Zoretti: Jour, de Math, vol 1 (1905) pp. 12 .

7) F. Riesz: Comptes Rendus (Paris) vol 141 (1905) pp. 650—655.

%) A. Denjoy: Comptes Rendus (Paris) vol 151 (1910) pp. 138 —140.

%) R.L.Moore and J.R.Kline: Annals of Math, vol 20 (1919) pp. 218—223.


Yakuza


282 L. W. Cohen:

Sierpidski!) obtained a theorem for totally disconnected
sets in euclidean space which as Urysohn ®) pointed out may be
stated as follows:

Theorem: A necessary and sufficient condition that a subset of
a separable metric space be homeomorphic with a subset of the irra-
tional numbers is that the dimension of M be zero.

The principal problem with which this paper is concerned may
be stated as follows: Given a separable, metric space R, what are
necessary and sufficient conditions on a set M in R in order
that there shall exist a subset of the linear continuum homeomor-
phic with M?

The writer is indebted to Professor R. L. Wilder of the Uni-
versity of Michigan for his valuable encouragement and eriticism
during the preparation of this paper.

II

.By a closed, half-open and open arc we mean sets homeomor-
phic with the linear intervals ¢ <2z <<b, « sSr<<b a<<xr<<i
respectively. If E is a metric (not necessarily separable) space, the
following theorems hold.

. Tﬁeorem I: MCRE is a cosed arc from a to b if and only
if M is a compact continuum containing a and b which s disconnec-
ted by the omission of any point & C M — (a-b).

.Th.eorem II: MCR is a halfopen arc with the end-point
a if and only if:

1. -M =jM,,.

ne]
2. M, is a closed arc [a, a,].
3. M,,CM,,H—a,,_H. ,
4 If {@} is a sequence of distinet points of M such that
2 (C Moy — M,, then {z.} has no limit point in M,
Theorem IIT: MC R is an open arc if and only if M is the

:.mm.qf two half-open arcs with a common end-point a such that M —a
is disconnected.

1) W. 8ierpinski: Fund. Math, vol 2 (1921) pp. 81—89,
} P. Urysohn: Fand. Math, vol 7 (1925) p. 76.
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The proof of I follows from the usual argument in the case of
the similar theorem for euclidean spaces. The proofs of II and TII
will be suggested to the reader from the conditions of the theorems.
These theorems contain a complete classification of the subsets of
metric space according as they are homeomorphic with connected
subsets of the linear continuum containing more than one point.

IIL

It is well known that any linear set is made up of a countable
set of non-overlapping intervals, which may be either closed, half-
open or open, and a totally disconnected set. If we define an arc
as any set satisfying the conditions of either theorem I, II, or III,
we have the solution to the problem stated in the foregoing section
in the following

Theorem IV: Necessary and sufficient conditions that a set M
in a separable metric space be humeomorphic with a subset of ihe li-
near continuum are:

A. The components of M are either points or arcs.

B. If p is a point component of M. then dim, M =0

C. If a is an end-point of an arc T M, then dim,(M — T+

+ ay=0. ’

D. If p is a point of an arc T other than an end-poini, then p

is not a limit point of M— T '

That these conditions are necessary is evident. For, if N is
a subset of the linear continuum, it satisfies these conditions and,
since the conditions are homeomorphic invariants, the set M, home-
omorphic with N, will also satisfy these conditions.

In order to establish the sufficiency of our couditions, we will
consider a space @ whose elements g are the components of the
set M If the element g (C @ is the component X (C M, we will
say that g represents K in . We will consider M as & relative
space and the sets Stx, &) M as spheres S(z, £) relative to M. Since
M is a subset of a metric separable space, there exists a countable
everywhere dense set in M Heuce M itself may be considered as
& separable metric space.

Lemma I: The set of arc components of M is countable.

Proof: Let A be a subset of M containing one and only one
interior point from each arc component ‘of M. It follows from con-
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dition D that 4 contains no limit point of itself. Since in a sepa-
rable metric space every uncountable set contains a limit point of
itself, the set 4, and consequently the set of arc components of M,
is at most countable. ' ’

Definition: A domain of norm & containing an are component
TC M is the set of points S(a, &) 4 T+ S(b, €); S(a, &)+ T5 or T
according as 7 is a closed arc with the end-points a and b; a half-

open arc with the end-point a; or an open arc. In any case we

denote such a set by S(7 e).
Lemma 2: For any S(T, &), M= A(T)+ B(T) such that
TCAT)CA(T, ¢
2 A(T)B(T)+ A(T) B(T)=0.

. .Proof: If T'is the closed are [a, b}, then, in consequence of con-
dition C, we have for £> 0,

M — T4 a= A4(a)+ B(a)
11 o C 4(a) C 8(a, ¢
4(e)B(@) + (@) B(a) = 0
where @ is either a or b.
The required decomposition of M is obtained by putting

12 A(T)=A(a)+ T+ A()
13 " B(T)= B(a) B(b).

’I"h'at condition 1. is satisfied tollows at once from 1.1. From
condition D and the fact that 7'is a component of M, it follows that

14 [T~ (a+8) [M —T| 4+ T[M— T]=0.

