On the convergence of lacunary trigonometric
series.
By
A. Zygmund (Warszawa).

§ 1

1. The lacunary trigonometric series is, by definition, any. series
of the form .
(1) S (@ 003,60 + b, sin n, 6),

k]

(o106 > g>1)

where n, < my <... are integers and g is independent of % The
series (1) possesses many special properties. For example, it is well
known, that, if a series (1), with a,, b, >0, is summable by Abels
method in a point 6= §,, i. e, if

@ }?igllg (ay cos n, By — b, sin 0, ;) B

exists and is finite, then the series (1) is convergent for 4 = 6, to
the sum equal to (2)?). Hence, if (1) is a Fourier-Lebesgue series

') It follows immediately from Landan’s well known theorem (Landau, Mo-
natshefte fiir Math., 18 (1907), p. 8—28): if 8) <A< LAy > 00,
b) ¢p=0 {(An — Ax—1)/As}, then the existence of

lim e, e A0 =g
a->40 .
implies the convergence of Z¢, to the sum s. When AngifAn > ¢ > 1, the condi-
tion b) is reduced to ¢, = 0(1). As a matter or fact, when AndafAn >q > 1, 8 much
stronger result is true, cf Hardy and Littlewood, Proc. London Math, Boe., 25
(1926), p. 219—236. '
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(in particular, when the series

=]

3) D@+

ksl

converges), it converges almost everywhere ?),
2. Recently I proved the following theorem 8):

Theorem A. If a series (1) is the Fourier-Lebesque series of
a function f, then the series (3) is comvergent, i. e. JCIA

The proof was rather complicated. From the remarks I have
just made it follows that Theorem A may be considered as a co-
rollary of the following much more general theorem,

Theorem B. If a series (1) comverges in a set Z of positive
measure, then the series (3) converges.

This theorem shows that the necessary and sufficient condition
that a series (1) should be convergent almost everywhere, is that
the series (3) should be convergent. It gives us a vast class of al-
most everywhere divergent trigonometric series with coefficients
tending to O. ‘ ‘

3. Proof. The series (1) may be written in the form

4 E 01 €08 (1, 0 - 6y), (0:20)

k=1

where 6, is independant of 6.
From the hypothesis of the theorem it follows that there exists
a set £ of measure ¢ >0 and a conslant C, such that

N |
Jacos(m0+6)<C  (N=1,2.;0CE).
kw1
Hence
N |
(5) 2‘9, cos (m 6-F6,)|<2C=C,, (M,N=1,2,., M<N,0CE).
k= M '

%) Cf. also, Kolmogoroff, Fund. Math, 5 (1922), pp. 96--97.
3) Journal London Math, Soc., April, 1930,
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We shall fix M a little later. It results from (b) that

N
f {2‘ 04 008 (n 0 o,,)}’ A< Cle= G,

ko= M
N
29%/ cos? (1, 0 -} 6,) 46 -
6 Py
N
+Z Ok Q,fcos (ns 64 6,) cos (n, 6 6) 46 << Cs.
S
Let us put
1 1.
) ;fcosmé)dﬁ::fm, ;fsm m 6 do = q,,
E E
(8) / cos (n, 8- 6,) cos (n, 6 0,) df ==, .

The numbers £, and 7, are Fourier coefficients of the function
%(6) equal to 1 for 6C Z, and to 0 for 6C CE (mod 27). Supposing,
for example, that &>/, we have

. 2 .
) - bi= &, tn, €08 (6, 6)) — Nt 810 (G 6,) -
+ &uyn, cOB (0, — 6,) — 7, _, sin (6, —6)).

2 2
10 (Zh) <2 unt T B 1) —
=2 ('ﬁ,ﬁnl + 7?1,‘-—':, ) (7‘?,, = gﬁi + f']?n)?

