Memoir on the Analytical Operations and
Projective Sets (I).
By

Leonidas Kantorovitch and Eugen Livenson
(Leningrad, U. S. S. R).

Introductory.

This memoir is intended to contribute to the socalled ,des-
criptive theory of sets“ the object of which is the investi-
gation of different classes of sets (especially in a Euclidean space).
The elementary unotions in this theory are those of open and closed
sets. Next to this comes the class of all the sets which can be ob-
tained from closed sets by a finite number or a countable infinity
of the operations of countable additions (i. e. additions of a finite
number or a countable infinity of sets) and substractions. These sets
have been introduced by Mr. E. Borel and are therefore called
nBorelian sets (class B).

Neither by the analytical operations then known nor by any
other means tried at that time could the class of ,individual®?)
sets be extended beyond this class B, and Borelian sets remained
the only known individual sets until Mr. Souslin introduced a new
analytical operation (operation 4) apd with it a new and wider class
of sets viz. that of sets (A4). Beside extending the class of indivi-
dual sets the works of Mr. Souslin had a great methodological
importance because in these works the idea of an analytical ope-
ration was for the first time distinctly introduced. A further study
of the sets 4 carried on by Souslin, Lusin, Sierpifski and

1) Or ,effective*,
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others, revealed the fact that the class 4 is a natural extension of
the class B because many other (not analytical) ways also lead to
this class so that the A-sets may be defined in several different
manners: 1) analytically, as a result of A-operation effected upon
closed or more generally, upon Borelian sets; 2) as projections of
the sets G (or generally of Borelian sets); 3) a8 continuous images
of (f; (or Borelian sets); 4) as sets of values of Baire’s functions
in Borelian sets; B) by means of the ,crible* of Mr. Liusin ?).

Each of these definitions gives sufficient means to develop a com-
plete theory of 4-sets, i e. to answer all the questions that present
themselves in the theory of any class of sets.

These questions may be subdivided into different groups: 1) those
concerning the properties of sets belonging to the class in question,
as e. g. their measurability, the property of Baire etc; 2) those
concerning the properties of the class itself (such are its topological
invariance, the existence of a universal set or of a universal series,
the power of the class etc.); 3) concerning relations among various
subclasses of our class (inner classification); 4) concerning functions
related to the class of sets.

Further extension of the class of sets coming under the scope
of descriptive theory can be effected in two ways: 1) we may re-
peatedly apply the elementary operations (of countable additions and
intersections and of substraction) and the operation of Mr. Souslin
(4-operdtion) and thus we come to the class of all the sets which
can be obtained from intervalls by a finite number or a countable
infinity of the elementary operations and A-operations. This class
has been called by Mr. Lusin class (C). 2) We may apply besides
the elementary operations, the operation of taking a projection. We
come thus to the class of all the projective sets. Both these classes -
have been introduced by Mr. Lusin, They both allow an inner
classification, subdividing each of them into ¥, subelasses (having
for indices the numbers of T and II class).

The theory of projective: sets is very little developed. This is
due to the fact that there existed mo analytical expression for these
sets. Almost all the results coneerning projective sets were obtained
by the method of continuous transformations.

In consequence the first problem which presented itself was that

1) See N. Lusin, Legons-aur les ensembles analytiqgues. Paris 1930.
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of finding a convenient analytical expression for projective classes
Another problem closely connected with that mentioned above is
the problem of the relations between the class (C) of Mr. Lusin
(see above) and the class of projective sets. ‘

These problems (especially the first of them) made it necessary
to develop the general theory of analytical operations. The first
kpown (not elementary) analytical operation was (A)-operation of
Souslin. Then in 1927 Mr. Hausdorff and independently of
him Mr. Kolmogoroff introduced a very wide class of analytical
operations, called by Mr. Hausdorff ds-operations.

They are defined as follows: let &, E,,... be arbitrary sets
and N a set of irrational numbers. Then :

Oy(Byy Byy..) = Y By B

where the summation is extended over all the sequences (n,, #,,...)
such that
1 -+ 1 —+ N.

,”l [nz .0 € 1Y,

The set N has been called by us the base of the 0s-operation.

The first part of this memoir is consecrated to the theory of
ds-operations.

The importance of these operations is the consequence of their
generality: every positive analytical operation!) on a countable in-
finity of sets is equivalent with a ds-function. Their theory is therefore
in essence the most general theory of analytical operations on
a countable iufinity of sets.

In this theory the structure of the base (the set N, see above) is
essential. This becomes plain if we cousider the following theorem
(theorem V of this work):

Dy (B, Ey,...) can be obtained from N, £, A,... by the ele-
mentary operations (to which we add homeomorphic transformation
and the operation of taking the product of two sets. see p. 221 below)
and one projection.

In the first chapter we give the general theory of the ds-fune-
tions. § 1 is consecrated to their fundamental properties, upon which
the results of the other paragraphs are based.

*) The definition of a positive analytical operation see p. 225,
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Of the §§ 2—4 which deal with the different properties of these
operations the most interesting for us at present is § 3. We prove
there that the class of projections of sets belonging to a ds-class
on closed (or open) sets 1) is also a ds-class on closed (resp. open) sets.
We give there also a simple analytieal expression of such a class
(not as a ds-function). These theorems will be applied in the second
part of this work where they will supply an analytical expression
for every projective class P, i. e. a ds-operation @y(E;, Ey,..) such
that the corresponding ds-class upon closed (or open) sets is P,
The base N of such an operation is a set of the same projective class.

Chapters 1T and III contain the theory of certain operations which
beside being interesting in themselves, will be found usefull in the
theory of projective sets, contained in the IV Chapter.

All known results appear there as a natural outecome of the -ge-
neral properties of Js-functions. But pot only the known results
can be found by this method. The analytical expression of the pro-
jective classes together with the theory of the ds-functions gives
ns means to find some new results especially concernipg their clas-
sification. .

In this domain very little was known. Two chief questions na-
turally presented themselves: first about the relation between the
class (C) of Mr.Liusin (see above, p. 215) and the class of all the
projective sets, and secondly about the classification of sets which
are P,,, and C,,, simultaneously. This last problem is still very
tar from being solved, though the theory of ds-funections gives us
infinitely more than other methods. On the contrary the first pro-
blem (about the relations between the class (C) and the projective
classes) may be solved completely by the method of analytical ope-
rations. The answer is: class (C) is contained in the classes P; and
C, (i. e. the class of projections of C(A)-sets and the class of com-
plements of these projections) simultaneously. And even more: the
class (C) does not even coincide with the- class Py-Cy so that there
exist sets which belong to P; and C, simultaneously, but not to ( ).

In the fifth chapter we consider the funetions (of real variables)
related to projective sets or more generally to the sets belonging
to ds-classes. This is the natural generalisation of Baire’s funetions.

1) dg-class on a certain class gy of sets is the class of values of & és-function
when its  arguments* belong to .
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We have begun our work on questions dealt with in this me-
moir at the Seminary on A-sets led by prof. Gr. Fichtenholz
in Leningrad State University in 1928—29. Some of the most im-

portant results of this work have been published in Comptes rendus

Acad. Se.1). They were also reported to the Congress of Mathe-
maties of U. 8. S. R in Kharkov (June 1930) #).

In conclusion we wish to express our deep gratitude to Prof.
Gr. Fichtenholz who has continuously helped us in our work.

PART L

Analytical operations.

List of Literature *).

Braun, 8. — Sur la projectivité des opérations de M. Hausdorff, C. B. de
Varsovie XXIII, p. 88.