That condition 2 is satisfied by the gi ! iti
rom 1 oition y the given decomposition follows
If 7 is a half-open arc with the i
_ end-point a, we put 4 (T)=
;IAM)—,_ T a'nd B(T)= B(a). The above argument applies with
Aq(a Y;tater;ents involving b suppressed. It 7' is an open are, we put
=T and B(T)= M—T Condition 2 i i
sequence of condition D. 7 % e mow a direct con-

KCA(J’?;@ 3:If Kis a component of M and KA(T)30, then
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Lemma 4: For € >0, there is a countable set of point com-
ponents py (M such that if p is any point component of M then
there is a px,, for which

1. M= A(ps,)+ B(ps.)
Pa,e C A(Px, ) C S(Ps,45 ©)
A(ps,o) B(ps,) + 4lpx,) Bps,)=0
pC 4(ps..)-

Proof: Let & be any positive number and p be any point com-
ponent of M. Since dim, ¥ =0, we have

L

11 M= A(p) + B(p)
1.2 pC AP CS(p ¢
13 A(p) B(p) +4(p) B(p)=0.

Let K denote the class of point components of M. The class of
sets [A(p)] is a covering of K by open sets in consequence of 1.3.
Sinee K is a subset of a separable metric space, there exists a co-
untable subset {4 (pg,,)} of [4(p)] which covers K. _

The points py, form the set required by the theorem in con-
sequence of 1.1, 1.2, and 1.3.

Lemma 5: If K is any component of M and KA(ps,) F0,
then K C Alpx, o)

We fix our attention now on the sets A (T, &) and 4(pg,,) of
Jlemmas 2 and 4 for a given & In consequence of lemmas 3 and b,
these sets are mot only subsets of M but the components of these
gets are components of M. If ¢(C @ represents the arc TC M, we
will denote by Ul(g, €) the elements of ¢ which represent the com-
ponents of M in A(T,¢). If gC @ represents the point component
pe,,C M, we will denote by Ul(gx,s) the elements of @ which repre-
sent the component of M in A(px,,). In consequence of lemmas
1. and 4., the class of sets U so defined are countable for each &
For all positive rational values of &, consider the class of sets
U,C Q. The totality of such sets U, is again countable.

Definition of the neighborhoods in Q. If ¢ is an element of @
then any set U(g, &) or U(gs,e) which contains g is a neighborhood
of ¢ and is denoted by U(g)
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Theorem V: @ is a fopological space.

Proof: In order to establish this we show that Q and the sy—
stem of neighborhoods U(g) defined for @ satisfy the following con--

ditions which define a topological 1) space.
a) If g @, then there exists a neighhorhood U (g) containing ¢.
b) If ¢,C Ul(g,), then there exists a U(g,) C U(q,).

¢) If CUlq) U(g,) then there exists a U(gy) C U(gy) Ulgy).
d) If g, == ¢y, then there exist U(g,), U(g,) such that

U(q) U(gs) =0.

a) If g @ represents an arc component T'(" M, then there is
a Ulg,e)=Ulg) Dgq. If q represents a point compunent p (C M,
then for any rational e there is a Pre such that p(C A(pg,). The
corresponding U(gy,) is & U(g) D¢. Condition a) is therefore sa-
tisfied.

b) The condition b) is an immediate consequence of the defi-
nition of neighhorhoods in ¢), since the sets U are neighborhoods
of any element g they contain.

c¢) Let X,, K, be components of H which are represented by
G gx Tespectively and let A(K,), A(X,) be the subsets of M whose
components are represented by the elements of @ in U(g,), Ulg,)
respectively. Let B(K)(C M — A(K,). In consequence of lemmas 2,
and 4, and the theorem that the complement of the product of two
sets is the sum of their complements, we have

LI A(Ky) 4(Ky) [B(E,)+B(E,)) + A(K,)A(K,) [BK,) + BK,)] = 0.

We have now to consider the several cases according as g, re-
presents a point, a closed are, a half-open are or an open are in M.

Case I: g, (C Q represents a point component pC M In con-
sequence of 1.1 there exists a sphere S{p,¢) such that

2.1 pCS(p, g CA(Ky) A(K,).

For a rational % such that 0 <7 <£, there is a point Pry
and a set Alpry) in consequence of lemma 4 for which

2.2 rCA4 (PA-,,,) - S(pl,n)'

Y) F. Hausd orff: Grundziige der Mengenlehre. Leipzig (1914) p. 213,
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Hence we have
23 rC A(Px',n) C 8(p o) CA(K) A(K,).

Al pgm) is a subset of the components of M which define a neigh-
borhood of ¢. Expressing 2.3 in terms of the elements of @, we
have .

24 95 C Ulgs) C U(gy) Ulge-
Case II: g3 C @ represents a closed are component 7'={a,b]C ..