From the Riemann-Lebesgue theorem it follows that, for ko0,
1) /cos’(n,,e-}—ﬁ,,) d0=%fd6—|—%fcos2(nk0+ 0,d0 >3 .
E X E E

To the second sum in (6) we apply Schwarz's inequality

N
(12) \29& 0 bk,l
bi=M
k4l

kM & ko M kM
7Y: 1Y oyt

<(Xea o (g:'bz,l)’*< (ZN' ¢) (S'b;,,)*. |
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I am going to prove that the series

&t

k=M

k¥l
converges, From (10) it will be sufficient to prove the convergence
of the series

(13) s D

kyl=l k l=1
k>4 Y]
Il follows from the condition #,4/n,>>¢>>1, that there exists
a constant A==A(g), such that every natural number m can be
represented no more than A times in the form n, +#, (k, 1=1,2,..;
k> 1)*). Hence the sums of the series (13) cannod exceed

s 3
m=1
This last series, however, is convergent, £, and #,, being Fourier
coefficients of the bounded function. Il follows that we may find
a number M, verifying two conditions

N
1 |
(14) (2 b:,,) < %e (N=M, M1, M-}-2,.)
k,:;[M
(15) fcos’(nk 646, d6>ie. (k=M)
E

Then, fixing M, we get from (6), (12), (14), (15)

N N
s Ya—3z Ja<o

k=M k=M

4) Let us assume that m =mnztn; (k>7). Then m > n;> m/2 and the num-
ber of mg verifying this inequality, is less than the smallest integer 2 such that
¢*> 2. Similarly, if m = ny— n;, then n,>m. As ng/n;> g we have

mp—nxfg < m, ni<mgfig—1),

and the numher of #; in the interval (m, mgf(g—1)) is also bounded.
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Ja<soy
k=M
and Theorem B is proved b).
Evidently it is sufficient to suppose, instead of convergence,
that the partial sums (or, even, a particular sequence of partial sums)
of the series are finite in every poiut of Z.

Let
sn(O)= Y (aicosn,6+bsinn, ), o0,= {2((12 + b,fz)}%
ny<m Ay
ta(6)=_3 (@conn, 0+ bysinn, 6), 7,— ‘Z(ajf i bg)}ﬁ.
np>m llkf}m

The same argument as above gives: if the series (8) diverges
(resp. converges), then the inequality s, (6) = 0(0,) (resp. t,(8) =
= 0(%,)) may be satisfied only in a set of measure 0.

§ 2

5. Theorem B is still true, if we suppose that the series (1),
instead of being convergent, is summable (or finite) by Abel’s method
throughout Z¢). The proof follows the same lines and may be left
to the reader. Similarly, if the series

==

PACERAI
k=1
is convergent for 0<CR < B, (0 <R,<{oo), then, for R— R, — 0,
the function
f(B,8) = Z(a‘ cos 7, 0 -} b, sin n, 6) R

k=1

*) 1t may be added that, in the case of two variables the theorem and its
proof remain essentially the same.

€) If ax, by=0(1), it is sufficient so suppose that

=]

lim Z(ak 008 1z 0~ By, bin 3y 0) Bk ™> 00 0C 2).

Rl

It ie probable that the theorem is true in the general cage,

icm

On trigonometric series. 95

may be

oo

o| 3@+ R“k}%

k=1

only in a set of 6§ whose measure is 0, provided that the expression
{} tends to —+ oco. ’

The situation is the same for another metod of summation
(sometimes called Lebesgue’s method), which attributes to a trigo-
nometric geries

(16) St Y (a,c08n6-4b,5inn0)

na=]

the sum

1 - . sinnh
17 3(6) =£1_rg] [-§ ay +2 (a,cosn 8- b, sin nb) - ],

| nwml

supposing that the series on the right hand converges for sufficiently
small values of |k|. The existence of the limit (17) for =46, is
equivalent to the fact that

lim PO A —Fl—h _ 8(6s)y
b0 2h

where Z'(0) denotes the sum of the series (16) integrated term by
term. Considering, for simplicity, only the case of continuous func-
tions we have the following theorem.

Theorem C. If a series (1) is the Fourier series of a conti-
nuous functions F, which possesses a finite derivative in a set Z of
positive measure, then

D @+ By <oo.

k=1

In other words, F' is an indefintte integral of a function fC I3
The proof is the same as that of Theorem B. However, all these

propositions are special cases of a more general theorem, which we
are going to enunciate and to prove.
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6. Lot us consider an infinite table of real numbers

ﬂlla ﬂu; ﬂlﬂv"'

ﬂzn ﬁﬂ) ﬂﬂ&)"'

18) e

ﬁnla ﬂnﬂ) ﬁnh'-'

..........

