310 C. Kuratowski.

Les lignes L et M peuvent avoir, outre p et ¢, d’autres points
en commun; mais il est facil de les remplacer par deux lignes L,
ot M,, extraites resp. de L et M, et n'ayant que leurs extrémités
Py et g en commun, les points p, et ¢, étant choisis de sorte que
A 4 B coupe le plan entre eux,

Soit, notamment, sur la ligne L (orientée de p 4 ¢), ¢, lo premier point de
I'ensemble LMQ; un tel point existe, car selon (1): LM (A4 B)==0, donc la
frontitre de @, comme sous-ensemble de A4 -~ B, est disjointe de LM et il en ré-
sulte que l'ensemble LMQ est fermé. Soit, d'autre part, sur la ligne pq,, extraite
de L, p, le dernier point de l'ensemble LM qui précéde g, (c’est douc bien un
point qui n'appartient pas & @, donc qui est séparé de ¢, par 4 -4 B).

La formule (1) entraine

@ I, A=0=MB 7

qui & son tour, entraine: AB(L; 4 M;)=0, ce qui veut dire que
le produit AB est situé¢ dans le complémentaire de la ligne poly-
gonale simple fermée L, - M.

Or, si I'on suppose, par impossible, que AB est un continu, on
en conclut que 4B est situé dans I'une des deux régions en les-
quelles cefte ligne coupe le plan. On peut toujours admettre que
c'est la région non-bornée qui contient 4B (car le cas contraire se
rameéne & celui-ci par inversion). Done, en désignant par I le po-
lygone formé par la région bornde et sa frontidre (= I, -+ M,),
il vient: TAB=10, ce qui prouve que les ensembles /4 et IB sont
disjoints. En outre, aucun d’eux n’est une coupure de [ entre p,
et g;, puisque selon (2), L, unit ces points dans J— A et M, les
unit dans I — B. :

I étant d'aprés le cor. 1 uni-cohérent, il en résulte en vertu
de la propriété (*), que I4 - IB ne coupe pas I entre Py et gq;
done 4 + B n'est pas une coupure du plan entre ces points. Mais
ceci contredit la définition des points p, et ¢,.

Ainsi, Vhypothése, que 4B-est un continu, implique une con-
tradietion.
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A generalized notion of accessibility ?).
By
G. T. Whyburn (Austin, U. S. A)).

i

1. Introduction.

The point P is said to be accessible by continua from a point
st B provided that if 4 is any point of B, then R - P contains
a bounded continuum containing both 4 and P; P is said to be
accessible by arcs from R if for each point A of B, B4 P con-
tains a simple continuous arc AP from 4 to P. In this paper it
is proposed to generalize the notion of an “accessible point‘ in
these two senses to include “accessible continua® as follows: The
bounded continuum K is said to be accessible by continua from
a point set R if for each point 4 of R, R+ K contains a bounded
continuum containing both A and Kj K is said to be accessible by
arcs from R provided that if 4 is any point of R and G denotes
the collection whose elements are the continuum K together with
all the points of R— K. R, then there exists a simple continuous
arc AK of elements of G from 4 to K, which contains no point
not in B4 K.

It is obvious from the definitions that every continuum K which
is accessible by arcs from a point set R is also accessible by con-
tinua from R. However, the converse is not true for all point sets B,
i. e, “accessibility by continua“ and “accessibility by ares“ are not
equivalent for all sets R. However, it will be shown in this paper
that these two notions are equivalent for all sets [R] such that R
is a connected open subset of some continuous curve. (Obviously,

1) Presented to the American Mathematical Society, April 7, 1928.
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then, they are equivalent for all domains R). Hence, after establish-
ing this fact, it is no longer necessary to distinguish between the
two kinds of accessibility except when dealing with sets R which
are not open subsets of any continuous curve; and in the pages
that follow, the distinction will be made only in such cases. Clearly,
if any single point of a bounded continuum K is accessible in either
of the above senses from a point set B, then K itself is accessible,
in the same sense, from R. However, a continuum X may be ac-
cessible from a set B and yet no point of K be accessible from R.
(Cf. the example in § 4 below). '

Definitions. The term “continuous curve* is used to designate
any connected im kleinen continuum, bounded or not. The subset B
of a closed set M is an open subset of M provided that M — R
is either vacuous or closed. A subset K of a connected set M is
said to be a cutting of M, or is said to ecut M, if M — K is not
connected; K is called an irreducible cutting?) of M if K cuts M
but no proper subset of K cuts M; and K is called a componentwise
irreducible cutting of M if K cuts M and every subset of X which
cuts M contaius at least one point of each component (i. e, maximal
connected subset) of K. All of the theorems below concerning “acces-
sible continua® hold true for the special case where these continua dege-
nerate to single points. Hence, the word “continuum as used be-
low may be interpreted in this general sense. Unless otherwise
stated, the point sets considered in this paper are assumed to lie
- in a Euclidean space of n dimensions, In most cases, however, the
dimensionality of the space is indicated either in the titles of the
sections or in the statements of the individual theorems.