From the inclusion 7'C 4 (K;)A(K,) and 1.1, it follows that there
exists an &> 0 such that
3.1 TC ST, &) C A(Ky) A(K,y).

In consequence of lemma 2, thers is a set A(7,e) contained
in the domain of norm & which oceurs in 3.1, The components of
A(T ¢) give rise to a set U(g, &) which is a neighborhood of ¢,
satisfying ¢). Similar arguments are effective in the cases where ¢,
is the representative of a half-open or an open are in M. .

d) Case I: ¢, ¢; in @ represent point components p;. p, in AL
For & << d(py, ps). we have

4.1 S(py, &) S(p,, 8 = 0.
] .
For a rational 5 such that 0 << 9 <C 59 there exist, by argu-

ments similar to those of c), Case I, sets A(ps,), A( p,,.w) satis-
fying the conditions of lemma 4., containin P, Py Tespectively 'and
lying in S(py, &), S(ps,€). The eorresponding sets of representatives
in Q being denoted by U(g), U(g:), we have

4.2 aC U@ CU@) Ulp) Ulg)=0

in consequence of 4.1 and the definition of neighbo_rhood.

Case II: ¢y, ¢, in @ represent respectively a point component p
and a closed arc component I' in M. Since d(p, T') > 0, there is
an &> 0 such that
6.1 S(p, &) S(T,e)=0.

v e .
For u positive rational 7 less than L there exist sets A(Px,,,)

" and A(T,7) defined by lemmas 2. and 4. such that

5.2 pC A(pry) CS(pe)
5.3 TC AT, C8(Te):
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The subsets Ul(gx,) Ulg7) corresponding to A(px,n), A(T,7n)
are neighborhoods of ¢, g, respectively and in consequence of 5.1,
52, 5.8 we have

54 U(g,) U(ga) =0

If ¢, C @ represents a half-open or open arc T'(C M, similar
argument applies.

CaseIIl: g, ¢, in Q represent closed arc components 7y ={a,,b,],
T, =|asb,] in M. Since T; T, = 0, neither of the numbers
d(a, T); a=a,b; 3,j=1,2, is 0. Let £ be a positive number less
than half of the smallest of these four numbers. We have

6.1 S(T,, &) S(Ty, &) = 0.

Consider now the sels A(Ty), A(T,) defined by lemma 2. such
that

62 TCAT)CS(T e (i=1,2)
and the associated sets U(g)(C Q. We have

63 0C UG)

6.4 U(q) Ulg) =0

in consequence of 6.1, 6.2. If ¢, C @ is a half-open arc, we need
consider only the numbers d(as, T}), d(a,, T3), d(b,, T3). If ¢, is an
open arc, we need consider only the last two numbers. If both arcs
are half-open, we need consider only the first two numbers. If ¢
is half-open and g, is an open arc, we need consider only the first
pumber and note that U(gy) =g¢. If both arcs are open, we put
U(g)=¢.- In each of these cases the argument is similar to that

for the case of the two closed atres. Condition d) is therefore sa-
tisfied.

Iv.

We now turn our attention to the properties of @ as a topolo-
gical space. The neighborhoods in @ are of two kinds according
as they are defined in terms of lemmas 2. or 4.

From lemma 4. and the definition of neighborhood, it follows
that there is a countable infinity of elements ¢y, in @, where K
takes on all positive integral and £ positive rational values, such
that if g is any element of @ representing a point component of M,
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then ¢ belongs to some U(gy,). We will call the class [U(gx,)] the
primary neighborhoods of the elements of @ representing point
components in M. The class of neighborhoods U(g, &) which is de-
fined by lemma 2. for the representatives of the are components
of M is also countable as ¢ takes on rational values. We will eall
U(g, €) a primary neighborhood of the element ¢ where ¢ (C @ re-.
presents an arc in M. By reasoning essentially similar to that em-
ployed to establish property ¢) for the space @ we have the fol-

“lowing

Lemma 6: 1f qC Q represents the component KC M and U(q)
is a mneighborhood of gq, then there exwists a primary neighborhood

Un(9 C U(9)-

This lemma amounts to a sharpening of condition b) These pri-
mary neighborhoods play an essential role in setting up the cor-
respondence between M and the required linear set.

Lemvma 7: The complement in Q of any neighborhood is an
open set.

Proof: Consider ¢C @; U(g); and ¢, @— U(g). Let K5 A(K);
and K, be the subsets of M corresponding to these setsin . We
have :

11 M= A(K)+ B(K)
12 ~ 4(K)B(R) + A(K)BE)=0
13 : K, C B(K)

in consequence of lemmas 2, 3., 4, b and the definition of neigh-
borhood in (. From 1.2, 1.8, it follows that there exists a domain
S(K,, €) such that

14 K,,CS(KO,S)CB(K)
It is an almost immediate consequence of lemma 2., or 4, and

1.4 that there exists a U(g,) C ¢— U(g)

Lemma 8: If g is an cement of @ and F is & closed subset
of Q—gq, then there ewist open sets Gy and Gy such that

L 9C G FCG
2, GGy =0

Proof: Since ¢ is not an element of the closed set F, there is
a neighborhood U(g) ) such that U(g)F=0. In consequence of the

Fundamenta Mathematicae t. XIV. 19
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preceding lemma, @ — U(g) is an open set G,. The neighborhoods
in @ being open sets, we have

11 ¢C U= 6
12 FCQ-U(Q)=0,
13 6,6, =T(9)[Q— U] =o.

