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and thus M is bounded. But in virtue of Lemma 1, log M is
a convex function of 1/¢ (1 <g< ), and it follows that M s

bounded (independently of N and the choice of n(#) and i(n))
for all ¢ in the range 2 < ¢ <o . Thus ‘

1
©.1) f[sn(t)(t)]th<,4q§;lcn|"(l(n)+1){'—2.

We can choose A(n) so that the right hand side of (9.1) is
identically

2 c:q (n'l" 1)q—2’

=0

and we have

1 1
f S (#) dt=sup f 5,0 "dE< A, 3 ¢ (n+1)" ",
0 0

=0
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On a theorem of Privaloff
by
A. ZYGMUND (Wilno).

1. Fejér has proved the following theorem. If a trigono-
metrical series

1) %ao + 23 (a, cosnf + b_sin nb)

n==1

is uniformly convergent (0 <6< 27), the conjugate series

2 2 (a,sinnd— b cos nf)
=1
is convergent almost everywhere in (0, 27)%).

FEJER’s result has been extended by Privarorr who has shown
that, if the partial sums of the series (1) are uniformly bounded in
(0, 27) and the series itself is convergent in a set £ of positive
measure, the series (2) is convergent almost everywhere in E2).
We are going to prove a little more general theorem.

Theorem. If the partial sums s, of the series (1) 1° satisfy

an inequality

3 5,(0) > —¢(0) (0<6<L27),

where o is integrable L%), 2° the series (1) is convergent in a set
E of positive measure, then (2) is convergeni almost everywhere in E.

1) L. Fejér, Uber konjugierte trigonometrische Reihen, Crelles Journal
144 (1913).

%) I, I. Privaloff, Sur la convergence des séries trigonométriques con-
juguées (in russian, with french résumé), Recueil de la Societé Math. de Moscou,
32 (1925) p. 357—363.

%) In particular if s, >>0.
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2. PrivaLorr, in proving his theorem, worked with Poisson’s
formula. We find it more convenient to use instead a formula,
due to F. Riesz, for the derivative of a trigonometrical polyno-
mial. This formula, which has proved useful in similar problems?), is

s, (0

—~-2— A | i + 1)K () dt
O F-facnieoion

where K denotes Fejir’s well known kernel. It may be obtaineds),
by considering the obvious equality

SO 1 7 . : ,
L. t+2sin2f4... t}dt
ATl n(n+1)[$"(t+ 6) {sint+2sin2¢+... + nsinnt)

- and adding to the sum in the brackets the expression
(n+Dsin(n+1)t+nsin(n+2)t+...+sin(2n+1) ¢
In the same way we get the formula for the conjugate polyno-
mial s :

s, 0) 2 7 :
o b fsn(t—i— 6)cos (n+1)tK () dt

)

due to G. Szeco ),

From (3) it follows that the integrals of | s_(6)| in (0, 27) form
a bounded sequence, and so the series (1), when integrated, is,
without its linear term, the Fourmkr series of a function of bounded
variation. Consequently the series (1) and (2) are summable (C, 1)
almost everywhere in (0, 27). Denoting the partial sums and the
arithmetical means of the series (2) respectively by s_(4), o (9),
we have the equality
s, (6)
n+1

#) Cf. for instance, R.E. A. C. Paley and A. Zygmund, On the partial
sums of Fourier series, Studia Math. 2 (1930) p. 221—227.

®) F. Riesz, Sur les polynomes trigonométriques, Comptes Rendus 158
(1914) p. 1657—1661,

%) G. Szegs, Uber einen Satz des Herrn Serge Bernstein, Schriften der
Konigsberger Gelehrten Gesellschaft, Naturwissenschaftliche Klasse 5 (1928)
p- 59—70. As a matter of fact, formulae (4) and (5) have been proved (loc.
cit) in a little stronger form, but the actual form is more convenient to us.

0, (6)—s, (6) =
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and so our problem reduces to showing that s/ (6) = o(n) almost
everywhere in E,

3. We begin by proving a result, which although more ge-
neral than PrivaLorrs, is a special case of the theorem enounced.
We suppose namely that (1) is the Fourier series of a function
feL”, and that e L” (p>1). In that case there exists a function
YeL (and even wel”), such that?)

G) ERGIRSC 0<6<2m),

Lemma. If the partial sums of the series (1) satisfy the in-
equality (6) with e L, and if in aset &, m(6) >0, we have

@ [s,(0)] <e (n>ny),
then

= 5,:(0)
® i |00 <2

almost everywhere in &.