This table defines a method of summation. We shall say that
a series, whose partial sums are s, §,,.., is summable I'(= 7'(8,)))
to the sum o, if a) every series

jﬂﬂﬂsq (r=12..)

gl
is convergent, and b) denoting by o, its sum, we have lim 0, = .

. »
The condition a) is satisfied if, for every p, only a finite number
of B,,40. It is well known ), that the necessary and suificient
condition that a convergent series should be summable 7' and the
two sums be equal, is that

10 2|ﬁpq|<M (p=1,2,..)
g1
(19) .90 li,]]n Z ﬂ,w =1
qe=1
30 lim ﬂpq ] 0, (g ey 1, 2’ . ”)
P

In speaking about a method T, we shall always suppose, that
the corresponding table verifies the three conditions (19). If the
numbers §8,, verify only two conditions, those (19, 2% and (19, 39),
we ghall denote the method by 7'*. All methods of summation used
in Analysis are either 7 or 7% In many important cases (the me-
thods of Abel, Borel, etc.) the variable p tends continually to oo,
which, of course, makes no essential difference. The methods being
T* but not 7, are, for example, those of Lebesgus and (G, y)
(—1<y<0).

") O. Toeplitz, Prace Matematyczno-Fizyczne, 22 (1911), pp. 113—119.
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Theorem D. If a series (1) is summable (or finite)y T* in
a set Z of positive measure, then the series (3) converges 8).

In saying that (1) is summable (finite) 7% we mean that, for
every 6 C Z, '

(20) 2 ﬁﬂq 30(0) =0, (0) %,

g=1

the left hand series being convergent, and that the sequence {o,(6)}
is convergent (finite).

7. The proof of Theorem D) is not essentially different from that
of Theorem B, Let us suppose at first that in every line of the
table (19) there is only a finite number of #'s different from 0.

From our hypotheses it follows, that there exists a set Z of
positive measure (E(Z) and number C such that [¢,(6)| << C
(p=1,2,..., 6CE)™). When the set F is fixed, we may suppose
(changing, if necessary, the value of C) that m, is sufficiently great.
Then '

1) 0(6) =3 B s:(0)=
=3 40,(0) G FBrmers +--) = 3 44(6) Ry (D)
where - i

A4(8) = ay cos n, 6 + b, sin 1, 6 = g, cos (n, 6 - 65),
Rm(p) == ﬁp,m + ﬂp.m+l + ...

§) The converse theorem is evidently false (consider the method (C,r),
{(— 1< »<0) and is trivially true if we replace 7'* by 7.
%) 8,(6) denotes the g'th partial sum of (1), i. .

8,(60) = 2 (ax cos ny 6 by sin 1 6),
np<y

10) The functions o, (;)) (p=1, 2,...) are continuous, hence, using Egoroff's
well known theorem, we get that, except in a set F' of arbitrarily small measure,
we have in Z, for p > p, = p, (F'), the inequality |0, (8)] < |0 (6)] 4-1. On the other
hand, the function ¢(6) being measurable (on Z), the functions o{6), 0,(6)m, (6),
are loss than a cortain comstant D, except in a set G of arbitrarily small measure
D=D(p, ). Hence in the set E= Zf-(F+ @ we have |g,(0)]<C
(p=12,..; C=D-1)

Fundamenta Mathematicae T. XVL 7
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Of course, the series in (21) are, in fact, finite. Then we have

! (o, Opdo=_3 ot Bi(p) J cos? (my 0+ 6,)d6 +-
(22) - k=1
+ 3 o0 R, (p) R,,l(p)/cos (7, 0 + 6,) cos (n, 8- 6,) db

k(=
kEl

< Ctem(B)=G.

