16 S. Nikodym: Décomposition en arcs.

avec le fait que la distance de p, & tous les K, est supérieure
a ¢>0.
Le théoréme est ainsi démontré.

Les deux théordmes que nous venons de démontrer peavent étre
réunis de maniére que l'on dise: dans les conditions 1° 2° 3¢, 4°
la décomposition {K} est partout localement continue, si Von définie
ce mot par les deux propriétés spécifiées dans les théses.
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A Theorem on Arbitrary Functions of Two Varia-
bles with Applications.

By
Henry Blumberg (Columbus, Ohio, U. S. A,).

The object of the present paper is to enunciate a theorem —
on unrestricted real functions of two variables — which, somewhat
unexpectedly, appears as a commou source of a number of theo-
rems — on arbitrary real functions of a single variable — that
have appeared, from time to time, in the literature without in them-
selves readily suggesting a common origin ). It turns out that these
special theorems are obtainable by considering particular real interval
functions ?) associated with a given function; whereas the theorem
of the present paper yields an analogous result for every interval
funetion.

Let f(x, y), then, be an arbitrary, real, one-valued ®) function
of two real variables defined in an entire plane 7. Let s be a
straight line of m, and d, a given direction in . If P is a point
of 8, we denote by lp,, tp, the lim inf, lim sup of f as (x,y) ap-
proaches P along the direction d; and by Ip;= (lp:, %ps) the inter-
val of approach of f at P along d4). We may now state the

1) See Examples 1, 2, 4 and b below,

%) The argument of an interval function is a linpar interval, or the pair of
its end points, their order being disregarded. If the interval function is real, the
dependent variable is a real number,

3) The condition of one-valuedness is inserted for simplicity of statement. The
argument holds essentially for many-valued functions also, the requisite modifica-
tions in statement for the latter case being evident.

4) We permit Ipy and wpy to be o oo,

Fundamenta Mathematieas. T. XVL /& 2
BT
oy

.



Yakuza


18 H. Blumberg: k

Theorem. If f(z,y) is an arbitrary real function, defined in
a plane m; s, o straight line in 7, and dy, dy two directions of ap-
proach to s on the same side of it, then Ip, overlaps or abuts Ip,
Sor every point P of s with the possible exception of 8, points, In
other words wpy == lp,, for all except possibly R, points of s.

Proof. Let £, be the set of points of s where Ip, =k, a given
real number, If P is a point of &, and n a positive integer, there

exists an interval P, P of length <711, and having the direction d,,

such that f(x, y)>k—£ for every point (v, 9) of P,P — ex-

cept possibly P. Let Jp, be the projection of the closed inter-
val P, P upon s in the direction d,, and D,, the set of points of s
that are end points of one or more of the Jp, (n fixed) as P ran-
ges over E,, but are interior to none of these Jp,. It follows that

(=]
Dy, ist at most denumerable, Hence D, =3 D,, is at most denu-
nesl

merable. If P is a point of E, not belonging to D, it must be inte-
rior to some Jj, for every n. It follows that up,=>k. Let k now
take the values », r ranging over the set B of rational numbers.
Then D =3 D, (r ranging over R) is a denumerable set (at most).
If Pis a point of s such that Ip, > up, there is a value r of R
such that lp, > 7> up, and therefore P belongs to D,.. Conse-
quently every point P of s for which Ip, > #pg, belongs to 3 D,=D,
that is, to a denumerable set.