Hausdorff, F. — Mengenlehre. 2 Aufl. (Berlin 1927).

Kantorovitch. L. — Sur les fonctions universelles. Journ, de la Soc. Ph.
Math. Lepingr. t, II, f. 2, p. 13 (ic Russian).

Kantorovitch, L. et Livenson, B — Sur les 6s-fonctions de M. Haus-
dorff, C. R. t. 191, p. 352.

Kolmogoroff, A. — Opérations sur des ensembles, Rec. Mathématique de
Moscou, XXXV, p, 418 (in Russian).

KoZniewski, A. et Lindenbaum, A. — Sur les opérations des addi-
tions et de multiplication dans les classes, F. M. t. XV, p. 342.

Livenson, E. — Sur les opérations analyliques sur des ensembles, Tra-

vaux du Congrés des Mathématiciens de I'U. R. 8. 8., Kharkov, juin 1930 (in
Ruseian).
Lusin, N. — Legons sur les ensembles analytiques, Paris 1930.
Sierpiniski, W, — Sur les ensembles mesurables B, C. R, t. 171, 5 jnil-
let 1920. (I)
—  Sur les fonctions de M. Hausdorff, C. R. de Varsovie XIX, p. 463. (II)
—  Sur wn probldme de M. Hausdorff, . M. t. X, p. 427. (III)
—  Sur les opérations de M. Hausdorff, F. M. t. XV, p, 119, (IV)
— Sur la projectivit¢ des opérations de M. Hausdorff, C. R. de Varsovie,
t. XXIIL, p. 15. (V)
— Sur une généralisation des opérations (4). C. R. de Varsovie, t. XXII.
p. 174. (VI)
—  Sur une propricté des opirations de M. Hausdorff, ¥, M. t.XVI, p. 1. (VII)

Ay-Béances 30 déc. 1929, 10 fevr,, 12 mai et 2 juin 1930.

3) See Les travaux du Congrés: E. Livenson, Sur les opérations analytigues
sur des emsembles and L. Kantorovitch, Sur les ensembles projectifs (in
Russian).

%) Literature on analytical and projective sets will be given in the Second Part.
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Sierpinski, W. — Sur certaines opérations sur les ensembles fermés plons.
C. R. de Varsovie XXIV, p. 55. (VIII)

8uzpilrajn, B, — Un théoréme sur les opérations de M. Hausdorff. C. R.
de Varsovie XXIII, p. 13.

Tarski. A. — Sur les classes d'ensembles closes par rapport & certhines
opérations élémentaires, ¥, M. XVI, p. 181.
The titles of the periodicals are abridged as follows:

Fundamenta Mathematicae — F, M.
Comptes Rendus de I'Académie des Sciences & Paris — C. R.

Comptes Rendus des séances de la Société des Sciences et des Lettres de Var-
sovie — C, R. de Varsovie.

Notations and Preliminary Remarks.

We shall suppose that the sets with which we deal are subsets of a certain
_universal® set B. In seme parts of this work R shall be supposed to be a topo-
logical or even a metric space 1}.

A. A 4 B, ?‘45’ AC B, x ¢ A, have their usual meaning.
C(E) denotes the complement of %),
AB, IT A; denotes the intersection (common part) of 4 and B (resp. of the sets Ag)-

A denotes the ,abgeschlossene Hiille® (fermeture) of A, i. e. the set of all the
points which either belong to A or are its accumulation points.

&(k) denotes the set of all the points z which satisfy the condition (k).

o .

== denotes ,equal by definition,

@(w,, x,) denotes the distance of the points x, and x,.

d(E) denotes the diameter of set E.

B. If g¢ is a class of sets then:

H, denotes the class of countabie sums (i. e. sums of & finite number or
a countable infinity) of sets belonging to o

&5 denotes the class of countable intersections of sets belonging te .

Jf. denotes the class of finite sums of sets belonging to &%.
finite intersections of sets belonging to .

de ® n » ”

He » s n g differences - - »

He » » » p complements? ” " -
& » » n g sets closed in R (if R is a topological space).
Q » » » » Sets open in R.

1} Ag to the definition of the expressions ,topological space®, Jnetric space”,
etc. see Hausdorff.
1) Complements are taken rel. E.
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O denotes the class of sets closed in R® where R is a certain topolo-
gical space.
g9 » » n sets open in R(® where R® is ‘a certain topolo.
gical space.

C. ({a, b) denotes sometimes the ordered pair.
(a; b) denotes the open interval § (e <z < bl
{a; b] denotes the closed interval "‘3 (e<a<b).
I denotes the closed interval [0; 1."}.

J denotes the set of irrational numbers of L

T% + ['}z_l ... denotes the continuous fraction ~——1T—..
1 1
n .
ot ny...
J”b“!v-"u"ﬁ denotes the set of irrational numbers ;;—[—{;Lj + ...
such that :
My =AM =Ry Mg = N
. 1], 1! 1 1] 10, 1
denotes th t 1 - o) P DU P O St =1
By denotes the el (N g2 B g g )

(a) denotes the sst consisting of the single element a,
A denotes the set of all the points of I which can be represented (as descimal
fractions) using only the signs 0 and 1. Jt is a perfect nowhere dense set.
A”oh 9,20 denotes f.he‘ set of all points 0,2, ,... ¢4 such that p — %
¥y =95 =1

D. Some notions deserve a closer consideration. Such are:

1) The notion of ,a system“ of things (e. g. sets) depending of
a certain set of arguments.

2) of a cortege* and of a ,sequenceX.

8) of the product of two spaces.

4) of the ,projection® and the ,skeleton” of a set.

1) Suppose that we have a set & ={£} of things ot any nature
and that to every £¢ Z corresponds another thing . (for instance
Z may be the set of natural numbers and Z sets of points). Then
we shall say that the things Z; constitute a system of things depen-
ding of the set E of arguments, the elements of & we shall call ar-

guments and we shall denote the system {&,} or {E¢}sex- We shall

say that two elements £ and Ey, of a system are equal if B, = £,

and that they coincide if § = £,.
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A system {E}. . will be called a subsysiem of another system
{Hpo if
a) EC 6,

b) for any e Z we have: L = H..

2) Definition a. A sequence is a system of things depen-
ding of a non-finite set of natural numbers.

Unless the reverse is mentioned or follows from the context we
shall always suppose that the set of arguments of a sequence 18
the set of all the natural numbers.

Definition f. A cortege is a finite system, the set of ar-
guments for which is the set of all the natural num-
bers <Ck Here k is called the rang of the cortege. We
shall denote a cortege simply (5, &,..-; &)

The subsystems of a cortege which are themselves corteges are
called the segments of a corteze ')

If & cortege YO' = (&, &,..-, &) is a segment of another cortege
130:(51, £,,.., &) then we shall denote sometimes YO = (X0, Eryryrns E1)-

Definition . A cortege of the first order is a cortege
ofnatural numbers; a cortege of the second order (a double
cortege) is a cortege of corteges of the first order and
so on, so that a cortege of ordern is a cortege of cor-
teges of the order (n —1).

We shall denote a double cortege as follows:

) ("&l)a "g’:"" 'ng); n?’, ”&z)a"-’ "9.’);---; ”ﬁ.k): ”91 eeny ”9;))

dividing the corteges of the first order by half columns and the ele-
ments of a cortege of the first order by comas.

Unless the reverse is mentioned or follows from the context,
the word ,cortege* shall always mean a cortege of natural numbers.