In fact, we may suppose without loss of generality that
®(0) > 0. Let 2(6) be the function equalto 1in & and to 0 else-
where (mod 27) and w*(8) =y (6) w(6) >0. Let 0, be an arbitrary
point of & where the integral of y*(6) has O for its derivative 8.
Then, decomposing in the inequality

s.(6,)
n+1

% fsﬂ(t)sin (n+1)(E—6)K,E—86) a't‘

2 T
<y [POK E—a)a

the last integral into two, extended over the sets & and C6,
and denoting them by A and B, we have (forn>>n,)

|AA<%@[&@—@&<%%f&®ﬁz%,
& . —

WJ<%ﬁWWN—@ﬂ=%fW®K“—%“
ée Za

7) See¢ R. E. A. C. Paley and A. Zygmund, loc. cit.
8) Considering such points is suggested by Privaloff's paper.

Studia Mathematica. T. III. 16
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Using Lesescue’s well known test for the summability (G, 1) of
Fourier series we see that B, —> 0 and (8) follows at once.

4. Now, if (1) converges in a set E, it may be found, by
the theorem of Ecororr, a subset & of E, its measure differing
as little as we like from m(E), in which (1) would converge
uniformly. It follows, that, for a given ¢>> 0, there exists an inte-
ger n, such that

|5, (O)—s, (O] <e (be &, n>ny).

We may represent the series (1) as the sum of two, the first
being the polynomial s, . Let {,=s,—s, (n>n) denote the
partial sums of the second. We have then
L@ <t (>, 86); [4,6)]| <W(O) +M—yp ) (0<6<2m),

where M=Max |sn°(6)|. Hence, by our lemma,
t, ()

Jm || <20
_ [50)]
e
_5®

nh—?nlo n+1_0’

almost everywhere in &. Evidently the last equality holds also
almost everywhere in E.

5. Now we pass to the general case (3), where Yy is inte-
grable L. In this case it may be shown?9) that we have still (6),
but with we L' and so our previous argument fails. In the subse-
quent proof we shall not use any result of the paper just referred to.

As we have already mentionned, the series (1), under the
condition (3), is the differentiated FouriEr series of a function of
bounded variation. In other words, (1) is, what may be called,
the FourEer-StieLtjEs series, 1. e. there exists a function F'(6) of
bounded variation, such that

anr:l fcosn(idF(B),
7

©) - (=0, 1, 2,...).
b= f sin n0 dF (0)

9) See Studia Mathematica, loc. cit.
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Generally F'(7) & F(—=), but if a,=0, then F(#) — F(—n) and
we may define F'(0) for all 4, setting F(#+ 2 %) — F(6). The first

arithmetical means 0, (6) of the series (1) may then be written in
the form

W) 0=+ [Ke—0dF0="1 [K@dFey

:%fK"(t)dl[F(6+t)—-F(9—f)],

where the symbol d, means that the variation is taken with
respect to £. As in the general case F(6)is the sum of 7a,¢ and
of a periodic function, it will be readily seen that (10) remains true
even if a, = 0.

6. Let ¢ be any positive integer such that g/n <m. Taking
into account that

K, <zn O< t<Bln),
(11 i
K,,(l‘)<m (pln Lt L),
we get from (10) that
B/n
(12) |0n(0)|<nf|di(F(9+t)—F(3—i))1
0
1 fldF@+)—F@O—1)]
;ﬁ/ tz ‘

Replacing in (5) s (¢ + 6) by (s, (¢+0)+ @+ 6)—g(¢+0), we
have

(5, |
n+1

(13) <Z[6.0r0+pE+0K O

+%f¢(t+ H)Kn(z)dt=20n(6)+£—fq>(6 K, (D dt.

16*
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From the equality

s (O)=0,(6) + %j(r—%
we get _
' s, (0) |
s O +9@) =]s, O +9©O) <[, O +9O) |+ 7
‘ [ s, (6) ‘ '
Cbnsequently, using - (13),
5,0
(14) s, (0) <o, (6)+ —y <7,(0),

where 7, denotes the arithmetical means of the series we get by

multiplying (1) by 3 and adding the fourfold Fourer series of ¢ (0).

This new series is also a FourEr-StELTjEs series and so for 7, (0)
we have the inequality analogous to (12)
“ bin ‘

(15) | lTn(9)|<nfldi(G(HH)-—G(@—f))!

0

+%f{dt(G(9+f)2—G(6—f))|,

Ain t

where G is a function of bounded variation. From (3) and (14)
it follows that ’
(16) 5, @) <70 +9()-
Now we are going to prove the following

Lemma. If the partial sums of the series (1) satisfy (3)
with @ integrable L, and if in a set & of positive measure we
have (7), then (8) is true almost everywhere in &.