As in the proof of Theorem B, it results from (22), that there
exists & constant C,, such that :

Jarmn<a

kel

Taking an arbitrary integer XK >0, and using the fact that
lim R, (p) =1, we get by turn
»
K

Sar,m<a,

fmal

K
2 0k <G,

k=1

}j o <G

Kl

8. We now proceed to remove the additional condition, that in
every line of the table (18) only a finite number of @'s is different
from zero. From (20) it follows that for every p(=1,2,..) there

exists a @= Q(p) and a set Z, of points such that m(Z,)<C
< 277 m(Z), and that, for § CZ—Z,, we have

Qp)

2 B 5i(0) = (6) = 0,(6) +5,(6)

=1

(1&(0) <1/p)-

Let
Z=Z— G+ Zi+..), m(Z)> g m(2).
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Then o (6)—0,(6)—>0 for 6C Z'. Supposing that Q(p) has also
been chosen that

li_’f;{ﬁ,,,l + s+t Bront =1,

we see that, for §( Z, the series (1) is summable (finite) 7%(g;,),
where £, =g, for 1<<g<<Q(p) and B, =0 otherwise. Conse-
quently the case is reduced to that which has been previously discu-
ssed and the theorem E is completely proved.

9. Theorem D asserts, in particular, that for every method T*
there exists a trigonometric series with coefficients tending to 0,
which is almost everywhere not summable Z*. It must be empha-
sized, however, that, a priori, we have not excluded the possibility,
that the nonsummability 7% of the series may be due merely to the
fact, that some of the series in (20) may be divergent almost every-
where.

In that case it would be more appropriate to say, that the me-
thod 7™ cannot be applied to the series considered. It may, ho-
wever, be shown very easily that, for an arbitrary method 7, there
exists a trigonometric series with ecoefficients tending to 0, for which
all the series (20) are .convergent (0<C6<(2n) and the functions
0,(0) diverge almost everywherei). In fact, if the condition
(19, 1°) is fulfilled, then there exists a sequence of positive num-
bers 4, <<4,<<...<<An<<...—>o0o, such that all the series

D114,

g=1

(p=12,..)

are convergent. Now it is sufficient to put a,= 1//% and to take
the sequence of my < 7y <C... increasing so rapidly that m,./n, >
>g¢>1, and '

10. Additional remarks. 10 Let a sequence of integers n,<ny<C..

11) This theorem is mot new. It was proved by a different method by Prof.
Mazurkiewicz (Prace Mat,-Fizyczne, 28 (1917), p. 109—118) who, besides this,
proved, for an arbitrary method T the existence of & power series, with coeffi-
cients tending to 0, nmon-summable T' in any point of the circle |z| =1. The
analogous problem for trigonometriec geries is not solved as yet.

7%
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verify the condition n4/n, > ¢ > 1, and let my, m,,... denote the
previous sequence rearranged in a quite arbitrary way. The reader
may verify easily that Theorem B, as well as D, is still true for
the series

oo

(23) 2‘ (@, 08 1,0 - b, sin m, 0) 12).
kel
29) Let @(x) be the function defined by the conditions ¢ (z--1)=

=g@), p0)=0F) =0, p@@)=1 0<z<}), ¢)=—1
(} <z <1). Let g, (x)=g@(2*wx) (k=0,1,2,...). Theorems 5 and
D hold for the series of the form

==}

Z @ @i (%) ).

kw0

The proofs remain the same; it is sufficient to remark that

/ 2 do = m(E),

and that the functions
@5,(2) = @s(x) @,(2) k=1,2,...,1=0,1,2,...5 k>

form an orthogonal system over the interval (0, 1). The same argu-
ment applies to some more general series,

§ 3.

11. We now prove a theorem, which shows that it is impossible
to find an everywhere divergent series of the form (1), for
which a,, b,—0.

Theorem E. Corresponding to every series of the form (1), for
. which a,, b,—0, there exisis a set K, everywhere dense and every-

12) The -partial sums 8,(6) of the series (23) are defined by the equation

r

5.(6) r_—fl(a,, cos my, 0~ b, sinm, 6).

i%) Cf. also Khintchine and Kolmogoroff (Recueil de la Soc, Math, de Moscou,
1924, p. 668—677) where a different proof (for the case of convergence) is given,
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where of the power of the continuum, in which the series (1) is con-
vergent 14),

We divide the proof into three parts,

a) Let #(0) denote the sum of the series obtained from (1) by
formal integration, i. e. -

(24) F(6) =Z(a,, 8in v, 6 — by cos n, 6)/n,.

k=l

If a;, b— 0, then for every 6

(26) lim F6+h+ F(6—h)—2F(6)

h-»0

0.

