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1. Let ¢y ¢y ¢,... denote a bounded set of.numbers, and let
e e >,
denote the set |¢,|,|c,|,[¢,,... rearranged in descending order
of magnitude. Haroy and Lirtiewoon?) have proved the following
theorems:
Theorem A. If the series 3¢in2 is convergent, where
q>2, then the series
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is the Fourier series of a function f(6) of class L*, and
2
[1f@)1"de< 4, 3 e (nt1yr-s,
8 n=(0

where A is a constant depending only on q.
Theorem B. Let

@
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s¢+ 3¢ cosnf
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be the Fourier series of a function f(6) of class L? ,‘ where
1<p<2 Then
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where A, is a constant depending only on p.

!) Hardy and Littlewood [1], [2].
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The object of this paper is to extend the above results to
the general case of bounded orthogonal functions,

. 2. We denote by 9, (2), 9 (s), %, (®),... aset of real norma-
lised orthogonal functions in the interval (0,1), so that we have

1
[20%,0d=0  (ntm,
0 =1 (n=m),
and we suppose ’cha_t the set 9 () are uniformly bounded in the
interval, so that we have
19.01<B (n=0,1,2) (0<t<1).
We suppose throughout that c*, ¢,™, &% ... denote the set
leols [l [eyls. . rearranged in descending order of magnitude.
With this convention we state the following theorem:
Theorem L If the series = ¥ ni~? is convergent, where

g> 2, then
@.1) =3 9 ()
n=0

is of class L?, and
1
[lrofd<a, Zerern™,
3 n=0

where A depends only*) on g and B.

We observe first that

2 g2
q

< (Zerern™) (Za+D7) " <,
so that the series (2.1) does in fact represent some function (of

class L?). We observe also that it is legitimate to rearrange the
functions & (f) in any order we please, and so we may assume

without loss of generality that the numbers |c | are already in

descending order of magnitude, and thus it is sufficient to prove
that

- &, —2
22) [irora<a, Xle ) er.

?) It is not difficult to see that the constant is of the form AqB""z,

where 4, depends only on g.
15*%
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" We first need the following lemma due to M. Riesz¥).
Lemma 1. Let T=T(}) be a linear functional transfor-
mation of L°p into Ly, i. e.
(i) the transformation is distributive, so that for arbitrary
constants L, Aoy

T(}ﬁfl + szz) 27“1 T(f]) + lzT(fg) ’

(ii) there exists a constant M", such that

rcore-<u [ o)

Let M, , denote the upper bound of the ratio

([irnrcas)” [([171a9) ™,

where ae=cy==1. Then log M",, is a convex function of the
variables «, v in the triangle*)
0y <ae<l.
We observe that (2.2) may be written

flf(t)I”’dt AZ’((n+1) )(n+1>“2,

=0
and that
f(i)zé:(n‘f'l)cn {#. [(n+1)}

is obtained by a linear transformation from the numbers (n + 1) C,.
Thus it is legitimate to interpolate by means of the last lemma,
and it follows that it is sufficient to prove (2.2) in the case
when ¢ is an even integer.

3. To fix the ideas we assume that g=4. For ¢=2 the
theorem is well known, and for other even integers the proof is
similar to that in the case g=4. We write

FO =370,
m=0

where

fo(t)':co&o(t): f1(t):‘—0191 @,

" %) M. Riesz [1], Theorem V.

‘) Or any segment in the triangle for which the conditions (i), (i) are
satisfied.
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2™y
fu)= 2" ¢.9 () (m>2).
n=2""
We write
€0=:cg, €1=c§.22=4c‘§,
2" —1
&= 23 ¢ Hn+1) (m>2).
r1___2m-—'1
Let 0 < w<v. Then
f £ @F @yt
v
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--\<le 2 (n+1)
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n==2 n=2
21 . 2% o1 2 %
X| 2 c(n+1) S (n+1) 3
n=2u_ ! n=2 =1

1 —1— {(u—2)