3) Definition 6. Let Eand £V be two different or iden-
tical sets. Then we shall call their product and de-

1) If e, g-..we take the cortege (n,, #,, #;) then (m,) and (n, n,) are segments
of (n,, %y, #,). But the subsystems such a8 (ny, n,) or (m,) which are not corteges
shall not be called segments of (n,, 7, M)
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note EX EWthe set E®of all the yordered pairs~ (s y)
where
xel; yekW

Definition & Let R and R® he topological spaces
{different or identical). Their product BR©-- R E® is
then also a topological space. Its points ure ordered
pairs (x,y) where zeR, ye A® and the neighbourhoods
V@ of the point (z,y) are the sets F, XV}’ where V,
and V® are neighbourhoods of » and y in K apd A®

respectively.

It may be easily verified that these neighbourhoods satisfy all
the four axioms of Mr. Hausdorff?)

From this definition immediately follows: »

1) that if a point (x, y) is an accumulaiion point (or a conden-
sation point) of a set of points {z., y;} then x is an accumulation
point (resp. a condensation point) of {x;} and y is an accumulation
point (a condensation point) of {y).

2) that if R and R™ are metric spaces then R is also a me-
tric space 2): the distance o© (z,,2,) of two points 2, == (z,. y,!
and 2, =1lu,,y,) may be detined. e. g, as equal to

VTotz:, 201t + (051, v

where ¢ and " are the distances in R and R™ respectively.

3) that if B and E® are open (or closed) in resp. R and RY
then @ = F X E® is open (closed) in R®, In factif £ and E™
are closed and if (z,y) is a point of accumulation of Z® then, as
we have seen, x is a point of accumulation of K and y is a point
of accumulation of E® so that, £ and E® being closed, z ¢ E and
y e E® whence (r,y)¢e EX EV=FE® q. e. d.

If E and E are open then

F ::2.‘ V., £EO __:2' V}l)

we B . ye EM

!} See Hausdorff, p. 228.
3) We do not make distinction between ,les espaces metriques® and pleg
eapaces metrisables,
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where V' and V{" are certain neighbourhoods of # and y in resp.
R and R Y. Tt follows that

E® =2 VX V@
(x,y)e E®
i e. E® is the sum of open sets and is thus open q. e. d.
4) We shall give now the definition of the ,projection* and

of the ,skeleton® of a set. These notions may be considered as
fundamental in the second part of this work (Ch. IV—V).

Definition {. Let EOC BR® = R X RY; then the projection
of E® on R(PrE® or PrgE®) is the set of all the points
zeR, for which there exists a point ye R such that
(x,y) e E® (we may write

Pre BO = 3 8((x, y) ¢ B©)).
ye RO

Definition 4. Let EQC R® and E®(C B®; then the ske-
leton of E® on R relatively E® (Sk E® rel. E® or Sk E® rel. E®
is the set of all the points zeRsuch that for any yeE®
we have: (z,y) e E® (we may write

Sk B0 rel. £0 = JF 8((z, y) e E).
' yeEMW
Evidently
{*) Sk E®rel. EW = C{Pr(R X E® — E).
We can also define the projection and the skeleton as follows:

Definition {,. The projeétions of E® on R and RV are
the least sets E(_ R and E®C R® such that

E X E® D) E®

Definition 5,. The skeleton of E® on R relatively E®
is the greatest set Z(C R such that

EX EOC EO..

Tt is easily seen that these definitions have sense (i.e. that the
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Jeast sets B and E® and the greatest set £ exist) and that they
are equivalent with the definitions § and 7.
We shall prove now the following

Theorem. (1.a) The projection of an open set is open and (1b)
the skeleton of a closed set relatively an arbitrary one is closed; (2)
if R is a compact (i. e. absolutely closed) space then (2a) the pro-
jection of a closed set is closed and (2D) the skeleton of an open set
relatively a closed set is open.

The relations (14) and (2a) are almost evident and it can be
easily deduced from (¥) (taking into account that E® may be con-
sidered itself as a topological space) that (1) implies (1b), and (2a)
implies (2b),

CHAPTER L

The General Theory of the ds-Operations of Mr. Hausdorff.
§ 1. The Definition and Nature of the ds-Operations.

1. The theory of sets offers many examples of operations effec-
ted upon sets.
Such are, e. g., the operations

SE, IE., E —BE, 3E, EE+ELE,

Some of them (such as 3 &,, II By, E, — E,) possess the follow-
ing property: in order to know whether a given point belongs or
not to the result of the operation we must only know to which of
the arguments it belongs. Such operations we shall call janalytical®.

On the other hayd such operations as:

SE, EE+EE,

evidently are not analytical
We may give now the following definitions:

Definition 1. A function O({Z}) having setsl) for its

arguments and for its value, is an analytical function if it
satisfies the following condition:

1) Subssts of R.
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(t) Whatever be two systems ofarguments {F{}and
{EP}and two points a and b(aeR, beR), if

ac DUEPY
1,1 b non e @({%Egn}) »

&

then there exists at least one £ such thft either

(1,2) ae BEQ; bnone EP
or
(1, 2bis) anone B, beEP.

Definition 2. A non constant?) function O{ZY) having
sets forits arguments and its value, isa positive analytical
function if it satisfies the following condition:

(tf) Whatever be two systems of arguments {E¥}
and {E®) and two points a and b, (1,1) implies (1,2).

Evidently a positive analytical function is an analytieal function.

Remark. Every operation consisting only of additions and inter-
sections 48 a positive analybical operation.

2. In order to give a uniform expression to all the positive
analytical operations we shall introduce the so called ds-operations of
Mr. Hausdor ff %)

Definition 3. Let % be a set of sequences v={(n, Pgy.er)
of positive integers. Then the expression

(2,1) O (5, Byy)=23  JIE.
(”l:”:r--)egt i

is & ds-function of E;, £,...
The ds-operations are positive analytical operations.

Examples of ds-functions.
1) The intersection (common part) of a countable infinity of sets E, E,,...
E::EI-E,...=]11E,

1] The only fanctions satysfying (11) which reduce to & constant are the
functions: &({E,}) =R =and D({Ex})=0; we shall not consider them positive
analytical fonctions. ’ ‘

’) Hausdorff, p. 89; Kolmogoroff, p. 410.

Fandamenta Mathematicae t. XVIIIL. 16
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is a ds-funktion of E,, Ey,... Here 9 consists of the single sequence (1, 2,...)
2) The sum of a countable infinity of sets

E—FE 4B +...=3E,

i

is slso a ds-function.
Here 9} consisté of the sequences (1, 1, 1,...), 2 2 2...)..
3) The lower limit of a countable infinity of sets E, E,...

o0 00

E=3 IIE,
k] riek

is a ds-function and 9} is here the set of sequences:
1,2 3.0 28 4..) B 4%&5.).
4) It may be easily seen that the upper limit

o o0

E=1II 2 E,
kw1 n=k

(though the operation is written in a different form) is & ds-fanction and ) con-
sists in this case of all the sequences which contain an infinity of different integers.

3. To every sequence v == (ny,7,,...) of positive integers cor-
responds an irrationnal number '

1], 1

and vice versa. We shall write » ~ 2 and z ~ ».

In the same manner to every set 3t of sequences of positive
integers corresponds a set N ~ 9 of irrational numbers viz. the set
of all the numbers corresponding to the sequences belonging to .