The totality of primary neighborhoods in ¢ being countable and
forming, in consequence of lemma 6., a system of neighborhoods
equivalent to the original system in the sense of Hausdorff, we
may say, in the terminology of Fréchet?), that @ is a perfectly
separable topological space. A space satisfying the conditions of
lemma 8 is called regular?. A topological space @ is metrizable
if there can be defined the distance function d(gy,g.), which is
non-negative, symmetrie, zero for identical values of the arguments
and obeying the triangle law, such that

1. For every U(g), there exists an S(g, &) C U(q).
2. For every S(g,¢), there exists a U(g) C S(g, ¢)

where the spheres S(g,¢) are defined in terms of the given distance
function. Tychonoff?) has obtained a theorem, which together
with a result of Urysohun's ¢), leads to the

Theorem: A reqular perfectly separable topological space is
metrisable.

In consequence of the above theorem, lemma 8 and the perfect
separability of @, it follows that @ is a metrizable space. We will
now consider an appropriate metric defined in Q.

Lemma 9: The dimension of Q is zero.

Proof: Let ¢ be any point of Q and & be any positive number.
There exists a U(g) such that

11 eC U@C8(g )

In consequence of lemma 7., @ — U(g) is open and hence
12 0=T(Q)+10—U(g)
13 U@IO—U@+ U@ [@—TU(g] =0

9) Cf. B. W. Chittenden: The Metrization Problem., Bull. Amer. Math.
Soc. vol 83 (1927) p. 18.

) P, Alexandroff u. P. Urysohn: Math, Annalen. vol 92 (1924) p. 263.

3 A, Tychonoff: Math. Annalen. vol 95 (1926) p. 139.

% P. Urysohn: Math. Annalen. vol 94 (1925) p. 315.

icm

A Characterisation . .. 291

since neither of two non-overlapping open sets contains a limit point
of the other. But 1.1, 1.2, 1.3 imply dim, Q=0 and since g is
any point of @, dim @ =0.

We may now consider ) as a metric separable zero-dimensio-
nal space. We mention without proof the well-known

Lemma 10: The set of irrational numbers is homeowmorphic
with a subset of any nowhere dense perfect set on the linear con-
tinuum,

Combining this lemma with the theorem of Sierpiniski men-
tioned in section I, we have the result:

Theorem VI: The space Q is homeomorphic with a subset of
a nowhere dense perfect set on the linear interval [0, 1],

We are now concerned with the following problem: Tf @, is
a subset of a nowhere dense set on the interval [0, 1], and homeo-
morphic with @), it is desired to map @, on @, in such a way
that if ¢, (C @, corresponds to ¢, (C ¢, which represents an arc
T'C M, then approach to g, from the right or left shall correspond
to approach to the end-point a or b of T

Lemvma 11: If Eis a nowhere dense perfect set on [0,1] and
{z.} is a countable subset of E, then E is homeomorphic with a linear
set Ey such that if x,, is the image of z,, there evisis a closed in-
terval 1, such that Ej I, ==, ,.

Proof: Let I® be an interval with center at ; and of length 1.
Since Z is nowhere dense, there exists in I® — EI® a sequence
of points {p®} such that

11 lim p{ = =z,
12 290 > pl, >,

There also exists in I®W— EJY a sequence of non-overlapping
closed intervals {I®} such that any sequence {¢'} where ¢ is
interior to I has the properties

13 lim g =g,
1.4 g <99, <y

Denote the open interval determined by I® by J®. Since any
two open intervals are homeomorphie, there exists a funection 6,
19*
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such that
15 JO = 6, {(p", p¥y )} is a homeomorphism

16 y=46,(y) for y in the complement ofzv( 20, o1

k=1

Considered as a function defined on E, 6, is a 1 — 1 biconti-
nuous mapping. That 8, is 1 —1 follows immediately from the
choice of the I®. To establish the continuity of 6,, we consider
any sequence {z,}(C £ and a point #'(C E such that
1.7 lim #, = 2,

If 2" =g, then at most a finite number of z, lie in any one
(P, p2,) in consequence of 1.2. It follows immediately from 1.3,
15, 1.6 that
1.8 lim 8, (x,) = 6, (+') == =,.

A -p00

If «’ 4= x,, then either 2’ and all but a finite number of 2/ lie

in the complement of Z(p,f", p§)1) and in consequence of 1.6

k]

19 lim 6, (x,) = 6, ()

or —a’ and all but a finite number of ] lie in some (p{, p®,)
and in consequence of 1.5 we have again the relation 1.9, The con-
tinuity of the inverse of 6, is established in a similar manner with
the aid of the fact that the p® and the end-points of the I® are
in the complement of E and of 6,(E) = EW, Denoting 8, (z,) ==,
by «, and [p®, 2,] by I,, we have

110 EO ] =g

in consequence of 1.5, 1.6.