1 1
<4576227 <A +e)2T" T

where A, here and in the sequel, denotes an absolute constant
(not the same constant in different contexts). It follows from the
above equation that if m,, m,, my, m, are arbitrary integers (all

greater than zero) then

[ 101,07, 0, 01

1 1 1 141 141 1
<(jrnfr(frnff (e n ) re) (s
(Pml + 8m2+ em,+8m4) 2-—-1/12(|ml-ma|+lm1—mxl+lm1—'m4‘+im —mgl-|my; —‘mgl'Hma—m;l)
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Thus
[(CART AR VAR S

1
<62 (If, 1, O f, O, Ol

The coeff1c1ent of ¢ in the above sum is

Z 2 22”“/\2(1"1—"11|+|m—"‘ o[ m—mg || my —ma| - my—mal- | mp—ms) < A.

m==1 m=1 my=1

It follows that -

JUR I+ e+ S di—a B,

Since "
ffo(z‘) di< B ci=Bs,

we have

(3.1) j(m§|fm(z))dz<,4 S —~An§c (n+ 1)

from which the result (2.2) follows for g=4, and the theorem
follows in virtue of what has already been said.
4, Theorem Il Lef

f=3e, 9,0l 1<p<2).
n=0
Then
. ® 1 .
2@+ <A, [1F0) |

where A, depends only on p and B.

We observe that, in virtue of the remark made above that
it is legitimate to rearrange the functions & () in any desired
order, it is sufficient to prove that

@ 1
Zle,l (n+ 1774, [1FQFdt.
n=0 h

—1/yp (lmy—mg| - |y —mg| = [y —my| - gy = [y —my| =+ my—m )
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We write ‘ o
d,=e,I” (n41)""sguc,,
so that

¢,=1d, 1" (n+1)"sgnd,,
where p’ is defined by the equation

1
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Py

We observe that p'>>2, and that

. N
e, P(n+1) 2=§Ocnd,,=2!dn1"’<n+ 172

n==( =0

We write

£0=5d5,0.

n=0

Then, using Theorem 1, we have

Yolc " (n+ 1)"“2-2cn¢,4ff<z)g,v<t> dt

n=0

<(f if(t)ipdf) (Of ENOTY dt) ”

N

<Ay (Ofl FACIE dt)l/p(f 14" i+ 1)"’"2)]/”'

’

! P ‘ 1/P p p—2
::Ap,(oﬂf(tﬂ dt) (Z‘Ic P(n+1) )
It follows that

Dol (a+177 <4, flf(t)l”a’i ,
=O

and since A is independent of N, the desired result follows by

making N tend to infinity.
5. The form of (3.1) suggests that some stronger result
than that of Theorem | may be true. We prove the following

more general result:
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Theorem Il Let S(f) denote the upper bound

e, 9, ()

n=0

S()=sup

0=m0

Then, if ¢>2,

6D [S7@)dt<A, fc;"(n+1)"”2<z4,,(f!cnl"'> ,
0 n=0

n==0
where ¢ is defined by the relation
l + i/ = 1 ]
q9 49
and A depends only on gq.
" The second of the inequalities (5.1), which is semi - trivial,
is due to Haroy and LirrLewoop. In fact

-] o0
—_ ™ -1
&+ )T <A, D 200

n=0 n=0

2n 1
) , q—1
*q n
<4 (L)
@ Ag—1
<Aq(2 c:")q
n=0
. o No—1
=A,,(27]Cn q)’l , .
n=0

where 4 here and in the sequel denotes a constant which de-

© , —1
=42 (c*q 2")q
n=0

pends only on g.
As in Theorem I, we split up the series

376,9,0
n=0

into a number of finite subsequences. Suppose that, in rearran-
ging the moduli |c,| in decreasing order of magnitude®) (or star
order), |c;, | becomes c,. We write

fo O =¢, (0 37,(0) @, . f1 B= 1y 32(1) @,

(5.2)

5) Where the number of the moduli |c,| are equal, we may suppose that
they are rearranged in order of increasing index.
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£, <t>=-§c,, s (O w (n) (m>92),

where ¥ _(n) is equal to 1 if n=~1(;), 2! <j 2”1, and

" vanishes otherwise. We write

So ()= c:) l ) (©) 1, S] B= C'I |2 1 @1,
N
NG =0213§00 :_,Z;cn S Dy, (n) (m>2)),
so that
S(0)<SO(0)—I~ Sl(ﬁ)-{—Sz(@)—I—