Remark. The set of points P such that I, abuts Ly, meed
not be denumersble and, indeed, every point of s may have this
character, as the following example shows: Let s be the z-axis and
let X'= M, - M, be a subdivision of X, the set of points on the
a-axis, into two everywhere dense components. Confining ourselves
to the half-plane above the z-axis, we term a line I inclined at
a given angle a,, to the z-axis, and passing through a point of M,
or M, as of type (1, 1) or (1, 2) respectively; similarly, if a line !
inclined at another given angle e, passes through a point of M,
or M,, we term it of type (2, 1) or (2, 2) respectively. If P= (a, ),
a point above the ax-axis, lies on two lines of type (1, 1), (2, 2), we
set f(z,y)==1; if on two lines of type (1,1), (2, 1) or (1, 2),
(2,2), we set f(w,y)=0; finally, if on two lines of type (1,2)
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(2,1), we set f(a,y)=—1. If P is in My, we have I, =0,
Upgy == 1; lpyy=—1, Upy == 0. If P is in M,, we have lpay = —1,
tpy, == 0, Ipy, == 0, up,, = 1. Therefore, the intervals Ips,, 1p,, abut
at every point, but overlap at no point P of the z-axis.

If {d.} is a sequence of directions of approach to s on one and
the same side of it, then D, {m, n =1, 2,... 00}, the set of points
P of s where Upa, < lpy, 18 at most denumerable, and therefore

D=23 1D,,,,, is at most denumerable?). Hence we have the following
ey R

Corollary L If f(x, y) is an arbitrary real Sunction; s, a given
straight line; and {d}, n==1,2...c0, a sequence of directions of
approach to s on the same side of it, then there exists a denumerable
set D, such that if P is a point of s mot in D, we have Upa,, = bpy,
for every pair of integers m, n. In other words, for a point P not
in D, the intervals Toy, {n =1, 2,... 00) overlap or abut one another.

It is easy to see that this result is exhaustive .in a sense pre-
sently to be made more precise. For suppose m is the xy-plane,
and s, for simplicity, assumed to be the z-axis. Let D={P,} be
any given denumerable subset of s, and {d,} a given sequence of
directions of approach to s from the upper half-plane of 7, which
we denote by n’¢). It is possible to draw, for each P,, a circle C,
tangent to s at P, and with center in #, in such a way that no
two C, have points in common. Let K,,{m, n=1,2,...00) be the
chord of the cirele €, having the direction d, and terminating in
P,. Since no pair of the chords K,, intersect in #’, the intervals
of approach I , can be made whatever we please, and quite in-
dependently of one another, by means of an appropriate definition
of f(x,y) on these chords. We are still free to define f(¢,7) else-
where as we please. Denote by K the set of points on the K,,,

and by K, the complement of K with respect to . Regarding,
then, f(, y) as defined on K so as to make I 4, =1, where
oy {mym=1,2,... 00}, is an arbitrarily given set of real inter-

vals, we define f(x, y)=——51 in K. If P is a point of s not be-

longing to D, and d is a direction of approach to P from =/, it

% D, of course, has a different meaning from that above,
%) 1t is understood here that the points of s do not belong to #',

 ge
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follows, from the denumerability of the X,,, that lp,= -- oo,
therefore Ip, and Ip, overlap or abut for every pair of positive
integers m, n. We have thus proved the

Converse of Corollary 1. Let s be a given straight line in the
zy-plane; D ={P,} a denumerable set on s; {d,), a denumerable set
of directions of approach to s on one and the same side of it; and
L.. a given real interval associated with the pair of integers m, n
{=1, 2.... co}. Then there exists a function f(x,y) such that
Ip g, = Luny and if P is a point of s not in D, all the intervals Ip,,
{n=1,2,..} overlap or abut. In particular, if D={P} and {d,}
are given, there exvists a function f(x,y) such that on the one hand,
for all n and u=Ew, Ipq and Il’nd,. have no potnts in common;
while on the other hand, for every P of s mot in D, and for every
Wy, v the intervals 1,,,,“ and I,,,,v overlap or abut.

For the applications we have in mind to functions of one va-
riable, we shall make use of the following eorollary of our theorem:

Corollary IL. If F(§ x) is a symmetric function in its argu-

ments, then for all x, with the possible exception of a denwmerable
. 8U e = tnf o
set, we have lim z‘nf’F@’ Q—O)ghm suz (s &4 0).