Notation. The customary notation of point set theory will be employed, . g.,
K. H denotes the set of points common to the sets X and H X=X+ X/,
where X’ denotes the set of all limit points of the set X, K(C H signifies that
the set K is a subset of the set H, ete. If B is any point set, F'(R) will be used
to denote the boundary of R relative to the whole space; and if R is an open
subset of a continuous carve M, F,, (R) is used to denote the M-boundary of R,

or the boundary of R with respect to A, (i. e., the set of points E—R). If K
and H are point sets, 6(K, H) will be used to denote the minimum distance be-
tween K and H, i. e., the lower bound of the aggregate of numbers [d(z, y)],

where o and y are points of X and H respectively and d(»,y) is the distance
from = to y.

1) Cf. G. T. Whyburn, Concerning irreducible cuttings of continua, Fun-
damenta Mathematicae, vol. 13 pp. 42—57.
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2. Accessibility from open subsets of a continuous curve in n
dimensions,

Theorem 1. In order that the bounded subcontinuum K of
a continuous curve M should be accessible by arcs from a given con-
nected open subset B of M, it is necessary and sufficient that K
should be accessible by continua from R.

Proof. The condition is necessary, because the set of all points
[Y] such that ¥ is & point of some element X of a given arc of
elements of G (where G is the collection whose elements are the

continuum K and the points of E— K. E), is a bounded continnum.
It is also sufficient. For let A be any point of B. By hypothesis
there exists a bounded continuum H such that A +KC HC R+ K.
For each integer 7> 0, let &, be a collection of cireular regions?)
covering K and each of radius 1/n, and let D, be the domain ab-
tained by adding together all the regions of @, There exists an
integer 7, > 0 such that 1/n; <C1/2 6(4, K). By a theorem due to
Miss Mullikin %), H econtains a connected set @, such that
Q.K=¢,.F(D,)=0, and Q;.K==0= ;. F(D,). Let R, be
the component of R.D, containing @,. There exists an integer
1y > 0 such that 1/n, << 1/2 6[K, F(D,)]. By the Mullikin theo-
rem, @, contains a connected set Q, such that Q, . K=¢, F(D,)=0
and Q. K==0 Q;. F(D,). Let R, be the component of R. D,
containing @,. There exists an integer mny > O such that 1/n; < 1/2
J[K, F(D,)), and there exist corresponding sets ¢, and R, and
so on. Let this process be continued indefinitely, giving a sequence
R, Ry, Ry, ... of connected open subsets of M, such that for each #,
R, contains R,,, and F(R,) contains at least one point of K, and
such that K contains the sequential limiting set of this sequence.

Now for each », the set R, contains a point X,; E contains an
are?) AX;; and for each #, R, contains an are?) X, X,.,. It is

1) A circular region is the set of all points in the space whose distance from
a given point (the center) is less than a given number (the radius).

3 Cf, Certain theorems relating to plane connected point sefs, Trane. Amer.
Math. Soc., vol. 23 (1922), pp. 144—162. )

9 Cf. R. L. Moore, Concerning continuous curves in the plane Mathema-
tische Zeitschrift, vol. 15 (1922), pp. 254—260, Theorem 1.


Yakuza


314 : G. T. Whyburn:

easy to see that the set of points N= K+ 4X, 4 2X,.X,,+, is
‘ 1

a continuum; and if @, denotes the collection whose elements are
the continnum K together with all the points of N—K, then
clearly NV is a continuous curve with respect to the elements of G,.
Hence N contains a simple continuous arc X of elements of &,
from 4 to K. But G, is a subeollection of G, and N is a subset
of R+ K. Hence E-- K contains the arc X of elements of @
from 4 to K, and the proof is complete.