As in Theorem I we write

o *q - *q q_g
g==¢, , &=¢ 2,
Tgm_y .
—2
g = P ¢’ (n+ 1) (m>2).
n=2m-—-—l

5. We first need the following lemma.
Lemma 2. Let G(¥) denote the maximum

Cl)=Max |3 d9 0.
0=m<2W—11n=0
Then, if 2 <k <w®,
; k wa—n 2k
fc B dt< A2 4P 3 |d |k,
1] n=0
where A, depends only on k.
We write
2ft—1
q)o, 1 (t) = 2 d,."yn (t) s
n=0
21y 21
g = 2 49,0, g, )= 2 49,0,
! n=0 n=2(u—1
and generally
m2‘u_l-—1
g, = 2 450 0<i<y, 1<m<2).

—2
n=(m—1) 2
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We write
0,()= Maxl’%,m(t)l )
1=m=<2
so that
G(f) 2 2,(2) .
Now
i1
2
fmwﬂ\zjﬂ%JMdf
m=1 0
) Ph ; mol "y .
< Ak 2 2(!‘— ) (%—2) 2 |d" l
m=1 e (m—1) 2
w-na-2? .
<A4,2 X ld,l 0<i ),

n=0

using a simplified form of Theorem I It follows, by Mmkowski's
inequality, that

(_[Gk(t)dt) < (fcb (t)dt) *

2 l/k
<A 22(1« ) e 2”"(Z’|d\)

n==0

1 e
<A, (2“ 6= 2‘|dnlk) ,

n=0
from which the lemma follows.

7. Suppose now that ¢g=4. Let 0 <u<». Then using
Lemma 2, with k=3, we have '

[ 828, dt
1]

1
< ( [s2@ dt) Max S, (9
0 0=t=<1

2"

<|4.2" X e

n=21}_ 1
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2" 1 1

1 X+ .

n== )'v—-l

3a (27—
lZ’(nH)

9 Il—‘l 1/4

2 oty

n==2d‘l'_ 1

X 2 (nt+1)

[T
n=2 1

< quf’/d 8({41/"2‘/4 (it —m) < A (Ev + 8”) Qs (=)

2“1 —2/313}‘4

Using Howper's inequality again, we get

[82) S*@)dt
0

1 1 {
~<U$@&ﬂﬂ$ﬁﬁ$m@“
0 0

<A, +¢) 9= Yalu=r_
Proceeding as in Theorem I we may prove that
f()] S (t)) dz<Azem <A S’c*4(n+1)
0 m=0
This establishes the theorem for g =4.For ¢>>4 and even integer

the proof is similar.
8. Now suppose that ¢<(3. Then we have

fls () dt < f (}f‘ S, (tj)qdf
0

m=0

o \m=0

_ fl ( s, (t))2 ( mz; S, (t))q_zdt

m=0

f@wwH S5, )

m=0

8.1) <2

my
mg=0 my=0 0

j’ Zw’ f S, (t)S'mz(t) Sm;’"'z(t) dt.

il‘ﬂs

We have

1
f S, 05,0 S, dt<
0
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; .lq lq o YR }*q ']*r/ .
<[ (Smj ®S.2 @ dt) v ( [82 0820 dt) z
0 0 )
; —l—f/ -1—7‘ 2
X (f S S, @ dt) .
J ‘
and, if 0<m1<in2,
1 ‘1"‘7 "1"‘1
[S7® S @adt
0
1 2 g1 _I_q._l lq-i-l 9
<( [520 dz) G ( 820t @ clt) v+,
o 3 * .
An application of Lemma 2 with k=-;—q—f- 1, gives

1 lz-q——-l —;—g—{-l
f Sm, ®S, @dt
§ 2

o<t<1 ™

Pl I
<(Df SE dt) Max %7 ()

a™2_y . m, 1
<A gl Lot | Pt ofme-t
= q 2 cnz . 2 Cn
| =2 my—1 g1 1
1 2™y 1222 pm 9=
'"2(_‘?“1) *q =22 | 2 3T —g—2 |7
<A, 270 [ 2 )Y Y e Y
n=2m2 —1 n=™2 -1
2™y 92 ,my_, (g=2) (¢—1)
*gq 7—2| 2¢ - _e2 .
X| 2 '+ |7 | 32 G+ | ¥
n=2m1_1 n=,/m1—l

<A (e +e )2—["11—7"2[(17—2)/2!7
g my my .