This corollary is the particular form our theorem takes when 7
is the £z-plane, of rectangular cartesian coordinates; s, the 45° line
through the origin; and d,, d, the positive »- and negative z-di-
rections of approach. For, on account of the assumed symmetry,
FEE+0)=F(E+0,9).

We shall utilize Corollary II more particularly in the form it
assumes when F(§ ») is taken to be a real interval function, i. e.,
a variable real number associated with the variable interval (& x)=
=(, §). Such an interval function may, for example, be defined
in relation to a given set S or a given fanetion ().

Example 1. Let F( x) =j&2%-7;@ Then we have the

(Theorem of G. C. Young) 7). The upper right (left) derivative

) G. C. Young, Acta Mathematica, vol. 37 (1914), p. 147; W, Bierpidaki,
Bull. Acad. Se. Cracovie 1912, p, 850; see Fund. Math,, vol. IV, p. 809,
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of an arbitrary function is greater than or equal to the lower left (right)
derivative, with the possible exception of a denumerable number of
points.

Example 2. Let F(§ x) = uy(f; £ ) = uy(&, «), the ordinary
upper boundary of a given function f(x) in the closed 8 interval
(& @); or let F(§, 2) =u/§, 2), uy(& @), u,(& %) or (€ ) respec-
tively 9).

In this case, since u,(£, y), (A=0,f, d, ¢, 2) is a monotone de-
creasing interval function —in the sense that F(£',2') < F(€,) if (&, 2"
lies in (&, @) — uy (£, & + 0) = uf(£), which represents the right (left)
A-upper-boundary of f at £ exists. Therefore, according to Corol-
lary II, the right 2-upper-boundary (2= 0, f, d, ¢, 2) of an arbitrary
function at a point § equals the left A-upper-boundary at £ with
a possible denumerable number of exceptions. Likewise, of course,
for the left and right A-lower-boundaries If(£). The A-upper-boun-
dary u, (&) of / at £ as distinguished from the right or left A-upper-
boundary at £, is the greater of these latter two numbers, and is there-
fore equal to them in case of their equality. Since s,(£) = u,(§) —
—1,(&) and sf(E) = uF(f) — I (£), where s,(£) means the A-saltus
of f at & and s3(£) means the right (left) A-saltus of /' at & we
conclude:

(Theorem of H. Blumberg)1%). The A-saltus function s,(z) of
an arbitrary function f(x) is identical with the right and left A-saltus
functions sf(x) except possibly at the points of a denumerable set.

Example 3. Let p<Cg be any two real numbers, and F(&, ) =
=u(f; & n; p, q) the upper boundary of the values-of f(x) such
that p << f(w) = ¢ and £<<ax<<7; in case there is no x of this
sort, we: agree ‘to set u(f; & #; p, ) = p. Since the interval function
of our present example is monotone decreasing, we conclude that

%) To change from closed to open intervals means simply to change F(z, &).

%) The number us(£, &) is the upper boundary (= least upper bouund) of i
in (£, »), on the understanding that an arbitrary finite set of points may be ne-
glected, Likewise, wy(£, a), we(f, @), (£, ) mean the upper boundary of f in
(&, #) in case one may respectively neglect denumerable sets, exhaustible sets, or
sots of measure 0. See H. Blumberg, ,Cértain General Properties of Functions®,
Annals of Mathematics, vol. 18 (1917), p. I47.