Corollary 1. In order that the bounded subcontinuum K of
the continuous curve M should be accessible from a connected open
subset R of M, it is necessary and sufficient that R should contain
a sequence By, By Ry... of connected open subsets of M each contai-
ning the newt and each having a limit point in K, and such that K
contains the sequential limiting set of this sequence.

Corollary 2. In order that *the bounded continuum K should
be accessible by arcs from a.domain D it is necessary and sufficient
that K should be accessible by continua from D?).

Definition. The subcontinuum K of a continuous curve M is
said to be regularly accessible®) from a connected open subset B of M
provided that K is accessible from R and for each £¢>>0, a 6,>0
exists such that every point of R whose distance from K is <{d,
lies together with K ip a continoum H which is a subset of - K
and every point of which is at a distance <& from some point
of K.

Theorem 2. If R is any connected open subset of a continuous
curve M, then every bounded component of F,(R) is regqularly acces-
sible from R. _

Proof. Let K be any bounded component of F,(R), and let &
be any positive number. It is easily seen that a domain D, exists
containing K and such that F'(D,). F,(R)=0, and every point of
D, is at a distance < & from some point of K. Now sgince F,(E). D,

') For the case where K consists of a single point, this result is due to
Kuratowski and Knaster; cf. Sur les continus non-bornds, Fund. Math,,
vol. b (1924), p. 38.

%) Yor the case where K is a single point, see my paper Concerning the open
subsets of a plane continuous curve. Proc. Nat. Acad. Se., vol. 13 (1927), pp.
650—8657.
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and F(D,).R are mutoally exclusive, closed, and bounded subsets
of M, it follows by a theorem of the author's?) that only a finite
number of the components of D, . R can have limit points in both
of these sets. And since every such component must have a limit
point in F(D,). R, then only a finite number can have limit points
in F,.(R).D,. Hence there exists at least one component of D, . R
which has a limit point in K. Let G be the sum of all such com-
ponents of D, . R. Now since K contains no limit point of B — &,
there exists a domain D), within D, which contains K but contains
no point of R — @. Let 4 be any point in B. D,. I shall show
that 4 and K lie together in a continuum in R4 K which is
a subset of D,

Let R, be the component of G containing A. Then by practi-
cally the same argument as just given, using R, in place of R, it
follows that R, contains an open subset B, of M which is connected,
has at least one limit point in K, and every point of which is at
a distance < &/2 from some point of K. Likewise B, contains a set
R, having a limit point in K and every point being at a distance
< ¢/3 from rome point of K, and so on. Let this process be con-
tinued indefinitely, giving a sequence Ry, R, B;,... of connected
open subsets of M each containing the next, each having a limit
point in X, and such that K contains the sequential limiting set of
this sequence. Hence, by Corollary 1 to Theorem 1, K is accessible
from R;, and therefore 4 and K lie together in a continuum H
which is a subset ot R, -+ K. And since 4 is any point in E. Dy,
and B, C D,, it follows that K is regularly accessible from R.

Corollary. If the M-boundary F, (B) of a connected open subset
R of a continuous curve M is totally disconnected, then every point of
F.(R) is reqularly accessible from R.

Theorem 3. In order that the continuum M should be a con-

tinuons curve it is nmecessary and sufficient that if H is any closed
subset of M and R is any component of M— H, then every bounded

component of R— R is accessible (in either sense) from E.

Proof The condition is necessary by Theorem 2. It is also
sufficient, For if M is not a continuous curve, then by the Moore-

1) Concerning irreducible cuttings of continua, loc. cit., Lemma 10a.
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Wilder Lemma?), there exists a domain I, a subcontinuum W
of M, and a connected subset N of M such that (1) W( ¥,

(2) WCI, aod (3)if U is the component of M.T which containg
W, then N. U=0. Let P be any point of W, and let C be a cir.
cular region with center P which lies, together with its boundary,
wholly in I and such that there is some point of W without ¢,
Let H denote the set of points P--#(C). U, and let R he the

component of M — H which contains N. Since W(C N and N.U=0,

P is a component of R — R. But P is not accessible from B. For if
B--P contained any continuum L containing P and some point of B
lying without C;' L would contain a continuum K containing P
and lying in I and containing a point X on F(C); but then K
would be a subset of U, and hence XCF(C).UCH, contrary
to the fact that XC R and B. H=0. Hence P is not accessible
from B. Thus no continuum which is not a continuous eurve can
satisfy the condition of our theorem, and consequently the theorem
is proved.