Assume that the set Z" has been defined homeomorphic with
E and that there exist intervals I,, «ery Doy such that

2.1 BN = g~ (i=12...,n—1)

There exists an interval I® with center at 28 and of length
less than / such that I® excludes the intervals 1, (i=1,2,...,n—1)
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in consequence of 2.1. Since E"" is homeomorphic with the now-
here dense perfect set E, E“™ is a nowhere demse perfect set.
Hence, there exists in I®— E*~DI® a sequence of points {p{’}
such that

2.2 lim p{? = 2{Y
k—»o00
2.3 0> plh >

There also exists in I™-— Et-1]® g sequence of non-overlap-
ping closed intervals {I{"} such that any sequence {g{®} where g{*
is interior to J{” has the properties

2.4 | lim ¢ = {0
k-—>00 .
25 o <gh<a

The function #, is defined oﬁ E¢=4 in the same way relative
to &Y, {p™M}, {IM} as 6, was defined relative to z;, {p®}, {I{"}.
If we put E® = 0,(E*™) and [p{", 2{" ] = I,, we have

2.6 E® T, — 2,
Further, we have
EM] =z, .
21 xf")-‘_—xﬁ‘)‘ (t=12,...,n—1).

For, I, (i <) is in the ecomplement of I and, since 6, is the
identical transformation in the complement of I® (see 1.6) and
since it maps points of E®V within I™ into other points also
within I® (see 1.5), 2.7 is a consequence of 2.]

We have then the sequence of sets and mappings:

0) —
3.1 PO =E (n=1,2,...,m,..)
E® = 6, (B")

If we put

3.2 - 6,=6,0.,...5

we obtain a sequence of 1—1 bicontinuous mappings of the set E.
Since the length of I™ is at most 1/,» we have

3.3 d (9. (:B), 9.+1 (97)) =d (:t(-), z(--H)) é 1/ 2"

(n=1,2,...,m,...)

and hence for any positive integers n, m (n <m)
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54 40, ) = I i <3

s

for any point z(C Z. This establishes the uniformity of the limit
3.5 O (z) = lim 6, ().

If we put E, = O(E), it follows that X, is homeomorphic with Z,
since the uniform limit of a sequence of 1—1 bicontinuous fune-
tions is a 1 — 1 bicontinuous function. Further, for each z,,= 6(x,),
we have

3.6

For, from 2.7,
3.7 O EW =P =z  (k=n).

v Bl =%

Hence O,(x) where £5=2,, lies in the complement of I, for
k=mn and therefore O(z) also lies in the complement of 7,. But
from 2.7, 3.5, we have

3.8 2y, = O(x,)=lim B,(z,) = 2.
k—»o0

Hence the image of every =, in Z, is the end-point of an_in-
terval complementary to Z, and the theorem is proved.

Let {g,} be the subset of @ whose elements represent the arc
components of M. Tn comsequence of theorem V, lemmas 10 and
11, we have the following

Theorem VII: Q is homeomorphic with a linear set E such
that if =, is the image in E of the element q, in @, then there exists
an interval I, such that EI, = x,.

We recall the primary neighborhoods of the ¢,. A primary
neighborhood U(g,) is the set -of elements of ¢ which represent
the components of M in a set A(7,) required by lemma 2. in which

11 A(T)=A()+ T,+ A(b)

if T, is a closed arc [a,,5,]. In consequence of 1.1. and 1.2 in
lemma 2. the components of the sets A(a,) and A(b,) except for
a, and b, respectively are subsets of the set of components of M.
We denote by U(g., a,), U(g,,b,) respectively those subsets of U(g,)
made up of the elements of ¢ representing the components of M
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in A(a,), 4(b). We have in consequence of 1.1
12 U(g.) = U(qa, @) + 9. + U(g., b.).

In a similar manner we obtain for the half-open are 7. the
corresponding sets
13 A(T)=A(a)+T.
14 U(g.) = U(q., a,) + gu-

For the open arcs 7,, we have U(g,) = g, for all primary neigh-
borhoods of g,. In these terms we state

Theorem VIIL: Q is homeomorphic with a linear set P such
that for amy p, corresponding to a g, which represents an arc com-
ponent T,(C M and for every primary neighborhood U(g,), there is
an open interval I, = (x,,y,) D p, such that:

L. If T, is a closed arc [a,,b,], the sets P(zx.,p.), P(p.,y.) cor-
respond respectively fo subsets of U(g.,a,), U(qu,b,) (or in the re-
verse order).

2. If T, is a half-open arc with the end-point a,, then the set
P(x,,p.) =0 and the set P(p.,y.) corresponds to a subset of U(g,,a,)
(or in the reverse order).