Now i#f N~ %, we shall denote the ds-function (2,1) as follows:

(3,1) S T E.= 0By = 0u2) ).
(1105 )e R i

Thus the ds-function @ depends of a set N of irrational num-
bers. This set N we shall coll the base of the ds-function.

t) The letter # (under &) will be omitted if no misunderstanding is possible,
This letter is necessary in such cases as: (DN({EfI}) which means diN({Ef E%, )
4 {ET, B3,

(the result depending of k) or fN({Ego(")}) which means ﬁN(Eq,(l), Eq,(g), we)e
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Remark. We have evidently ( for any class {Ng} of bases)

(3,2) O3B = 52 By ()
and also
QN({ER * P}) = QN({E):}) - P
(3,3) Oy (B, + PY) = Oul{EN + P
Ou(E, X P)) = Bu({E.}) X P.

4. Let J, J,... be classes of sets and consider the class &
of all the sets which can be represented as

@1) By(EY; Eaed,...

This class depends of the classes {9} and of the set N.
‘We shall denote it

(41 2) f= ‘%’N(“la 07{2 ER ‘) = JIN({J&})
We have thus the following

Definition 4°. &, ({%,)) is the class of all the sets of
the form @y({Z,)), where E,ed, forany n
The most important case is when

H=d=.. =4
We shall write then simply
(4.3) R = F ()

instead of H(d, ,...) ox FHy ({J}).

Thus & is an operation effected upon classes of sets, This ope-
ration, like @y, depends of a set N of irratioral numbers which
we shall call here also the base of the Jfy-operation.

More generally we may define for every analytical operation @
the corresponding operation & as follows:

Definition 4. An operation H(J) whose argument and
result are classes of sets, corresponds to the operation D({Ey)
effected upon systems of sets if () is the class of
all the sets of the form ®({E;}) where all the E edk

5. We shall introduce now 'a class @ of open (in J) sets of
irrational pumbers. This class will be useful many times in this

work. We shall define it as follows:
15¥
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Definition 5. @ ={(D,} is the class of.all the sets D,
where
-
(6,1) Dy=6; +2 dn:.n»---,n;.k
(rune..un))
or in other words, D, is the set of all the irrational

nunibers
1|
x——____*_

=

1

s

4o

which contain among their incomplete quotients:

fiy, Mgy
atleast one equal tok.

6. Definition 6. Two analytical operations Z® and
T are equivalent if the corresponding operations upon
classes W and H® coincide, i. o. if forany &

HY () = HP(X).
"We shall need also the following definition :

Definition 6bis. Two analytical operations ¥® and
T® are requivalent in respect of &, ® being a family of clas-
ses of sets, if for any He&

HO(H) = HD().

Lemma 1. Every positive analytical operation O({E;) defined
for any system of {E;} satisfying the condition

(6,1) SECR

can be extended over all possible systems of {Eg), i. e. there exists
a Ifositive analytical operation @) ({Eg}) defined for any {E;} and coin-
ciding with O({EyY) if condition (6,1) is fulfilled.

Proof We shall define @, ({E}) as follows:

ze O,({E;})
if (and only if) there exists a system {E{} of subsets of B and

a point
ac BUED)
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guch that for any &
acEP implies ze k.
One sees immediately that @,({E,}) satisfies all our conditions g.e.d.

Remark. In future a ,positive analytical operation® shall always
mean this ,extended“ operation.

Lemma 2. To every (even non positive) analytical operation T({Ey)
defined in a certain space R,, corresponds anm operation UX({Eyz}) de-
pending of the space R and possessing the Sfollowing properties:

1) TR(EYH = T{E) |
2) for any R, and Ry such that B,(C R, and for a system {E}
of sets contained in RB,: '

TR(R, Ef) = R, - TR(ES)
3) for any R, WX is an analytical operation.

Proof Take a point z, e B, (the case when B, =0 is evident).
Let {E;} be a system of sets contained in B. Then we shall say
that a certain point z ¢ R belongs to TX(Ey) if (and only if) the
point z, belongs to T{EP)) where

E®=(z) if zeE; and EP=0 if znon ¢ K.

The operation TX({E;}) satisfies all the conditions 1—3. 1) and
3) follow immediately from the definition of an analytical operation.
To prove 2) suppose that z e TX(Eg- B,}). Then first of all evidently
zeR,; besides z,e T{EP)) where {EP} are the same s defined
above. Hence follows from the definition of TX({Eg)) that ze¢ TR({Ey).
1f on the other hand zeR, TR ({Ey)) then z,e T{EY}); but as ek,
we have z e R, E; if and only if z e E;.

In other words the sets E{’ for R,-E, are the same as for Ey
whence ze TRH({B,-EJ) q e d.

Corollary. Every analytical operation W(E,}) defined n the
space R and possessing the following property: ZD'({EE})CEEE§ may be
exlended over all the systems of sets {Eg in the same sense as in
lemma 1. '

Remark. We shall denote sometimes this operation simply &
instead of TR (see e. g. Theorem XV).
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Theorem I. Zvery positive analytical operation @ effected upon
a sequence of sels is a Os-function of these sets. Its base N is equal
to D({D,}), (see definition B)

(6,2) N=0(D,})
Proof We must prove that whatever be {E,} we have
(6,3) = 0({E))=0y({E})=¢
a) §C &' Let
ae D{E,})

and denote ,, n,,... the sequence of all such numbers n that
aek, (n, n,... must not necessarily be all different). If now
1, 1
=t
then ze D,, for any i
Consequently a ¢ £, implies z ¢ D, and therefore according to
condition (1) (see definition 2)

ce O(DH =N
whence aeli] E, C O.({E)) q. e d

B) & C & Let
“ae Oy({E,}).
Then there exists such )
””:plz_,l*'gi_,!‘*‘ ...eN=0(D)
that
aek,-E,...

Hence z ¢ D, implies a ¢ E, and therefore according to {1})
ae D{E,)) q e d
We have proved the relation (6,3) and consequently theorem I.

Corollary. Every positive analytical operation @ effected upon
a countable system of sefs {&,} is equivalent with a ds-function.

In fact the set {u} of all the indices is countable. Enumerate
them in any way g, g,,... and let H,=E,.
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Then ®({H))=P({E,}) is a positive analytical operation effected
upon & sequence of sets. It is therefore by our theorem a ds-func-
tion. Evidently it is equivalent with & q. e. d.

Theorem II. Every analytical operation @({E,}) effected upon
a countable infinity of sets is equivalent with a Os-function of these
sets and their complements.

Proof Consider the auxiliary operation

(6,4) OEHY = Jf Hous+ H) O¢H, )+ Y Hoye B

Evidently
(615) gB(En O(Ex), Ees O(Ee)’ )= (F(Ex; Ez:- . )

If we prove that W({H}) is a positive analytical operation then
theorem II will follow from theorem I and (6,5).

So we have only to show that if {H®} and {H{} are two sy-
stems of sets, and a and b two points such that

(6,6) a e UEHP)
(6,7) bnon ¢ T({HP})
then there exists such index #, that

(6,8) aeHY; bnoneHP.

We shall distinguisch three cases, viz:

oo

(6,98) 1) aej HY | HY
kw1
(6,9b) 2) anone Y H, HY
k=1
(2)
(6.9¢) bnon ¢ (H®, -+ HR)
(6,9b) 3) anone ¥ HP, HY
' k=1
(6,9d) be JIff A+ HEP).
k=1
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First case. From (6,7) and (6,4) follows that

(6,10) b non 62 HY, HY.
k]
From (6,92) and (6,10) follows easily (6,8) (for a certain iy}
q e. d.
Second case. From (6,9b) and (6,6), (6,4) follows that

(6,11) ae JJf (AP + BY).
k=1
Fx:m (6,9¢) and (6,11) follows easily (6,8) (for a certain 4,)
g e d
Third case. From (6,7) and (6,4) follows (6,10).
From (6,9b) and (6,6), (6,4) follows that

(6,12) a e OKHE,}).
From: (6,9d) and (6,7), (6,4) follows that
(6,13) b non ¢ D({HR,}).