Let B,(0) = a,sinn, 0 —bcosm, 6, (k= 1,2,...), N =[1/A]
(b > 0), then :

F(0+2h)+17£0h-—2h)—— 2F(?)=_‘§'Bk§jn_’£kj_z=

nh
k=l &

=—J-J=1+rk.

rpSN . >N

LIk Y B m=o(1),

npsN

& <B 3 Bl = o(1)

ny>N

b) For every continuous function F verifying (25), there exists
a set &, everywhere dense and everywhere of the power of the conti-
nuum, such that for 6 E the derivative #”(§) exists and is finite 15).
In fact, let 4 be an arbitrary interval in which ¥ is defined and
let 6, be an interior point of d, in which F' attains its extre-
mum (supposing that such a point exists). Placing 6= 6, in (25)
and noticing that F(8, + &)+ F(8, — k) — 2F(6,) is of constant sign
for sufficiently small values of |h], we have

14) The theorem remains true even when the numbers n; are not integers.
1%) A, Rajchman, Prace Mat.-Fizyczne, 30 (1919), p. 19—88, esp. p. 23—24.
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F(b4h)—F(6) _
h ?

lim
her 30

i e. F'(6,) exists and is equal to O.
Let y = 7,(6) be the equation of the straight line passing through
the point (6,, F(6,) and whose angle with the 6 axis Is «

(0<1a|<—2’f). Lot G.(6) = F(6) —I,(6). The fanction Gy(6) va-

nishes for 6 = 6,. Without loss of generality we can suppose that
F(8) is not linear in the whole interval d. Then there exist two
numbers @, < o, such that, for every ¢ of the interval (e, a,),
the function G,(8) vanishes in a point 6, =6, (6, =~0,(a)). Hence
G, (0) exists and i equal to O in at least one point 7 == 1, between
6, and 6,. Of course F'(7,)=a. In particular, it follows that, if
4 <e, f<<a, and a==pf then 7, =17,
¢) If a;, b,— 0, then the necessary and sufficient condition that

the series (1) should be convergent for § = 6, with a (finite) sum s,
is that

i FO B —F(O,—B) _

h—0 2’2

where F' is given by (24). The theorem, even in a more general
form, could be deduced from well known theorems, but, for the
sake of completness, we shall give an independant proof.
Let
4y = 4,(6,) = a, cos n, 6, + b, sinn, 6,, N = [1/h].

Then
F(6, 4" 6, —h)
(8, + ) ___szksln n, h
k=l
Fby+h)— F(6,—h
Ah(60)= ( 0+ )2h [ 0 )_ SN(6°)=
_ ﬂni_h_ o smn,,h_
- Aﬁ( - 1)+2 e
nps<N ne>N

As sinzfz =1 4 O(x*), then

1LI< Y 14l 0 i)y =ht 3 o(ad) = o(1),

<N n N

icm
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1M} <B4y /me=o(1).

ngsN

Theorem Z is an immediate consequence of a) b) e).
12. From the fact that 4,(6,) O with &, it follows that

lim s, (0,) = lim £ (60 + %) — F(6,—F)

n—roo k>0 h

F(8y+h) — F(8,—h)
2

11m s,,(0 )= hm

From ¢) and from arguments used in b) we have the following
property of series of the form (1), for which a,, 5,—0: If lims, () =
= 1(6,), lim s,(6,) =1(6,), then, for every >0 and for every
number ! such that 1(8,) <7 << I(8,), there exists in (6,—e, 0.,—]—8)
a point % such that lim s,(n) =17 Thus, for example, the series

2 sin 10‘E 0

L2

although divergent almost everywhere, possesses, in an arbitrary
interval, points in which it converges to every given number.

13. When gy, b= O(1), there exists an everywhere dense set
E* in which the Dini’s numbers of the function (24) are finite 1f),
but the previous argumeunt fails to prove that E* is of the power
of the continuum.

§ 4
14, Theorem A4 may be generalised by proving that, if the series
() is the Fourier series of a function f( L% then f(C L’, however
great p may be 17):
We state the theorem in the complex form.