19) 4 Theorem on Semi-Continuous Funciions, Bull. Am. Math. Soc., 2nd

ser., vol. 24 (1918), p. 881
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u(f; & E40;p, Q) =ulf; & E—0; p, g), with the possibility of an
exceptional set D,, which is at most denumerable. Let p < g range
independently over the set of rational numbers, and let D be the
sum of all these D,,. Suppose £ is a point such that there is a value y
for which (£ y) is a limit point of the points of the curve y==/f{(zx)
that lie to the right (left) of & but not a limit point of the curve
points lying to the left (right) of £ It is then possible to select
two rational numbers r,, 7, such that », <y < r, and no curve
points (z, f(x)) lie in the strip from y =17, to y=1r, for 2 suffi-
ciently near and at the left (right) of §&. Therefore, according to our
convention u(f; & £ F 0; 1y, 1) = 7y, wherens u(f; & £ £ 057y, 1) =
=y>r,. & thus belongs to the, at most denumerable, set .D. We
therefore conclude:

(Theorem of W. H. Young) 1), If f(») in an arbitrary real
Sunction, and (x,y) a limit point of the points of y== f(x) to the
right (left) of =, then (x,y) is also a limit point of the points of
y=f(x) to the left (right) of », there being at most a denumerble
nuimber of exceptional values of .

Example 4. Let C be a given class of linear point sets — such
a8 the totality of denumerable sets, or that of non-denumerable sets,
or that of sets of positive exterior measure. We define the C-upper-
boundary of f.relative to a given linear point set S, as the num-
ber w — which is allowably 4- co — having the following proper-
ties: (a) if 4'>u, the set SE;,,, — which signifies the set of
points # of § such that f()> ' — contains no subset that is
an element of C; (b) for every &> 0, the set SZp,., contains
at least one subset that is an element of C. If (£, 1), (p, q) are two
real intervals, we define uc(f; &, 7;p, g) as the C-upper-boundary
of f relative to the set of points « satisfying the inequalities
§<z<<m p<f(x)<g, in case the subset of E,, lying in
the open interval (£ 7) contains no subset that is an element of
C, we agree to set uc(f; & n; p,¢)=yp, and in case, for every
positive &, there is a subset of E,, , that is an element of C,
we set uc(f; & n; p,9)=¢. Suppose (£, y) is such that, for

1) See, for example, Bull, des Sei. Math,, 2nd ser,, vol, B2 (1928), p, 274.
The portion of Young's Theorem, as given L c., but not included in our statement,

can be obtained by changing the inequality § <2<y employed in the definition
of u(fi &5 0, 0) o w1, ‘

icm

A theorem on arbitrary functions. 23

every positive &, the set of points x satisfying the inequalities
E<a<E-te y—e<fl®)<<y-e has at least one subset that
is an element of C; we shall then say that (& #) is a left C-limit
of the curve y == f(«); and similarly for a right C-limit. We can
then show, by meaus of this interval function wc(f; & 75 p, 9
precisely as in Example 8, that if a point (§, ) is a left (right)
C-lmit of y = f(x) without being a right (lett) C-limit, the number
£ belongs to a set which is at most denumerable. We thus have
the following theorem, which specializes into the Young Theorem
of Example 3 in case C is the totality of sets consisting of a single
point.

Theorem. If y==f(x) is an arbitrary real function, and C an
arbitrary class of linear point sets, then every point (z,y) — with
the possible exception of a denumerable mumber of «'s — that is
a right (left) C-limit of the curve y=71(2) is also a left (right)
C-limit of the curve.

Example 5. Let (£ 7) and (p, ¢) be any two real intervals, and r
a real number such that 0<Cr<C1. By the number «(f; & u; p,q,7),
we understand the upper boundary of f(z) for the #’s of (§ 7)
satisfying the inequality p = f(#) =g, with the permissible neg.lect
of any measurable subset M of (§ 7) of relative measure 7.1 e,
such that the Lebesgue measure of M is less than r(n—§)).
Here w is, in. general, not a monotone interval funetion, but at any
rate, we conclude, according to Corollary II, that wwEp g =
= uz(&;p, q;r) — here uE(§;p, ¢;r)=limsup u(f; & E£05p, 4;7),
wz(E; 1, g; ) = liminfu(f; & §F 0; p, ¢; ) — except possibly for
the £s of an at most denumerable set D,,. Let 7 take a succes-