.From. (6,:12), (6,13) and condition (}) (see the definition of ana-
lytical operations, definition 1) follows that for a certain j, either

(6,14a) @) aeHJ,; bnoneHJ,
or
(6,14b) B) enone HP ;3 beHD .

In case a) the condition (6,8) is fulfilled for i, = 2j, — 1.
In case §) we have

(6,15) ae HY
because by (6,6), (6,4) and (6,9b) we have for any j
(6,16) acHY, + HY.

On the other hand from (6,10) and (6,14b) follows
(6,17 bnon e HZ

It is sufficient to approach (6,15) and (6,17) to see that in
case f (6,8) is fulfilled for i, = 2j,.
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~ Thus in all cases the condition (6,8) is fulfilled for a certain
value of i, q.e. d. :

7. A simple example shows than we may have
@1 By (EN) = O (B
for any {E,} without having N; = N,.

Let N, be the set of all the numbers £— i!‘+{—1’—i+ ... and
let further Ny =J. Then evidently

Dy (B = OnliEN = 3 E..

Definition 7. Two sets N;, and N, of irrational num-
bers are equivalent as bases if we have whatever be {Z,}

(7’1) qjN, ({En}) = QN,({E;:})

This definition is equivalent with the following

Definition 7,. N and N, are equivalent as bases if
whatever be {&,}
(7,2) S, ({36, = I (96

It is patural to ask what are the necessary and sufficient con-
ditions of the equivalence of two sets or of two 4 s--operations.
We shall begin with the following

Definition 8. The completed form N of a set N of irratio-
nal numbers is the set of qll the numbers

gyt
f= o o o

|7y

for which there exists a sequence (i, iy,...) of positive
integers, such that

(7,3) 15+1;+...eN

i,,4y,... must not be necessaril all different).
1) Uy y

We shall denote the ,completed form* of a base by the sign ~.
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In the same manner can be defined the completed form % of
a set M of sequences of positive integers. .

Evidently N ~ % implies N~ R A set coinciding with its
completed form is called complete.

In order to build % we must add to % all the sequences which
are formed by changing the order of elements (natural numbers)
and inserting new elements into sequences belonging to .

Definition 9. The set %' (and N' ~N') of all the se-

quences (ny, %,,...) which: 1) belong to %R; 2)have either
1y g <o <My <looo OF 7y <My <...<My=—1yy; =... shall be
called the reduced completed form of N (resp. of N).

The completed and the reduced completed form
of N are ifs canonical forms.

It is lightly seen that we have for any N and {E,}

(7:4) Ou (L) = Dy ({£.)) = P ({Er)).
The set ' admits the following analytical expression:
(7,5) N=0,({D,)).

. 1 1: .
In fact if x=~—l+-——}—...eN then there exists such se-
[my " lmy

. 1, 1,
quence (fy, 4,...) that R:E-}—E —+...eN.
Therefore
(7,6) ze D, Dry...C Y 01— 0u((DY).
(R B

If, on the other hand

_ 1], 1]
x_ﬁz—l E”“'—...E N({Du})
then there exists a number
1], 1]
=—t N
: |2 l”z+ ‘

such that zeD,- D, ... and therefore all the numbers n,, n,...
are found among the numbers m,, m,,... Consequently there exists
a sequence fy, i, ... such that m; =n, for any £ whence zeN q.e. d.
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8. We can answer now the questions put in the preceding article.

Theorem IIL. In order that for any sets E,, E,,... be

Py, ({Ea) C Py (E.})
it is mecessary and sufficient that
(8,1) N CN,.

Proof. The sufficiency of the condition (8,1) follows imme-
diately from (7,4) and (3.2) because we can write instead of (8,1):

N, =N, + (& — Ny).
The necessity of the condition (8,1) follows from (7,5) because
N,C N, = 05, (D)C @ (D) =

Corollary. (First Equivalence Theorem). Two seis of ir-
rational numbers N, and N, are equivalént as bases if, and only if,
their completed forms are identical, i. e. if

3?1 = Krz .
Theoreni IV. In order that we have for any
(8,2) g, () C Hoy (%)

the following condition is necessary and sufficient. 3
(*) There exists a function k(n) the value of which is a posilive
integer for any natural n, and a base N; equivalent to N, (N =N,)
such that x e N, if, and only if, there exists such
11,1
y=—-+ l-—|—...eN,
ny

Iny
that ‘
B IR
) ™ Tl
We may express this condition otherwise by requiring that
(8,3) N, = By {Duco})

Proof. To prove the necessity of the condition (¥) or, which
is the same, (8,3) suppose in (8.2) =2 (Def. 5). Then we
shall have

N, 1= Dy, ({Dn}) € Iy, (2) C Iy, (D)


Yakuza


236 L. Kantorovitech and E. Livenson:

whence _
Ny = Oy (E.)): E.eD

i e. B,=D,, or denoting m =k(n) we come to (8,3) gq.e d.
On the other hand let condition (*) be fulfilled and let
E € JZN‘(J{ )
L e
E= Oy (E)) = On({Ex); Bue oK.
Then we have by (¥)

E= ?N,({Ebtn)}) € Iy, (%),

Consequently &y, (¥) C ¥y, (%) q. e. d.

It now we add the condition (**) which can be obtained by
substituting ; for N, and vice versa in the condition (*), we shall
have the following

Corolary. (Second Equivalence Theorem).
Two Js-functions @y, and By, are equivalent (see Def. 6) if, and
only if, their bases Ny and N, satisfy (*) and (**).

9. We shall show here how a ds-operation may be reduced to the
operations of additions and intersections of a countable infinity of
sets (,countable additions and intersections“) of multiplications and
of one projection, all these operations being effected upon the ar-
guments and the base of our ds-function.

Let {£,} be a sequence of subsets ot B. We shall construet
a set S({%Z,}) which lies in B X J and which we shall eall the
scheme for {&,).

Definition 10, Let{Z,) beasequence of sets and denote
(9)1) . Yl: =2 Ea‘ X 61:;,:1,,...,::‘ 1)
[ON S

where the summation is extended over all the cor-
teges (i. e. finite systems of natural numbers) of
rang k

Then the scheme S({E,)) for {E,; is defined by the
formula

1) see notations (group C and D 3).
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9.2  SEEH= ]I 8= ]] D B X Gy

Ryt tty

Remark. If E, are closed in the topological space R then S({E.})
g closed in R X J.