Let 6, be a point of density of &, such that

- h )
an [14,66,£01=0(.
0

It is well known that (17) is true for. allmost all 6,. Integrating by
part one deduces easily from (17) the inequality

24

f}d:G(Ooif)l
£

b

(18) - =0(r™).
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Without loss of

e generality we may suppose that 0,=0. Let

) denote the portion of & belonging to an interval (e, 3).
From (4) we get (putting C6= H) .
s, O] 2 2
2 g—isan(t)dt+;f|sn(i){Kn(t)dz‘
g i

and it remaiz}s to be shown that the last integral tends to O.
Inequality (16) shows that the integral considered isless than

2
(19) 2 [rok,0a+2 [15,01%, 0.
H H .

Putting ¢* (6) = ¢ (6) 7 (6), where %(6) is the characteristic function
of the set &, and supposing that the integral of ¢*(8) has for
6 =0 the derivative vanishing, we prove, as in the case of the

preceeding lemma, that the first of the integrals (19) tends to zero.
The second is equal to

2
2 [1n0IK0d+2 (15 00K,0 d

H0,7) H(—,0)
We shall estimate only the first of these two terms, for the se-
cond may be dealt with in the same way.

8. Let us put a=g/2

b

(20) f]rn(u)}Kn-(u)duzf + f = AL+ A’

H(O, =) H(0,2/n) Hejn,7)

~ Using (15)‘ and (11) we have

Bin T
Al o’ duf(|dtG(u+t)]»{—ldtG(u—t)[)
H(0,a/n) © . .
_|_2denldtG(u+f)tlg+]dic(ui_t)l——-z4i’l+A},’2.

H(0, ¢/n) fin
From (17) we deduce that

A}l’l.———Qn? fO (-rll—) du=o0(1).
H{0,ajn)

From (18) it follows that ‘ _
A =2 fO(n)du=o(1).

H(0,c/n)
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Further .
Ar<a (2 (d,Cutbl+d|Gu—0)
H(e/n,7) 0O :
i iq nldza(u—*—t)l—{"étc(u_t)leZ,l_}_AZ,Z.
n? u? £ " "

H(a/n,7) fn
Let y=3%>§. Then

Bin
Aty [ B f]dG(u+t)l+]dG(u—t)|)
H(u/n//n) 0
Bin

+4fd f]d Gu+t'+|dGu—)=I+K.

H{yn, =
K 0 1\ du
1n=4f ) z=o).
H (&/n, V/n)

If we set (for 2 >0)
[1dcwl=L®,

we may write =0 ﬁ
K =4 |d,G(u+1)]
H(*/?n['t) _'£
=4f (L (u +ﬂ)—L(u——— 4fd" L@ +—) L(u———)} '
H (7/n, 7) Vn

L (u) du L (u)d

—edr <(u 5oy

ﬂ n

<°m“f“"){(uiﬁ)’*‘(ufﬁ)*}d"

1=

n

_ 68 r . udu
_0(1)+HLL()——-———(II_%)Z(H%),.
=8

n
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As L(u) < const.u, it will be readily seen that the last integral

is less than a given number 6 > 0, provided g is sufficiently large.
Hence

AP Lo (1) +4.

n

Now

g fld G+ 414G
\le l.l2 l‘

¢/n

|d,Ga+9)|+]d,Ga—1b 1)
T f f #
_ 8_7”du2"1dtG<a+t)l+1dtG<u—f>l-
——0(1)+n"r£u—2uf tz
8 Fdu ld,C@+b|+1dGu—9]
S u_gf

. oW+P,+Q,.

rd
<[5 ugf(ld Ga+d|+1dCa—y)<s [ 4.
a/n a/n
If ¢ (=pj2) is large enough, the last expression is less than d.
From (18) (with 6,=0) we deduce that

/2
871 1)
Y E e
/n

for o sufficiently large. Hence.
AP’ P +Q <o(1)+24.
Consequently the integral (20) is less than
oM +o@)+o(W)+d+0(1)+2d=0(1)+34.
As d is arbitrarily small the truth of the lemma follows. To deduce
the theorem we proceed as in the case dealt with previously.
9. It is evident that if (3) is true in an interval ¢ << 6<3,

and if £C (e,p), then the conclusions of the theorem are still
valid.

10) (Added 29.12. 31). Supposing, as wemay, that G (1) is either even or odd.

(Regu par la Rédaction le 30. 6. 1937).