3. If T, is an open arc, then P1, = p,.

Proof: Let {g, } be that subsequence of {g,}(C @ which re-
presents the sequence of closed arcs 7, (C M. For each T, =[a.,b.},
we have d(a,,b,) > 0. For a rational positive &, less than } d(a,,, b

consider a domain §(7,,¢,) and a set A(T,,

#)?
&,) satisfying the
conditions of lemma 2. We have
11 A (Tﬂg‘ 8!!‘) = A (an(' En‘) + T,“, + 'A(bnﬁ 5,,‘) C S(Z’,,‘, E,,‘)
4 (a,,',, E,,{) - (a,.‘, s,,‘); A, Eﬂg) - (bnp e:;)-
Since &, is less than half the distance between a, end b,, we

have
12 ¥: | (a'"n E,,‘) A(b"n e"e) + A(a"i’ e"i) A(b,,‘, E"c) =0.

Let K, be a component of M in A(a,,s,). We recall that

M—T7,+ a,= A(a,, &)+ B(a., &)
‘A'(a'lﬂ Sn‘) -B(a’n‘) eu() + A(an,; eli) B(aﬂii eﬂ;) = 0‘

1.3
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It follows in consequence. of 1.3 that there exists an S(K,,1,)
such that

14  EKC 8Ky ) C Al )

Similarly, if K, is a component of A(b,,¢,), there exists a set
8(K,, ;) such that
15 K, C 8Ky, ne) C A, &)

Consider now the subsets of Q; U(g.,&,), U(g a.), Ulg., b,)
associated with the sets 4(T),e,), 4(a.,¢,), 4(b.,¢&,). We have
in consequence of 1.1, and ¢he definition of neighborhood in @

16 U(gn,; &) = Ulga,s @) + 3,4 Ulga,» b1)-

In consequence of 1.4, 15, there exists for ¢(C U(q.,a.) or
C U(ga,y bs) a neighborhood U(g) such that '

17 gCUQCU@Gnr )  (or C Ulgn,ba)-
From this it follows that
1‘8 U(fl-,a an‘) U(q::v bn.) + I](an an‘) U(Q'n,, bu‘) = O-

In consequence of theorem VII there exists a linear set Z' ho-
meomorphic with  such that for each point of the sequence {,)}
in £ corresponding to an element of the sequence of arc repre-
sentatives {¢,} in (), there is an interval I, such that

21 El =u,.

Hence there exists an interval J; = (aj,b;) containing , such
that

22 E(ay,z,)=0 (or E(=,,b)=0).
23 EJ, is the image of a subset of a U(g,,) satisfying 1.9.
24 lai—b =< 1.

25 The I, are exterior to J; ‘or n << n,.

2.6 aj, b &ILG in the complement of Z.

These conditions may be satisfied simultaneously in consequence
of 2.1, the homeomorphy between Z and @, the 0-dimensionality
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of £ and the finiteness of the numberr of I, for n < n,. We de-
note by U(z,,a.,), U(z,,b,) those subsets of ZJ, which correspond

to the elements of @ in U(g,a,), Ulg,,b.) respectively. Since
the relation 1.9 is a homeomorphic invariant we have

27 U(x’lx’ a"l) U(xﬂn bnx) + U(x-n a'lx) U(xﬂﬂ bn‘) == 0“
We define a function 6, on E such that

28 6,(U(®.,a,) is a reflection through z, followed by a simila-
rity contraction such that 6,(U(z,, q,)) C (a}, ,,).
2.9 For x C E— U=, a,), 62 ==z.

In consequence of 2.2, 2.7, 2.8, and 2.9 the set BV =@, (&) is
homeomorphic with £ and 2% = 0(z,) =z,

We denote 6,(z) by «¥. Then either = ==z or both 2 and 2
are in J; in consequence of 2.8. Hence any 2% in the complement
of J, is the end-point of an interval complementary to E®. Since
6, is a reflection through =z, and a contraction within J, any =z,
for n=kn, goes over into z{ which is the right or left end-point
of an interval complementary to E® according as z, is a left or
right end-point of an interval complementary. to E. The set E®
has the property that for » J=n,, 2 is the end-point of an in-
terval I{¥ complementary to EW.

Assume that there has been defined a set Z™" homeomorphic
with £ such that for ng=n, (i=1,2,...,k—1), there exist inter-
vals & such that

3.1 EG JU) o g0,
There exists an interval J, = (a;,5,) containing 2% such that
3.2 E* (g, 2™ =0 (or E*(z%, 5)) = 0).
3.3 E®VJ, is the image of a subset of a U(g,,) satisfying 1.9
34 [y — b < Vi
35 The I*™ satisfying 3.1 are exterior to J, for #n <n,.
3.6 a,, b, are in the complement of Z*™,
8.7 The % (i=1,2,...,k—1) are in the exterior of J.

These conditions may be satisfied simultaneously in consequence
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of 8.1, the finiteness of the sets {I*"} and {x{™} involved in
3.5, 8.7, and the homeomorphy between E®V and E and hence
between E*D and Q.