In fact we have only to show that S, (9,1) are then closed.
Let

9,3) @ ye E
and let V, be a neighbourhood of = in B and

n{°’|+ In&ol)‘f“
Then, by (9,3) there exists a point
@) 9) € Sur (V2 X On, a0, f0) =
= ¥ By X busmany* (Ve X 50, 00, 0)

Ay Mg os By
Consequently
Y € On®, ..., n

and therefore
x' € EnD

We have thus proved that in every neighbourhood ¥, of z there
exists a point z’ e En(® whence zeEug’) and (Ewo being closed)
x ¢ Enp.
On the other hand
Y € O, a0, nfD

and therefore

(@ y) e Esp X O, 740y i) CZ Epy X Onyry oo = Sy

Theorem V. For any N and {£,} we hove
(9,4) 8 = Oy({En}) = Pra(S(EY) - (BX N) =&
Proof a) 8C &' Let z e Dy({EL}).
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Then there exists such

y=rp ot

that z ¢ En( for any £.
Henece

(@9)e Jf EnX 6n0,99,... 80 C I 3B, X 6nym,...) = SUE).

k [
We have also
(x,y)e R X N
and therefore

(% y) e S{EL)) - (B X V)

or
we Pr(SHE}N - (B X N) q. e d
B) & 8 Let xe Pr(S{E,}) - (R X N).
Then there exists such
5.0) + ]n(ol N
that

(= y) e S(EY = JIf ..
We have therefore '

@y)es=2

LR

Enk X dnl,n.,...,nk

for auy £ But of all the 4, , ., o ¥ belongs only to 6,;30) a0,..., a0
therefore

(@, 9) € Bn® X On®, ..., nf0
for any %k and

ze [l By C (i) o a.

Theorem V is now wholly. demonstrated.

- 10. We have considered in the preceding articles the ds-funec-
tions of Mr. Hausdorff Here we shall generalize a little the
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notions of an analytical operation and of a ds-function by intro-
ducing the ,quasi analytical operations* and the ,ds-functions
with a variable base” (vds-functions). These new functions will
be found useful in § 3 of this Chapter.

Definition 1. An operation @ ({f)) effected upon
subsets of B and having for its result slso a subset
of R, is called a quasi analytical operation if the following
condition is satisfied:

() Whatever be two systems of arguments {Ef}
and {Ef’} and a point aeR, if

se DAEY))
a von ¢ D({EP))

then there exists at least one £ such that either

(10,1)

(10,2) ae EP; anoneEP
or '
(10,2bis) anoneEY; aeEY

Definition 2. An operation O({E}) effected uppon
subsets of B 1s called a positive quasi analytical operation if
the following conditions are satisfied:

1) (+) Whatever be two systems of arguments {EJ}
and {E®} and a point a¢R, (10,1) implies (10,2).

2) GUE) = B

Definition 3. Let N(z) be a2 system of sets of irra-
tional numbers depending of z¢ R and let {E,} denote
as usual the sequence of subsets of R Then OR,{E,))
is the set of all the points z;eR which satisfy the re-
lation

(10,3) %y € Dniey{Ex})

or, in other words,
2 € DR ({ )

if, and only if, there exists such

1] 1/
—_— — 6N
n;+!n,+ ()

z, e‘”E,,i.

I

that
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The operation &}, shall be called a ds-function with
a variable base (a vds-function).

Remark. We can write also that

(10,4) FHEN = Y (@) - Dro (E:})

zeR

Definition 4'. %), ({%,}) is the class of all the sets of
the form OR,({E,)) where E, ¢, for any n.

If o =d=...=d then we shall write simply
FHQ(K) instead of H, ()

Definition 6. Two variable bases are equivalent
if we have (whatever be {E,)

D ({En}) = Vi {Er}).

Definition 8. By the completed form of a variable base
N(x) we shall understand the variable base lV(a:), i e
the variable base which for every (constant) z is the

completed form of the corresponding N(x)
Evidently

(10,5) DR ({Enf) = D5, (E>))

Many properties of these vds-functions are quite analogical to

those of the ordinary ds-functions. We have namely the following
theorems:

Theorem I'. Every positive quasi analytical operation effected
upon a countable infinily of sets is a vds-function of these sets.

Proof. From def. 2’ easily follows that:
(z) - PQE,)) = O({(=)- E,)).

» But this last operation is evidently a positive analytical ope-
ration defined in the space consisting of the single point . By The-
orem I it is then a ds-operation.
Denote its base N(z). We have thus

q’({(x) ° En}) = mN(a:)({(x) * En})
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Hence

oz =( ¥ @) 048N = 3 @05y = ¥ 0()- By —

zeR zeR zeR

=3 O (@) BN = 3 (@) Do (BN = Ta(EY) [by (10,4)]
relR xzeR
q. e d.

On the other hand every vds-function is evidently a positive
quasi analytical operation.

Theorem II'. Every quasi amalytical operation O({E,}) effected
upon a countable infinity of sets is a vds-function of these sets and their
complements.

The same proof as that of Theorem II (We have only to subs-
titate a for b).

Theorem III'. In order that for every system {E,} we have

(10; 6) Wx)(l) {En}) C “ﬁm({E-})
it is necessary and sufficient that for every x
(10,7 N,(@) C My (@)-

Proof. The sufficiency of the condition (10,7) is an immediate
consequence of (10,5) and of (3,2) which is true also for »ds-
functions.

To prove the necessity suppose that for a certain =y, N;(%)
contains a point

zzﬁ.ll.l_%’i—}-...noneﬁ(%)? ‘
if we now take B, =E, =...=R and E,=0 for n=n, then
(as may be easily geen)
Ty € mz(z) ({En})
and
7o non € B {E,))

which contradicts ,‘(10, 6).

Corollary. In order that two variable bases be eguioale’nt it.is
necessary and sufficient that their completed forms were identical i.e.

(10,8) N, () = Ny(x) for any z€R.
Fandamenta Mathematicas T. XVIIL. 16
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"~ Theorem V'. Denote N* the set of all points (z, y) such that
zeR, yeN@) i e
N*=68(z ¢ R, y ¢ N(x)).
xy

Then j
2, {B.Y) = Pra(N* S{E.).

The same proof as that of Theorem V.

-§ 2. The Base of Certain Js-Operations.

11. We have seen already (Th. V) that a ds-operation can be
reduced to some simple operations (sum, common part, product,
projection) effected upon its arguments and its base.

It is clear therefore that the knowledge of the structure of the
base is essential for the knowledge of the ds-operation. In this
paragraph we shall deal chiefly with two kinds of operations, viz.

1) Compound ds-operations and 2) complementary ds-operations.
The definition of these operations will be given below.

12. Consider a countable infinity of ds-operations @y, By,, Dy,,..-
and let £ be a class of sets. Denote

Hp =y _(£) (m=1,2,..)
3 = It (0,).
Now if there exists such N that
X = Iy (£)

then we shall call @y the compound ds-funetion:
‘We have thus the following

Definition 11. @y is the compound function for @y,; Dy,, Dy,,...
if for any class £ of sets we have

(12,1 () = Oty (S, (1)

Theorem VIY). 1) For any Ny; N, N,
satisfying (12,1)

... there exists a base N

1) The first and the second part of this theorem are not mew, They can be
found in Kolmogoroff (p. 420) and some particular cases in Sierpifski IV
and in Hausdorf{f The third part can be found im our note in C. R.
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2) This base may be supposed to coincide with the set N of such
numbers .

1}, 1
e ‘+1 e
that there exist numbers

(122) so={ -+l e Mg g = ot e, u=1,2,)

such that
(12,3) Gy =27 (2n{? — 1),

3) N can be obtamed Jrom No; Ny, N,,... and 6, . by the
following operations: countable additions and intersections, multipli-

- cation and homeomorphic transformation

Proof. 1) The first part of our theorem is an almost imme-
diate consequence of Theorem I In fact every natural % can be
represented (and in ome way only) in the form
(12,4) k= 2"* =1 (2n(k) — 1).

Where n(k) and m(k) are positive integers. Let {EX} be a system
of sets, depending of two natural indices # and m.