It follows that, if none of the numbers ‘my, m,, my is zero
y

(8.2) of S, DS, (0772 () dt

< A, (e, e, 45, ) 2 Il im ol =)
where '

L=(4—2/29(¢+2) >0.
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The equation (8.2) can be extended easily to the case where
one or all of m,, m,, m, is zero. Substitution in (8.1) now gives

1
OfS"(t)dz

) o © )
< ‘4(, 2’7 2‘7 21 (sm +e +e ) Q—Zq(lml"m‘zl + lmy—my|+ | mg—my )
1 my my

my==0 my=0 my=0

< AqZ & mAq Zc;q(n + i)q_2.
m=0 n=0
9. We have thus established the theorem in the cases
2 < q< 3, and when ¢ is an even integer greater than or equal
to 4. For other values of ¢ we may either obtain the result by
an argument analogous to that used in the last paragraph, obser-
ving for instance that for 3<<g <4

1 1
f S'Hdi< Ay f S, 68, (B8, OSI W,
0 0

or we may interpolate by means of Lemma 1. The latter argu-
ment runs as follows. Let n(f) denote an arbitrary integer which
varies with £ (but which we suppose to be measurable and bounded
above by some large number N). We denote by S, the
n(f)-th partial sum of the series (5.2). Let {(n) define an ope-
ration which gives a (1,1) transformation of the positive integers
(n=0,1,2..... ) again into the same set. We denote by M* the

maximum . .
tq
(Of NG dt)

(Sf o, m) + 1)"“") "

n=9

Max

for arbitrary variation of the numbers ¢, If g>>4 is an even in-

teger or if 2<g<3, we have

1 1 w N
_ flsn(,)(t)|ut<fsq(t) dtgAqé;cnq(nH)q 2
0 0 "

<4, 3 e, 01"
n==0)
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and thus M is bounded. But in virtue of Lemma 1, log M is
a convex function of 1/¢ (1 <g< ), and it follows that M s

bounded (independently of N and the choice of n(#) and i(n))
for all ¢ in the range 2 < ¢ <o . Thus ‘

1
©.1) f[sn(t)(t)]th<,4q§;lcn|"(l(n)+1){'—2.

We can choose A(n) so that the right hand side of (9.1) is
identically

2 c:q (n'l" 1)q—2’

=0

and we have

1 1
f S (#) dt=sup f 5,0 "dE< A, 3 ¢ (n+1)" ",
0 0

=0
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On a theorem of Privaloff
by
A. ZYGMUND (Wilno).

1. Fejér has proved the following theorem. If a trigono-
metrical series

1) %ao + 23 (a, cosnf + b_sin nb)

n==1

is uniformly convergent (0 <6< 27), the conjugate series

2 2 (a,sinnd— b cos nf)
=1
is convergent almost everywhere in (0, 27)%).

FEJER’s result has been extended by Privarorr who has shown
that, if the partial sums of the series (1) are uniformly bounded in
(0, 27) and the series itself is convergent in a set £ of positive
measure, the series (2) is convergent almost everywhere in E2).
We are going to prove a little more general theorem.

Theorem. If the partial sums s, of the series (1) 1° satisfy

an inequality

3 5,(0) > —¢(0) (0<6<L27),

where o is integrable L%), 2° the series (1) is convergent in a set
E of positive measure, then (2) is convergeni almost everywhere in E.

1) L. Fejér, Uber konjugierte trigonometrische Reihen, Crelles Journal
144 (1913).

%) I, I. Privaloff, Sur la convergence des séries trigonométriques con-
juguées (in russian, with french résumé), Recueil de la Societé Math. de Moscou,
32 (1925) p. 357—363.

%) In particular if s, >>0.