We denote by Uz, a,), Ulzt™,b,) the subsets of E*~VJ,
which correspond to elements of @ in U(g.,, @), U(qu, b.,) Tespe-
ctively. In consequence of 3.3 and 1.9 we have

38 U™, a,) U(a:,(,";", b,) + U™, a,) Ulxl™ Y, b,)=0.
We define a funetion 6, on E* such that

3.9 Gk(U(a:“;‘) a,)) is a reflection through a:f,‘;“’

ne 9

followed by a similarity transformation so that 6,(U(x%™, a.))C
Cla, =)

3.10 For a*YC E*"— Uz%™, a,), Oi(x*V) = 2%

In consequence of 3.2, 3.9, 3.10, the set E® = 6,(E*?) is hom-
eomorphie with E¢, and 6, (z%™) = 2%, We put a® == 6,(x*).
By an argument similar to that used in the case of E it follows
that E® has the property that for n==mn,, n,y,..., n,, 2® is the
end-pbint of an interval I® complementary to E®.

We have thus defined a sequence of sets E™ and a sequence
of 1—1 bicontinuous functions @, such that

E0=F

41 E® = 6,(E*)

We put
4.2 0,=6.6,,...6

(n=1,2,..)

and consider the sequence of 1—1 bicontinuous functions defined
on E. For any 2(C E, we have

43 d(6,@) Bu@) = Y (@, 2t < ¥ < 21—_1

ken koan

From this follows immediately the uniformity of the limit
44 lim 6, (z) = B ().

The set P= €,(E) is therefore homeomorphic with E and hence
with 0.
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P has the property 1. Consider any #., C P which corresponds
to g,, C @ representing a closed are component T,,C M. Let ¥(g.)
be any primary neighborhood of 9»,- There exists, in consequence

of lemma 6. and property b) of the space @, a primary neighbor-
hood W(q.,) such that

5.1 W(g.)C V() Ug,)

where U(g.,) is the neighborhood required by 8.3 and 1.9.
Hence we have

5'2 W(qﬂ,,i a’lk) C V(Qn,‘) ank); W(gnkv b-.) C V(q-p bn‘)'

Since @ and E® are homeomorphic there exists an open inter-
val J; D such that E®J, is the image of a subset of W(g.,)-

The interval J, may be chosen so as to be a subset of the in-
terval J, required in the construction of #,. We denote the two
subintervals of J, determined by % by J, . and J,, respectively.
In consequence of 3.9, 8.10 the notation may be so chosen that
E®J, ., E®J,, correspond respectively to subsets of W(q.,; a.,),
W(gus bn). In view of 5.2, the set E® satisfies condition 1. with
respect to the point 2%. In consequence of 3.7, 3.10, it follows that
mﬂ:’.—:xﬁ:) for m = k. The order relation between any z® and z
is preserved by all 6, for m=Fk since J, excludes z™ and 4, is
either identical or replaces 2" J, by 2™ (CJ,. But from

5.3 ¥<y; Img.=y,
follows
54 Yo <Y

Hence if p(C P corresponds to z®(C E®, then the order relation
between p and p, is the same as that between z® and 2. P and
E®, both being homeomorphic with ¢, are homeomorphie.

. Therefore there exists an interval H, D p,, such that PH, is the
image of a subset of E®J;. In consequence of the above remarks
on the order relative to 2 we have the result that:

The two subintervals of H, determined by p, may be denoted
by H,, and H,, in such a way that PH,, corresponds to a subset
of E®J,, and hence to a subset of Vig,s ) while PH,, corres-
ponds to a subset of E®.J,, and hence to a subset of ¥ (g, b.).
This together with 5.2 establishes property 1.
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P has the property 2. Let p,(_ P correspond to a ¢,(_ @ repre-
senting a half-open are 7, M. Let n, be the first subseript greater
than # in the sequence {g,}. In consequence of 3.1, we have

6.1 E® [®) = 2®

where z(_ E™ corresponds to g,. In consequence of 3.5, 3.9, 3.10,
we have

6.2 E™ [0 = gl = 2® for m>Fk.
From this and 4.4 it follows that
6.3 PI® =p, =a®.

If ¥(g,) is any primary neighborhood of g,, it follows from the
homeomorphy between P and @ that there exists an open interval
H,Dp, such that PH, is the image of a subset of ¥(g,).

Property 2. is a consequence of 6.3 and the choice of H,.

P has property 3. Since the primary neighborhoods of any
9. @ representing an open arc 7,(C M consist of the element g,
alone, g, is an isolated element of ¢. Hence p,(C P corresponding
to 9.(C @ is an isolated point of P. Property 3. is an immediate
consequence of this,

VL

We now replace the points p in P by intervals. For each point
pC P, we consider the points of the sequence {p,} such that

L1 P < .