3. Accessibility by eontinua, in the plane.

Theorem 4. If in a plane S, R,, By, and Ry are mutually ex-
clusive connected point sets, there does not exist, in S—(By~+ R, +R,),
three mutually exclusive bounded continua X, Y, and Z each of which
i accessible by continua from R, and By and contains at least ome
limit point of Ry.

Proof. Suppose, on the contrary, that three such continua
X, Y, and Z do exist. It readily follows that there exist bounded
continua H, and H, such that (1) Hi=1,2CR4+X+7Y,
@) HDX+Y, and (3) H,— (X+7) is2) connected. Then with
the aid of a theorem .proved by Janiszewski !) and alse by
Miss Mullikin %), it follows that H, - H, cuts the plane into
just two principal domains D, and D, each having boundary points
in both X and Y and in both H, —(X+4Y) and H,— (X4 T).

!) Cf. R. L. Moore, Bull. Amer. Math, Boc., vol. 29 (1928), p. 296; R. L. Wil-
der, Fund. Math., vol. 7. (1925), p. 371; and for the unbounded case, Bee an
abstract of mine in the Bull. Amer. Math. Soc., vol. 34 (1928), p. 409.

3 Cf. Janiszewski, Sur les coupures du plan faites par des continus, Prace
Matematyczne-Fizycane, vol. 36 (1918), and Mullikin, loc. cit.
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Now Z lies wholly in either D, or D,, say in D,. There exist
points 4, and 4; belonging to H, —(X -+ Y) and H,— (X + Y)
respectively and which are accessible from D,. There exists an

arc 4,04, from 4, to 4, lying except for its end points in D,;

and since Z is accessible by continua from both B, and R,, there
exist continua 4,7 and 4,Z in R, 4 Z and Ry + Z respectively
containing 4, + Z and 4, | Z respectively. It is not diffielt to
show that the continuum 4, 04, 4 4,7 + 4,7 separates X
and Y in S. But since Z(D,, then B;C D,; and therefore
By.(4,04; 4 4,7 + A,7)=0. Clearly this is impossible, since
R, + X 4 Y is connected. Thus the supposition that Theorem 4
is false leads to a contradiction.

Theorem 5. If in a plane S, Ry, R, Ry are mutually exclusive
connected point sets, and X and Y are mutually exclusive bounded
subcontinua of S —(By - Ry 4 Ry) each of which is accessible by
continua from euch of the sets Ry, Ry, and Ry, then no connected
subset of S-—(Ry R, 4 By + X + Y) can contain limit points of
all three of the sets Ry, By, and R,.

Proof IKrom the hypothesis it follows that there exist thres
bounded continua H,, H,, and H; such that (1) H, (i=1, 2, 3)C
CR+X+4+Y (2 H DX+ 7Y, and (3) H— (X4 Y) is connected,
It readily follows with the aid of the Janiszewski-Mullikin theorem
quoted above that H, -+ H; 4 H, cuts S into exactly three princi-
pal domaing Dy, Dy, and D, such that F(D,)C H,+ H,, F(D,)C
C H,+ H,, F(Dy)C H, -+ Hy, and such that the boundary of every
other complementary domain of H,+ Hy -+ H, is a subset of some
one of the continua Hj, H,, and H,. Now suppose, contrary to this
theorem, that some connected subset N of S— (R, R, Ry
—+ X+ Y) contains limit points of each of the sets B;, B,, and R,.
Then clearly N lies wholly in one of the domains D,, D,, a‘nd D',,
say in D,. But then R, must contain a point of D;; and since it
contains points not in Dy, e. g. all the points of Hy —(X+ ),
it must contain a point of F(D,), which is impossible .befeam?e
F)C H,+H, C R,+RB,+ X+ Y. Similarly a contradmtm'n. is
obtained when we suppose N in D, or D, Thus the supposition
that Theorem 5 is false leads to a contradietion.
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4. Application to the cuttings of plare continuous curves,

Theorem 6. If K is any closed and bounded componentwise
irreducible cutting of a continuous curve M between V) two points A
and B of M, and R, is any component of M— K which contains
neither A nor B, then F,(R,) contains points of not more than two
components of K.