16) It follows from the fact that in every point 6 of E the expressions

F(o4-h)— F(6—h)  F(6-4h)+ F(6—h)— 2F(9)
oh ’ k

are bounded.
1) A, Zygmund, loc. cit,
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Theorem F. Let
(26) fe) =3 aam,

k1

(Mopa/m =z g > 1)

where 1y, ny,.. are positive integers and |¢|% 4|t 4...=1. Then
there exists a constant C,, depending only on p, such that

en  mN=wrn={z [I/eapaf<g,
" e>20<EB<)

We will give another proof of this theorem which is, perhaps,
simpler and, at any rate, more elementary than that given previously.

Evidently it is sufficient to prove the theorem for all even in-
tegers, i. e. for p = 2r (r=2, 3,...). From (26) we get

(28) fr= (ch z"*)r"—"z ¢ 2™ = g(2),

where the exponents m, are of the form

(29) an, Apn 4., (@Bt kS k> ),

the coefficients o, 8,... being positive integers. It is easy to prove
that if ¢ is sufficiently great (p=2r fixed!), then no natural num-
“ber can be represented in two different ways in the form (29). Let
us suppose that it is not true, then we have the equation

O=am, +bn, ...
where [a| > 1. Consequently
la] m, << [B] myy ..
Ty ST (Mg )
1<rl@?+¢"+..)=rlg—1),
which is certainly false if ¢ > & + 1. Thus, supposing that ¢ > r 4 1,

we have

(30) M/, B) = o- f IF (Re)rap—

=gz Jlo@enpsas= F\cirrm,

P E A 'k,>k, >..)

icm
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where, if m, is given by (29),

“"*——1———0“ cﬂ .
T IR R
As
|01]’<rl
we get from (30) that

ME(f, B) < 7! (21 lckP R"") <rl (2 Icklz) =yl

kel kel

r!
aT il [x, 2% < [ g, PP

In the general case the series (26) may be represented as a sum
of s series such that for each of them the number corresponding
to ¢ is ZZr -+ 1 18). Then

f=h+fi+ T
<l + 1A+ A <& (AP -+ 1)

(30) ME(F, By <<l

and Theorem F is proved. Using the well known fact that M,(f) is
an increasing function of p and that

2
expz‘=l+z+;—!+...b,

it is not difficult to deduce from (31) that

b

(32) [ explfre-2a0

0

is bounded for &> 0. It must be added, however, that the previoris
method gives a little stronger result viz, that the integral (32) is
bounded even for e =0, if we replace there f by k7, k being an
arbitrary constant. For £<C0 the theorem is false 1¥),

1) For the value of & we may take the smallest integer 2 such, that
=r41 )
‘ /“) Tt is possible to prove that the integrability of exp (k|1 is the best re-
pult, i. e, for every function w(x) such that w (&)t —> o with 2, there e}:lltu
a function (26) euch that exp [w(|f¢®0)[*)] ie not integrnhl_e. Cf, R E A CP ;g
and A. Zygmund, On some series of functions, {1), Cambridge Phil. 8oc. Proc., 1930.
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15. From Theorem #' we obtain the following proposition about

Fourier series.
Theorem G. Let (16) be the Fourier series of a function f
such that

27
(53) > [irpas=1, (p> 1)
§ .
I ma/m>q>1 (k==1,2,...; n, = 1), then the series
(34) }j (3, +83,)
kel
is convergent and its sum less than a certain constant D, , depending

only on p and q.
It is W. H. Young's well known theorem, that if

O gClr (4 5=1)
then
) x [ frao =" St

LTS

the series on the right hand being summable (G 1) and a, b, de-
noting Fourier coefficients of g. Holders 1nequa11ty and the condition
(33) show that the left hand integral- in (85) is absolutely less that

i fiorad”.

Let us consider the class of functions g(6) whose Fourier de-
velopments are

] ~2 (@, cosn, 0 4 B, sin n, §),
A=

where a;, §,, @, f,,... are quite arbitrary real numbers such that

(36) PACEN AR

k=1

It tollows from Theorem F that the series

icm
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(87) D @, atb,,8)

is summable (C, 1). As the signs of @;, 8, may be chosen arbitrarily,
the series (37) is convergent for every sequence of a;, §, verifying
(36) and the theorem follows at once.

Theorem G is evidently false for p==1, but the series (34)

* still converges when @(|f]) is integrable, where g (¢)= texp }igt

for t1Z2 1, and @) =1 for 0<CI<C L.
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