This defines for each point p a definite subsequence {p,} of {p.}.
We arrange these subscripts in their natural order

1.2 <y <...<np<<...

and denote this ordered set of subseripts by N(p). To each point
p(C_P we associate the point

13 z=p -|-2 gn.
" C N ()

Let X be the set of such points z. The set X is in 1—1 cor-
respondence with the set P and has the following properties:
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. If p<p' and z, 2’ correspond to p, p' respectively, then z < z'.
2. If p.<<p, then for the corresponding =z,, x, we have z, -+
1 <
. The open intervals (x,,z,- /) are free of points of X.
4. If PCp—{p.} and x corresponds to p, then the mapping of
P on X is bicontinuous with respect to p and x.
. If for any {p}C P, p.<p. and klim 1% == Pa, then for the cor-
responding points in X we have lim x, ==,, and conversely..

k—oo

6. If for any {m}C P, p>p, and klimp,"-_—:p,,, then for the
—>0oC

corresponding points in X we have lim x; =z, + 1fyn and
- k=00

w

conversely.

. These properties of X follow easily from the transformation as
defined in 1.2, 1.3.
We consider now the are components 7,(C M. These fall into

three classes:
1. T, % the closed. arc components in M
2. T"#: the half-open arc components in M
3. T,,p: the open are components in M.

There is a 1—1 correspondence determined by the subseripts
between the open intervals (,, z. - 1/,%) associated with the set X
and the sets 7.(C M. We modify the set X in the following manner.
We add to X all the closed intervals ¢, = [:v,z, w’z+1/";,] corres-
ponding to closed ares 7.,,. In copsequence of properties 5., 6., of
the set X and of condition 2. of theorem VIII, at most one of the
end-points of any t_” = (x,,l‘, a:,.”-{— 1/’.;&) corresponding to a half-
open are T,,"C_M is a limit point of the set X. We add to X the
intervals #, together with one of its end-points selected as follows:
if neither end-point of t",. is a limit point of X, then the left end-
point is added and the right end-point is .discarded; if one of the
end-points of ¢, isalimit point of X, then that one iz added and the-
other is discarded. We add to X the open intervals {, =(z. , %, +
~+ 1/y»,) corresponding to the open ares 7, (C M and delete from X

-that one of its end-points which belongs to X.
The modified set we denote by X'. The intervals in X’ we de-
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note by #.. There is a 1—1 correspondence, determined by the cor-
respondence between X and P, between the components of X’ and
the points of 2. We will use the following definitions: 1. A sequence
of linear intervals {,} approaches a point y as a limit if, for any
open interval J containing y, all but a finite number of the I, lie
in J. 2. A linear interval I, precedes an interval I, if every point
of I, precedes every point of ;. Under these definitions properties
1, 4, 5, 6 holding between X and P also hold between X’ and P
if the points # C X are replaced by components C(C X’ determined
by them.

The intervals £, ,
respectively and in consequence of theorems I, II, III they are
homeomorphic with the components 7, " T,,”, T,,v in M respectively.

t,',“, t,, in X’ are closed, half-open, and open

A 1—1 correspondence between the point components of M and
those of X" may be set as follows: To each point component x("M
there corresponds a unique representative ¢(_ @; to ¢ corresponds
a unique point p(C P in consequence of the homeomorphy between
P and @; since p(C P — {p.} there corresponds to p a unique point
component «'(C X'. There exists, therefore, a function © such that
O(T,)=*t, is a homeomorphy for all » and such that O (z)=a
is the 1—1 correspondence between the point components of M and
X' defined above.

Definition of the correspondence for the end-points of a closed are.
As between the T, ={a,,, b, ] and the corresponding L, =z,

wﬂz+l/2'z]’ we determine whether @, or b,, corresponds to z,:z as

follows: Let U(g.,) be a primary neighborhood of g, ,» the represen-
tative of 7,,. There is an interval I(p.,), where p, C P corres-
ponds to g,,(C @, whose right end-point is Pa, such that PT (Pny)
corresponds to a subset of Ufg,,, a.,) or U(4.,, b.,) in consequence
of theorem VIIL. From the property 5. holding between X’ and P,
there is an interval J(x, ,) Whose right end-point is x,, such that
X'J (xj,x, considered as- a subset of the components of X', corres-
ponds to a subset of PI(p,,). (The end-point of J(z,,) other than

x,’,l can always be chosen in the complement of X’ since x,',z is

the left end-point of a component of X'). According as PI (Pa;)
corresponds to a subset of IJ (@nyr ay) or U(g,, b.,), #,, is to cor-

n
2
respond to a, or b,

"2
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As between the T,,” and the t,’/‘, the correspondence O is deter-
mined completely since each has but one end-point. As between
the T,,v and the t,',”, either of the two possible orders in which they
may be put into correspondence may be used since neither com-
ponent contains a limit point of its complement. We may now con-
clude the proof of the sufficiency of the conditions on the set M
with the following

Theorem IX: The function O under the above resirictions is
a 1—1 bicontinuous mapping of the set M on the set X,

The details of the proof of this theorem involve the properties
1,..., 6 on the sets X’ and P, theorem VIII, the definitions of
veighborhoods for the space  and the definition of the funetion 6,
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