Proof. Suppose, on the contrary, that F,(R,) contains a point
in each of three distinct components X, ¥ and Z of K. But if R,
and R, denote the components of M— K containing 4 and B res-
pectively, then *) both F.,(R,) and F, (R, contain points in each of
the sets X, ¥, and Z; then since each of the sets X, Y, and Z
conlain components of each of the sets F.(R,), F,(R,), and (B,
it follows by Theorem 2 that each of the continua X, ¥; and Z is
accessible from each of the three mutually exclusive connected subsets
R,, B, and R, of M—(X+ Y+ Z). This contradicts Theorem 4,
and thus our theorem is proved.

Theorem 7. Suppose K is a bounded irreducible cutting of
a plane continuous curve M such that K has at least two components
and M— K has at least three components Ry, By, and R,. Then K
has exactly two components each of which is either a point or an in-
decomposable continuum,

Proof. It follows from our hypothesis and a theorem of the
author’s %) that K has just two components X, and K. Suppose,
contrary to this theorem, that one of these componenis of K, say K,,
contains more than one point and is decomposable. Then, it is the
sum of two of its proper subcontinua H and L. Let P and Q be
points of H—H.Z and L— H.L respectively, Then since ) P is
a limit point of each of the sets B, Ry, and Ry, but is not a limit
point of K— H, it follows that there exist points Py, P,, and P,

') A subset X of a continunm M is said to be a componentwise irreducible
cutting of M between two points 4 and B of M it K cuts M betwoen 4 and B
and every subset of X which cuts M between 4 and B contains at least one
point in every component of K.

%) Cf. Concerning irreducible cutlings of continua, loo, cit,, Theorem 7, a sim-~
Ple modification of which gives the result here wused,

%) Loe, cit., Theorem 4.

‘) Loe cit., Corollary 7a,
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of H such that P, (i =1, 2, 3) is acoessible from E,. Hence H is
accessible from each of the sets By, By, and Ry; by Theorem 2,
K, also is accessible from each of these sets. But @ is a point be-
longing to- M-- (R, 4 B, + R, + H+ K,) which is a limit point of
each of the sets R, R,, and R,. This contradicts Theorem 5, and
thus our theorem is established.

Example. There exists a bounded plane continuous curve M
and an irreducible cutting K of M having a component T no point
of which is accessible from any component of M— K.

For each integer n>>0, let 4, be the set of all points (x,y) in
the plane such that 1/(n—1)< 21/, 0<Cy<<1; likewise let
B, be defined by the relations — In<z<<—1/n-41), <y <,
K, by the relations 2 =1/n, 0<{y<<1; H, by z=—1/n, 0 y<<l;
_2ntl 1) and

Let C, be the semicircular arc joining the points SnlnF iy

——

)

N
=
N\

\\
MRS

— .
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(__ 532 z-|:|— 11), 1) and lying save for these points wholly above the

line y=1; let D, be the semicireular arc joining the points
(_ 2n+1 0) and (_%n+2)+1

2n(n-1) 2(n-+2) (n-3)
wholly below the X-axis; and finally, let I be the interval (0, 1) of
the Y-axis. Let

O) and lying otherwise

M=I4 ¥ \E A+ H+ 4+ B+ C+ DL E=I+ Y&, +H),

el ne=Q

- B=K+H+ Y 4+ B.+0+Dl,

n odd and >0]

and R, =2‘ (4, B,+C,+D,].

n evenand >0

Then M is a continuous curve, K is an irreducible cutting of, M,
R, and R, are the two components of M — K, F,(R,) = F,(R,) =K,
I is a component of K, and clearly no point of I is accessible from
either B, or R,. Of course, by Theorem 2, I itself is accessible
from both R, and R,.

It is to he noted that in any example having the properties of
the just constructed, M — K must have just two compoments. For
if M— K has more than two components, by a theorem of the
author’s ) K itself has just two components, and obviously each of
these components of K must contain a set of points dense in that
component each of which is accessible from R, where E is any
component of M — K given in advance. Thus we have the follo-
wing theorem.

Theorem 8. Let K be any -irreducible cutting of a bounded
plane continuous curve M. Then either M—K is the sum of two
connected point sets or it is true that if R is any component whatever
of M—K, then each component H of K contains a set of points
dense in H each of which is accessible from R.

1) Loc, cit.,, Theorem 4.
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5. Accessible subcontinna of a given plane continnum. Various
extensions.

This section is devoted, in the main, to extending some of the
results in my paper On certain accessible points of plane continua ¥)
about aceessible points to analogous results about accessible continua.
Since these extended theorems can, in general, be proved by obvious
modifications of the proofs for the corresponding theorems in A.P.C.,
the details of proof are omitted and only the modifications which
might present difficulty are indicated.