Denote
P,=E7.

Then the operaﬁoﬁ
B2 = BB (B = (B, (EH)

is a positive analytical operation (Def. 2, remark, art.1) and is
therefore a ds-function @y (Theorem I, art. 6) i. e.

(12,5) | Oy (P) = Oy, (D, (B}

It is evident that @, satisfies (12,1) for any £

2) It is sufficient to prove that N=N (Th. II cor) We have
by (7,5) and (12,5)

N= Dy (D) = GN.({d’N,({D.»%-n})}

i.e. Nis the set of all such points x—t l—{——i |+ that there
16*
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exists such

]m1}+11l+ eNyy y,= W)+WQ-|- .eNm,

that among the numbers g; are found all the numbers of the foxm

92— 1) (p=1,2,...; A=1,2,..).

But the set N may be deﬁned in exactly the same words (see

def. 8, Art. 7). Therefore N = N and the second part of our the-
orem is demonstrated.
3) Denote 7T the set of all such numbers

1
I l 1] +...
that
(12,6) Pyv—T = 201(2¢,— 1)
and
-{-— o + . € N;.
Ty is homeomorp]nc to N, X . In fact let for
+[ I e TY
¢(¢) =(§ n) where
1
=l en,

1], 1 1 p 1 | 1 | 1
i +I -t “’l"“ [p‘v__]*' +“‘+]PIJ”'1—-1+|PI.1""1+1+
where g; have the same value as in (12,6).

Evidently ¢ establishes a homeomorphie correspondence between
7z and N, X J. '

Denote now

J=1 bbyenly
Nis homeomorphie to 7.
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For if
L1
}‘11 iq +
then we have (12,2) and (12,3). Let now
I+|1 I+ =y €N,

then (&, n)eJ X N,.
We have besides

7€ Oy ..om)

for any j, and by (12,3) and (12,6)

Ee T for any j.

my;
Hence (£ ) e T.
Conversely if (£, meT then

f= ‘91+|9 +-

n== + Ny

{m lmz
besides

(E, "7) 92‘ Tz’} X 61;.1&...,9

s
for any j. But as 7 belongs to 4., only if

L=my..., L=my

we have £ 7, for any j whence (by (12,6))

‘ Qai~Ygyy = 2’"1"‘(2 n?’ — 1)
where

Ly, 1
p T T

hence by (12,2) and (12,3) § e N.

245

Thus to every point Ee¢ N we associate a point (§n)eT and
vice versa. It is easy to verify that the correspondence thus establi-

shed is a homeomorphy q. e. d.
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13. Definition 12. A ds-operation @y is normal if
CERY b (304(36)) = St ()

for any o
The lefthand member of (13,1) is an &%, (%) class and it is
evident that for any & '

Sty () C Hygu () V).
Consequently we have (13,1) if
FHy: (H) C Hy(90)
and therefore by Theorem IV (Art. 8) and (7,5) operation @, is

normal if
(13,2) N'= @,,(D,}) = D({Du)-
Hence follows

Theorem VIL. In order that a és-operation @, be normal it is
necessary and sufficient that

Iy (Hn (D) C (D) (see def. 9).

14. Mr. Kolmogoroff has given?) another definition of
a normal operation viz.

Definition 12,. Operation &, is normal if for any
system {ET} of sets we can find two sequences of na-
tural numbers m,, m,,... and n,, n,,... such that

(14,1) Du({DaENY) = Dy L.

It may be easily proved that both definitions are equivalent. In
fact it follows immediately from the definitions that an operation
normal in Mr. Kolmogoroff's sense is also normal in the sense
of the def. 12.

To prove the converse we have only to set ={E). Then
by (13,1)

1) This follows from the fact that I §5N(§[) tor any %" and N, To verify
this suppose F and denote E,—=FE ¥ =
o eH enote K, = for any #n. Then F — QN({EM}) EJ{N(J{’)

?) See Kolmogoroff, p. 417.
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Oy (PNUED)) = Dy(Hy)); Hye s

i. e. H,= E7» and hence follows immediately (14,1).
We shall prove now that we can chose the sequences {m,} and
W independently of the system {E™ (i. e. once for all such

gystems 1)).
Denote
(14,2) GZ' = Dz"‘-l(zn-l)
and let {m,} and {n,} be the sequences satisfying the relation
(14,3) ?N({?N({Gr})}) = ?u({Gi';})'

The condition (14,1) is then satisfied for E™ = G
We shall prove now that (14,1) is satisfied for any {7}
Take an arbitrary point y (¢ S E™) and let z(¢ J) be such point
that xe G if, and only if, y ¢ E. (Such points always exist: in
fact let {n,, m;} be a sequence consisting of all the pairs n, m such
that y ¢ E* and only of such pairs and denote
' ky = 27t (2m, — 1)
1], 1}
then 2= i, +V‘a
" Now y belongs to the left (right) member of (14,1) if, and only
if, = belongs to the left (resp. right) member of (14,3) but x be-
longs or does not helong to both members of (14,3) simultaneously.
Therefore y belongs or does not belong to both members of (14,1)
simultaneously q. e. d.
The following definition is analogical to the def 6bis.

- ... possesses the property in question).

Definition 12bis. A ds-operation @y is r-normal in respect
of a family 45 of classes of sets if

I\ Tt () = ()
for any Heh.

15. Definition 13. If for a certain Nthere exists such
Ne that for any {E,)

(15,1) C(Dn({EL)) = Py ({C(£,)})

1) The question whether such sequences exist was put by Mr. Kolmogoroff,
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then we shall call the operation @y complemeniary
to @,.
Evidently

(15$ 2) [&N(W)]c = JtN‘ (‘e%c)'

To prove that every ds-operation has a complementary operation
we shall introduce a new kind of analytical operations called by
Mr. Hausdorff od-functions 1) viz:

(15,3) o EN=J I E.

(1, Mgy )e M~ N i .

It is immediately seen that ¥y is the complementary operation
to @, in the sense of def 15.
We can prove now

Theorem VIIL2). 1) For every ds-operatiori D, there exists
a complementary operation Oye.
2) There exists o plane point set Se §; such that whatever be N

(15,4) Ne= C(Pr((J X N)-8)) 9.
8) Ne is the set of all the numbers

such that whatever be

we may find such i and j that n,= m,.

Proof. 1) We must prove that a od-operation ¥y is a ds-ope-
ration. But this follows immediately from Theorem I (Art. 6) and
from def. 2, remark (Art. 1).

2) According to the same theorem (Th. I) we have

(15,5) Ne= (D) = C(Dn(C(D,)).

) Hausdorff, p. 89.

%) The first and the third part of this theorem may be found in Kolmo-
goroff (p. £17) and Bierpinski, IV (p. 209), cf. also our note in C. R. (8%

%) All the complements are taken rel. J i. e, C(Pj=J-- P,
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But the sets C(D,) are closed in .J. Therefore the scheme S for
{C(D,)} (def. 10) is closed in J X J (Art. 9, remark) and there-
fore belongs to §; in the plane. Now to obtain (15,4) we must only
apply Theorem V.

3) It follows from (15,3) and (15,5) that

1j, 1} Ve
g==_— 4 s +...eN

= [rm,

if, and only if, for any y=%+l—l’;—-{-e N we have
1 ]

-
ze z D,,
i

i. e. we can find such ¢ that zeD,,
But from the definition of D,, follows that there exists such j
that m;=mn, q. e. d.

