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aries, Let T denote the collection of all continua #, for each con-
tinuum g of the collection Y. It can easily be shown that 7'is an
upper semi-continuous collection of mutually exclusive continua.
Let Z denote the collection of all continua of the collection 7, and
all points outside the simple closed curve J. There exists?) a con-
tinuous one-to-one correspondence betweeu the continua of Z and
the points of a Euclidean plane. It readily follows that the subset
of the plane which corresponds to J plus its interior is a simple
closed curve plus its interior. If G is any simple closed curve plus its
interior there exists a continuous transformation of the plane into
itself which maps J plus its interior on G.Clearly the collection of
continua corresponding to 7' under such a transformation satisfies
the conclusion of theorem II. :

¢) From the viewpoint of analysis situs a hemisphere is equiv-
alent to a simple closed eurve plus its interior. Hence the truth
of the last part of theorem II readily follows from the truth of
the second part.

1) 8ee R. L. Moore, loc, eit.

University of Texas, Nov. 2, 1928.
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Continuous curves and arc-sums Y.
By '
G. T. Whyburn (Austin, U. 8. A).

Menger ®) has suggested the problem of characterizing a contin-
wons curve which is the sum of a countable number of simple
continuous ares. In this paper two theorems will be proved along
the line of this problem. The first of these reduces the problem
for a continuous curve M in general to the same problem con-
cerning the maximal cyclic curves of M; and together these two
theorems give a considerable amount of new information, and at
the same time yield as corollaries most of the known results con-
nected with this problem. :

By a continuous curve is meant any connected im kleinen con-
tinuum. A continuous curve C is cyclicly comnected?) if and only if
every two of its points lie together on some simple closed curve
in C. A maximal cyclic curves) of a continuous curve M is a sub-
continuous curve of M whi:h is saturated with respect to the pro-
perty of being cyelicly connected. The theorems below hold true
in any locally compact metric, and separable space.

2

1) Presented to the American Mathematical Society, December 28, 1928.

) K. Menger, Uber regulire Boumkurven, Math. Ann,, vol 96 (1926),
Ppp. 572582, see footnote to p. 578. Menger states the problem only for re-
gular curves, a rpecial type of continuous curve.

3) Cf. my papers Cyclicly conmected. continuous curves, Proe Ntl. Acad. of
Bei,, vol. 13 (1927), pp. 31—38, and Concerning the structure of a continuous
curve, Amer. Journal Math,, vol. 50 (1928), pp. 167—194. Extensions of most of
the results in the former paper to n dimensions have been made by W. L. Ayres;
of. his forthcoming paper Concerning continuous curves in space of n dimensions.
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Theorem 1. In order that a continuous curve M should be the
sum of & countable number of arcs it is necessary and sufficient that
(1) the end points®) of M be countable and (2) each maximal cyclic
curve of M be the sum of a countable number of arcs.

Proof. The condition is sufficient. Let C,, C,, Cy, ... be the max-
imal eyclic curves of M. By hypothesis, for each i, C, is the sum
of a countable number of arcs 3T, of M. Hence N=C, + C, -

+ G+ ...=323T, is the sum of a countable number of arcs
i n

in M. Let H be the set of all end points of M. Since H is countable, |

the set G of all pairs (4,B) of points of H is countable. And if
for each pair (4,B) in @, T, denotes an arc in M from 4 to B,
then H (C 3 T,. Hence H is a subset of the sum of a countable-

T4,8)inG

number of ares in M; and if K denotes the set of all cut points
of M, by a theorem of the author’s ), K is & subset of the sum
Zt, of a countable number of ares £ in M. But now?) K-+ H—-+N=M.
Hence M=2344-2 T, + ?’2’ T,,, and therefore M is the sum of

(4,B)inG@
a countable number of arcs,

The condition is also necessary.- For suppose M= 34, B, where
A, B; is an arc in M from A4, to B,. If H denotes the set of all
end points of M, then clearly H (C 3 (4, B). Hence H is count-
able4). Let C be any maximal cyclic curve of M. Now %) for each i,
L. A,B, is either connected or vacuous, and therefore is either vac-
uous, an are, or & point. Hor every i such that C.A4,B, is a point,
let 7, be an arc in C having C'.4,B, as one end point; for every
other 4, let 7,=0. Then for each 4, C. 4,B,} T, is either vacuous

or an arc in G, and C=3(C.4,B,+ T). Thus C is the sum of
a countable number of arcs.

1) An end point of a continuous curve M is a point of M not interior to any
arc in M; or, what is equivalent (ef. H, M. G e hm an, Trans, Amer. Math. 8oc.,.
vol. 80 (1928), 'pp. 63—B4), it is a point of Men gerorder 1 of M (cf. Menger
loe. cit.).