Theorem 9. (Ewtension of Theorem 1 in A. P. C). Let M be
any continuum in the plane S, let G be any countable collection of
mutually exclusive connected subsets of S-—M, and let H be any
uncountable collection of mutually exclusive bounded non-cut continua?)
of M each of which is accessible by continua from at least two sets
of the collection G. Then there exist continua X and Y of H, an
uncountable subcollection E of H, sets R, and R, of ‘G, and two con-
tinua L and N such that (1) L4+N=M, (2) L.N=X-17, and
(8) every continuum of the collection E is a cut conlinuum of N, se-
parates X and Y in N, and is accessible by continua from both R,
and R,.

Corollary. (Extension of Corollary la of A. P. C). If H is
any uncountable collection of mutually exclusive bounded non-cut %)
continua of a plane continuum M each of which is accessible from

-at least two complementary domains of M, them there exist continua

X and Y of H, an uncountable subcollection E of H, complementary
domains R, and Ry of M, and continka L and N such thai (1)

1) Mon. f. Math, u. Phys,, vol .35 (1928), This paper will be referred to here-
after as A. P, C.

*) A subcontinuum K of a continuum J/ is called a non-cut continunm or
a cut continuum of M according as f — K is or is not commected.

3) If M is bounded, we may remove the condition that the continua of H are
non cut continua of I/, for: There does not exist an uncountable collection of mu-
tually exclusive cut continua of a bounded continuum M each of which contains
boundary points of at least two distinct complementary domains of M. This the-
orem follows trom Theorem 12 of my paper Concerning collections of cutfings of
connected point sets, (Bull. Amer. Math, Soc., vol. 35 (1929), pp. 87;—104) and
an obvious extension of Theorem 10 of my paper Comcerning the cut points of
continua, Trans, Amer. Math, Soc., vol. 30°(1928), pp. 597—609.

Fundamenta Mathematicae. T. XIV. 21
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L+N=M 2 L.N=X+7Y, and (8) every continuum of the col-
lection B is a cut continuum of N, separates X and Y in N, and
is accessible from both R, and E,.

Theorem 10. (Extensz’oh of Theorem 2 in A. P. C.). If M is

any plane continuum and K is any collection of mutually exclusive

bounded subcontinua of M each of which is accessible from at least
two complementary domains of M, then all save possibly a countable
number of the continua of K are continua of order two) of M, and
indeed can, for each &> 0, be e-separated in M by some pair of ele-
ments of K.

In proving Theorem 10, use is made of the author’s theorem
that ,if G is any collection of mutually exclusive bounded cut
continua of any continuum M, then all save possibly a countable
pumber of the continua of G are continua of order two of M, and
can, for each >0, be e-separated in M by some pair of elements
of G'2)% instead of the corresponding theorem about cut points used
in the proof of Theorem 2 in A. P. C.

Theorem 11. (Extension of Theorem 3 in A. P. (). No plane
continuum M contains an uncountable collection G of mutually exclu-
sive subcontinua each of which contains a bounded proper subcontinuum
which is accessible jfrom at least two complementary domains of M.

The proof of Theorem 11 paralléls that of Theorem 3 in A‘.P.C.,
except that the author’s theorem 3) that ,No continuum 3/ contains
an uncountable collection of mutually exclusive countinua each of
which contains a bounded proper subset which cuts M is used in
place of a somewhat less general theorem used in A. P. C.

1) A subcontinuum X of a continuum 1/ is said to be a continuum of order
n of M if for each e>>0, X can be e-separated in J/ by the sum of % subcon-
tinua of 3/ but not by n—1 such continua. This is an extension of the notion
of a point of order #n dus to Menger and Urysohn (see § 8). The set X is
said to be e-separated in I/ by a set F provided that J/ — F is the sum of two
mutually separated sets 1/, and 1f,, where I/, countains X and every point of
M:4F is at a distance < e from some point of X, Cf. P, Urysohn, Sur la
ramification des lignes Cantoriennes, Comptes Rendus, vol, 175 (1922), p. 481.

*) Cf. Concerning collections of cuttings of connected point sets, loc. cit.,
Theorem 12.