n
sion of values », — for example =T n==1, 2,...00

approaching 1 as a limit, and let D,, = 211)’"’"" Then w*(; p, 9, 14) =

= u(§; p, q; r) for all the numbers r,, and all points § not belon-
ging to D,,. Since u*(§; p, ¢; ) and w,(&; p, ¢; 7.) decrease mono-
tonically as r,—> 1, they possess limits as 7,—> 1; we denote these
respectively by u*(&;p, g; 1—0), u.(§p, ¢; 1—0). Then w=(E;
P, ¢; 1 —0) =uz (§; 1, ¢; 1—0) if £ does not belong to D,,. In parti-

1) We here admit == oo 28 real numbers,
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cular, if p==—o00 and g==-}-o0, we set u* (§; —oo, 4-00; 1 —0)=u*(£)
and u, (§; — oo, + 00; 1 — 0)=wu,,(£). These numbers u*(§), u..(£) —
as we may readily see — are so related to the numbers L*(£),
1£(8) of Kempisty %) that our result, that the validity of w*(£)=
= ux(£) for all &5 not in a certain denumerable set, implies the
theorem of Kempisty, 1. ¢. Kempisty defines L%(£) as the
lower boundary of all real numbers a such that E[f(z) < a, 2= §
is of metric density 1 at & and *(£), as the upper boundary of
all real numbers a such that E[f(x) =a, 2= £] is of metric den-
sity 1 at & If y> L*(§), the metric density of E[f(%) >y, 2> £]
is. 0 et §; therefore, if 0<<r<C1 and > ¢ is sufficiently near £
we have u(f; & #; —oo, 4 00; ) <y and hence u*(§) Sy. We
conclude that wt(§) =< L*(§). If y<<It(£) the metric density of
Elfx) <<y, x>E] is 0 at £ therefore, if 0<<r<<1, we have
u(f; § y; —oo, 4-00; r)=y; therefore u, (§) =y, and hence
u,.(§) = I*(§). Likewise, of course, (&) < L~(&) and u_(&) = I~ ().
Thus, since w*(§) = ux(£) except possibly for &, £'s, we conclude:

(Theorem of K emp isty). For every real function f(z) E[L*(z) <
(2)] is at most denumerable.

Since every interval function offers an application of Corollary II,
it would be easy to cite other interesting implications for arbitrary
real funetions, or for that matter, for arbitrary planar sets.

1) Sur les fonctions approximativement discontinues, Fund, Math,, vol, 6
(1924), p. 6.
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Sur les suites des fonctions presque partout
continues.
Par
L. Kantorovitch (Leningrad, U. R. 8. S)).

Le but de cette Note est de démontrer la proposition suivante

Théoréme. Pour que la fonction F(x) puisse éire représentée par
la relation de la forme

) F(o) =lim £,(o)

ot les fonctions f,(x) somt presque partout continues dans (a,b), il
Saut et il suffit qu'il ewiste deux fonctions: @(x) du type (ga)Y):
au plus [dans la classification de M. Young] et w(z) du type (G,)
au plus, remplissant partout la relation

@) 9@ < Fle) <y (@)
et presque partout la relation
@ (@)= F(z) = p(2).

Les conditions sont nécessaires. Supposons que la re-
lation (1) a lien, Posons:

4) Fa(@) = Max {£,(@), fona(®), -}

On voit que la fonction @,(x) est semicontinue inférieurement
au moins dans tous les points, ol toutes les fonctions f, (x) [v=mn,
n+1,...] sont continues, c'est-h-dire presque partont. D’aprés la
définition de la fonetion §,(«), nous aurons immédiatement '

(5) @n—i—l (x) < ¢n (16); Eﬂﬁn(x) = F (x)' ‘

1) Nous utilisons ici [et dans la suite] les notations de M. H.Habn, v. The-
orie der reellen Funktionen [Berlin 1921), pp. 328, 834.
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