*) Concerning the eut points of continua, Trans. Amer. Math. Soc., vol. 30
(1928), pp. 597—609, Theorem 14,

?) Cf. Cyclicly connected continuous curvce, loo. cit., Theorems 6 and 7.

) Menger (loc. cit) has already pointed out that the conntability of H is
necessary in order that ]I be the sam of a countable number of arcs,

5) Cf. Concerning the structure of « continuous curve, loc. cit,, Theorem 80..
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Corollary la. If each maximal cyclic curve of a continuous
curve M contains only a finite wumber of simple closed curves (or is
a Baum im kleinen), then M 1is the sum of a countable number of arcs
tf and only if the end points of M are countable.

Corollary 1a follows at once from Theorem 1 with the aid of
Menger's theorem (loc. cit.) that a Baum im kleinen curve having
only a countable number ot end points is the sum of a countable
number of arés.

Corollary 1b. In order that the boundary M of a complementary
domain of a plane continuous curve M should be the sum of a countable
number of arcs it 48 necessary and sufficient that the end points of M
should be countable.

Corollary 1b is an immediate consequence of Theorem 1 and
the fact that each maximal cyclic curve of the boundary of a plane
continuous curve is a simple closed curve,

Theorem 2. The set K of all the im kleinen cut points?) of any
continuous curve M is a subset of the sum of a countable number of
arcs of M.

Proof. By a theorem of the author’s M contains a countable
collection [M] of continuous curves such that each point of K is
a cut point of some curve of this collection. By another theorem of
the author’s %), for each i, the set K; of all the cut points of M, is.
a subset of the sum 37T, of a countable number of ares 7., of M,

Thus K( 33T, and our theorem is proved.

Corollary 2a. If every point of a continuous curve M is dn im
kleinen cut point, or if all save possible a countable number of poinis
of M are im kleinen cut points, then M is the sum of a couniable
number of arcs. :

Corollary 2b. If every point of each maximal cyclic curve C of
a continuous curve M is an im kleinen cut point of C, or if all save
‘a countable number of points of U are im kleinen cut points, then M

) “An im kleinen cut point of 2 continuous curve M is auy point of M which
is a cut point of some connected open subset of M. For references and theorems
concerning this notion see my paper On poinis of continuous curves defined by
certain im kileinen properties, offered to Mathematische Annalen,

%) This theorem was proved incidentally in proving the theorem (cf. Theorem
8 in the paper just referred to above) that the set K is an Fg.

3) Concerning the cut poinis of continua, loc. cit.
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is the sum of a countable number of arcs if and only if the end points
of M are countable.

" Remarks., The theorem (Cf, Menger, loc. cit.) that an acyelic
continuous curve (Baumkurve) M is the sum of a countable num-
ber of ares if and only if its end points are countable is a corol-

lary to Theorem ‘1, because, obviously, no such curve can have any -

maximal cyelic curves. The theorem that a Baum im kleinen curve
M is the sum of a countable number of arcs if and only if its end
points are countable is a corollary to Theorem 2, because every point
of a Baum im kleinen curve is cither an end point or an im klei-
nen cut point,

University of Teins, Jan, 20, 1929,
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Sur les points accessibles des continus indécom-
posables.
Par

Stefan Mazurkiewicz (Varsovie).

1. M. Kuratowski a posé le probldme suivant
Exziste-t-il dans tout continu indécomposable plan un ensemble B,
qui ne contient aucun point accessible. .

Un continu est inddcomposable, s'il n'est pas la somme de deux continus diffé-
rant de lui, Un mble est un ble S} dun continu indécomposable C il

.est 1) sous-ensemble vrai de C, 2) semi-continu, 3) saturé par rapport aux pro-

priétés 1) et 2)!). Un point z d'un ensemble plan A est accessible, 'il existe un
arc simple J & extremité z tel que 4 X J=2.

Je vais résoudre le probléme cité par l'affirmative dans le cas
du continu borné. Je vais démontrer & cet effet le théoréme suivant:

Théoréme., C étant un continu indécomposadle, plan et borné —
Vensemble somme des ensembles 1B qui contiennent un point accessible
est de premiére catégoric par rapport a C.

2. Lemme, Soit A un continu irréductible entre les points ay, a,,
dun espace métrique et compact, B, D deux sous-ensembles fermés de
A, tels que:

@1 a,+a,CD B—D=£0 B+4+D=A4

1) Le terme ,ensemble ¥ (P-Menge) a été introduit par M, Kuratowski
dans une publication récente (Math. Anm. 98, p. 399) pour remplacer le terme
4composant* (utilisé par Janiszewski, Knaster, Kuratowskj, Mazurkie~
wics, Fund. Math. passim); ce dernier terme pouvant donner lieu & des confu-
sions avec les ,Komponenten“ dans le sens de M. Haunsdorff

Cf. le terme ,nerve* de M. L. E. J. Brouwer, Proceed. Amsterdam 14.
(1911), p. 144.
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