%) Loe. cit, Theorem 8.
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Theorem 12. (Extension of Theorem 4 in A. P. C). If A and
B are mutually exclusive non-cut continua of a bounded plane conti-
nwum M, then in order that M should be disconnected by the omission
of A+ B it is necessary and sufficient that there should exist two
complementary domains B, and By of M such that each of the con-
tinua A and B is accessible from both R, and R,.

In proving Theorem 12 we assume, without loss of generality
(by virtue of the principal of inversion), that each of the continua
A and B lies in the unboanded complementary domain of the other.
Then add to each of these continua all of its bounded complemen-
tary domains and call each of the continua thus obtained an ele-
ment. Also let every point of the plane which belongs to neither
of these continua be an element and let G be the collection of
elements thus obtained. Then since G'is an upper semi-continuous ?)
collection of bounded continua no one of which separates the plane,
therefore, as established by R. L. Moore (loc. cit.), the space of
elements G is topologically equivalent to the Euclidean point plane.
Accordingly, Theorem 12 becomes topologically equivalent to The-
orem 4 in A. P. C. and hence follows from that theorem.

It is readily seen from Theorems 12 and 9 that if R, and R,
are any two complementary domains of a bounded plane continuum
M, and G is any coliection of mutually exclusive subcontinua of
each of which is accessible from both R, and R,, then the elements
of G can be cyclicly ordered in M.

Theovem 13. (Extension of Theorem 5 in A. P. C.). If every
component of the closed and componentwise irreducible cutting K of
a plane continuum M is bounded, and K has more than one compo-
nent, then each isolated component?) of K is accessible from at least
two complementary domains of M.

Corollary. (Estension of Corollary 5a in A. P. C). If the
closed, bounded and componentwise irreducible cutting K of a plane

1) A collection G of elements is said to be upper semi—contim.lcius provided
that if any element g of G' contains a point of the sequential limiting set L of
any sequence g,, ¢y, gy, of elements of G, then g contains all of L;cf.R.L.Moore,
Concerning upper semi-continuous collections of continua, Trans. Amer Math,
Soc,, vol, 27 (1926), pp. 416—428. ) .

3) The component JI of K is said to be isolated if H contains no limit point

of X —H.
21%
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continuum M has only a finite number of components, then every
component of K is accessible from at least two complementary doma-
ins of M.

Theorem 14. (Extension of Theorem 6 in A. P. C). If K is
any collection of mutually exclusive closed and bounded componentwise
irreducible cuttings of a plane continuum M each having only a finite
number of components, and G denotes the collection of all sets [X]
such that X is a component of some element of the collection K, then
all save possibly a couniable number of the continua of G are conti-
nya of order two of M relative to the elements of G, 1. e., all save
a countable number can, for each £€>0, be e-separated in M by some
pair of elements of G.

Analogous extensions could also be stated for Theorems 8 and
9 and their respective corollaries in A. P. C.

6. Regular subeontinua of a given continuum.

Following Menger and Urysohn's definition ?) of a reqular
point of a continuum, we will say that a bounded subcontinuum N
of a continuum M is a regular subcontinuum of M if for each £>0,
Ncan be e-separated in M by a finite number of subcontinua of M;
and it G is any collection of mutually exclusive subeontinua of M,
we will say that N is a regular subcontinuum of M relative to the
elements of G if for each £>0, N can be e-separated in M by
a finite number of the continua of the collection @. Similarly we
will speak of subcontinua of M of order u, where n is a positive
integer, and of subcontinua of M of order n relative to G.

Theorem 15. If G is any collection of mutually exclusive bo-
unded subcontinua of a continuum M (in n-space), then the collection
E of all the continua of G which are reqular subcontinua of M re-
lative to G is upper semi-continuous.

Proof. Suppose, on the contrary, that E contains an element e
and a sequence ¢,, ¢, ¢,... of elements having a sequential limi-
ting set L which contains at least one point P of ¢ and at least
one point @ not belonging to e. Let 2e=4(¢Q,¢). By hypo-

1) Cf. K. Menger, Grundziige einer Theorie der Kurven, Math, Ann. vol.
95 (1925), pp. 277—306; and P. Urysohn, loc. cit,
#
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thesis there exist a finite collection g, g,,... g of elements of G
whose sum -separates e in M, and hence separates P and @ in M.
But since not more than m of the continua €1, €y, 63,... can have
points in common with g, +g, ...+ g,, and sinee both P and 0
belong to L, clearly this is impossible. Therefore £ is upper semi-
continuous. .

Since every subcollection of any upper semi-continuous collection
is itself upper semi-continuous, we may state the following

Corollary. Using the notation of Theorem 15, the collection F
of all the continua of G which are continua of order n of M rela-
tive to G, where u is any positive integer given in advance, is upper
semi-continuous. '

This corollary, together with Theorem 10, gives the following

Theorem 16. If M is any plane continuum and G is any
uncountable collection of mutually exclusive bounded subcontinua of M
each of which is accessible from at least two complementary domains
of M, then G contains an wpper semi-continuous subcollection G, which
contains all save possibly a countable number of the elements of G.

Theorem 1%. If G is any collection of mutually exclusive clo-
sed and componentwise trreducible cutiings of a bounded plane conti-
nuum M such that for each element g of G, M—g is not the sum
of two connected point sets, then G is countable.

Proof. Suppose, on the contrary, that G is uncountable. By
a theorem of the author's!), each element of ¢' has at most two
components. Hence if E is the collection of all sets [X] such that
X is a component of some element of &, then, since G is uncoun-
table, it follows by Theorem 14 that £ contains an element ¥
which is a subcontinuum of M of order two of M relative to E.
But Y is a component of some element F' of &, and by hypothesis
M— F= H,+ H,+ H;, where H;, H,, and H; are mutually se-
parated point sets. But since?) H, -+ F, H,+ F, and H,-} F are
continua, it is clear that if P,, P,, and P, are points of H,, H,,
and H, respectively, and 4 denotes the set of points P, Py
—+ P, 4 (F — X), then 4 snd Y cannot he separated in A by any

1) Concerning irreducible cuttings of cuntinua. loc. cit.,, Theorem 4,
2} Loe. cit,, Corollary 2a.


Yakuza


326 G. T. Whyburn.

two subcontinua of M. Hence I is not a continuum of order two
of M, contrary to what we have just shown. Thus the supposition
that G' is not countable leads to a contradiction.

In conclusion I will point out the following interesting fact
concerning regular subcontinua of a continuum. Let G be any col-
lection of mutually exclusive subecontinua of a bounded continuum
M (in n-space) each of which is a regular subcontinuum of M
relative to G. Then if T denotes the point set obtained by adding
together all the point sets of the collection @, it is readily seen
that each component of M — 7 is closed, and hence is a bounded
continuum. And if £ denotes the collection of all continua [ X ] such
that X is either an element of G or a component of M — 7, then
with the aid of a theorem of Menger's?) it follows that all the
continua of K are regular subcontinua of M relative to K, and
hence with respect to the continua of E as elements, M is a Menger
reqular curve.

1) K. Mengoer, loc, cit., Theorem 8.

The University of Texas,
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On a problem of Menger concerning regular
curves ). .
By
J. H. Roberts (Austin, U. 8. A,).

In his paper Zur allgemeinen Kurventheorie?) Karl Menger
raised the following question: If M is a regular curve?) is it true
that for every positive number & the curve M is the sum of a finite
number of continua of diameter less than ¢ such that any two have
at most one point in common?

The purpose of the present paper is to give an example which

shows that the answer to Menger's question as stated is in the

negative, but that for a regular curve M whose ramification points ¢)
are not dense on auny subeontinuum of M the answer is in the
aftirmative.

1) Presented to the Amer. Math, Soc., Dec. 28, 1928.

9 Fundamenta Mathematicae, vol. X (1927), pp. 96—115.

3) See Mengoer, Grundzilge einer Theorie der Kurven, Math. Ann, vol.
95 (1923), pp. 287—806. If M is a continuum and for each point P of M and
each positive number & there exists a connected open subset of M containing P
and of diameter less than & whose boundary with respect to M is finite then M
is said to be a regular curve. If K is an open subset of M (i. e., no point of B
is a limit point of M — k), then the boundary of R with respect to M is the set
of points B .(M — R). Bee R. L. Moore, Concerning simple continuous curves,
Trans. Amer. Math, Soc., vol. 21 (1920), p. 445.

4) A ramification point of a continuous curve M is a point of order greater
than 2, See W. Sierpiriski, Comptes Rendus, vol. 161, p. 305, A point P of
a regular curve M is said to be of order m if # is the smallest integer such that
for every positive number & there exists an open subset of M of diameter less
than ¢ which contains P and whose boundary with respect to M contains at most
n points. See Menger, loc. cit, and Urysohn, Comptes Rendus, vol. 173,
(1922), p. 481.
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