16. The theorems of this paragraph hold true to a certain extent
for vds-functions (see def. 3', Art. 10), viz:

Theorem VI'. For any N,(z); Ny(%), Ny(x),... there exists
a variable base N(z) such that

I (£) = Iy {0 (£)))

for any £. Moreover for- every (fiwed) z, N(z) is the same as defined

in Theorem VI (with N, = N(x)).
Proof Let £” ¢ £ and denote _
Pﬂm—l(ﬂn—l):EI’l" (See Art. 12)

then for any fixed z
Br({B) = Pl Do (BT
Further (see (10,4))
BG{PH =Y (@) Our(P) =

zeR

=3 (@) iU Pro () = ) P (&) - D (BTN =

xeR zeR
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=3 0o B2 EEN= 3 (&) Prin (PR BTN =
zeR . zeR

= B (PR, (D))
Hence the theorem.

Theorem VIIL'. For every vds-operation 053, there exists a com-
plementary operation ®F) . Moreover for any (fixed) @, Oyeyy is com-
plementary to By,.

The proof is analogous to that of Theorem VI’

§ 3. The Class of Projections for an &y ().

17. It is well known that the class & of projections 1) of sets
belonging to a certain class @ offers very often a great interest.

E. g the projections of sets of the type § are (4)-sets of
Souslin ¥).

We shall study in this paragraph classes of projections of sets
belonging to &, (J)-classes, J satisfying certain conditions. These
conditions are satisfied in the cases most interesting to us viz. those

of =& and &= and all our results will be applied to these
classes.

18. Definition 14. Let classes #and & be defined in
the spaces R® =Rk X B® and R respectively, Then the
class & is projective rel. % if there exists such variable
base N(y) (ye BV) that

(18,1) F= HEH(IH*) 1)
#* denoting the class of all the sets of the form
K XR®; Ked.

The following theorem 'will explain the name sProjective,

Theorem IX. If & is a projective class rel. . then we have for
the class & of projections of sets belonging to &:

1) We use the word nprojection” in the sense of def. {. (Notations, group D).
%) Bee o. g. Liusin, Legons sur les emsembles analytiques, p. 141 ff.

3 ﬂ;& and g{ﬁ»;) denota.ﬂ;&)ﬂ resp. ¥ () where N(z,y) = N(y) for
x.

N(x, ¥)
any
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' = 3y, ()
where
(18:2) =3 Ny).
ye RO

Proof. Evidently it is sufficient to prove that

(18,3) &= PrOG;,(E, X £®)) :2‘ Dyy(ES) = 6
) ye RO
for any {£,} (see (3,2)).
a) §C &' Let
% € Pr @5 (B, X BO));
then there exists such y, that
(#0, %o) € PRIAE, X BYY).
Whence )
(%0, Yo) € Dy(,p({E, X B®)) (def. 3)
or (see (3,3))

%o € Dy ({E) C 2 Dvn({E) g e d
ye RM
8) 8 C 6. Let

To EE djNU) ({E,,})

ye RO
Then there exists such y, that
s € Dy En})

or

(o5 Yo) € djN(yo)((En X £DY)
whence

(970, yo) € Q(I;'(B ({E,, X B 1)})
and

zy € Pr O ({E, X BDY). q. e d.
Theorem X. If the class & is projective rel. Ji then &, (see no-
tations) is projective rel. ..
This is an immediate consequence of the definition of a pro-
jective class and of Theorem VIII'. :

Theorem XI. If & is projective rel. ¥ then Hy(&F) is also pro-
jective vel. J..(We can express this by saying that the property of
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a class & of being projective rel. I is a transitive property in the
sense of § 4 of this chapter).

This is an immediate consequence of the definition of a pro-
jective class and of Theorem VI

Remark. It follows from (18,3) that for any N, NO(y), {EF}

(18.4) Pr GO, (8 X B9 = 3 B (@toey (B
y¢ RO

19. We pass now to the case of open and closed sets. Our chief
aim is to prove that if R is a continuous image of J then any
JHy(§®) and (with certain restrictions) any Hy(F®) (see notations
group B) is a projective class rel. § and & respectively. If RY is
besides a compact metric space then Jy(F) is projective rel. &
subject to no restrictions. It would apear that it is sufficient to
treat this last case only, leaving alone the more general case of R\
being a continnous image of J because the case most interesting
to us is when R® =] But we can not do so because the form of
the operations which we obtain in the case of R® =41 will be
of no use to us in the fourth chapter. On the other hand we can-
not dispense altogether with the case of R =4 because then we
must pus certain restrictions on the class &y (#®) unnecessary when
RO =]

The plan of our proof is as follows: we shall prove first that
the classes #© and §@ are projective rel. resp. & and § in the
cases when RO =4 and R =J.

It will follow that in these cases the classes Hy (&), Fy(®)
are projective rel. resp. & and & In the same time (18,4) will
give us the form of the operations for the classes of projections
ol sets belonging to () and Hy(9) whence we shall deduce
some properties of the bases of these operations. At last we shall
reduce the cases when AR® is a eontinuous image of J and when
R® is a eompact metric space, to those mentioned above, by show-
ing: a) that in case R"W= @J (R being uncountable) the class
of projections for an &y () and (subject to certain restrictions)
of an Hy(F®) class is the same as in the case when R®=J;

1) See notations group C.
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b) thas in case R® = @A (B being uncountable) the class of pro-
jections for an dy(§) and an FHy( &) is the same as in the case
when R® = A. We shall denote R¥ =R X A, R?=R X J; F¥
and §@ are classes of sets closed (resp. open) in R% and & and
§ are classes of sets closed (resp. open) in R,

Theorem XIIA. The classes & and 9% are projective rel.
resp. & and 8.

Proof If this theorem is true for one of the classes # or
§® (e. g. for 9%) then by Theorem X it is true for the other.
Therefore it is sufficient to prove it for §@.

Enumerate all the  corteges (finite systems) of signs 0 and 1
vy, ¥y ¥y E=1,2,...59=0,1 and let A(#;, %,..., %) be the
number corresponding to (¥, #y,..., %)

For any y=0, #, #,...;¢eA denote N(y) the set of all the
numbers

1 1 1
é’_—;lm,..., v,)+}ﬂ.(v1,...,v,)+§l(vl,...,v,)+"'

We shall prove that
80 = JF2) (§*) (see def 14)

and consequently §@ is projective rel. §.
8) S®C K (8%). Let G ¢ §¥. Denote

(191) Gl(l‘l-‘l’zp-uw):: SkG‘o) rel. A,‘.g_._,...,vll)
(19,2) G = Oy (G, X 4)).

We have to prove that G =G.
a) GOC G. Let
& me@™ n=0,97...

Then (a8 G is open) there exists such V/¥ (a neighbour-

° hood of 5 in A) that

ye VW implies (£ 1) G°.
Let k& be great enough that
Avm&-uwbc V:]é)

1) It is an open set (see notations group C and D, def. 7, Theor).
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then by (19,1)
§€Ghpnvnnvyg C 2 G atonmaeniny = ?Nn;)({a;.})

and
(& me PG, X =6 q o-d.

B) GC GO Let (§,7)eG; n=0,2,7,..., then by (19,2)
S€E ?N{q} ({Gﬂ.}) :lz GMy;,vA_»,u.,vi)

then there exists such % that
§e G}L(smug,...,vk)

and consequently (by the definition of -G, (19,1)) whatever be
yed

vy ey Vg

(& y) e G?

in particular (£ 7) e G® q. e.-d.
The inclusion §(C 5% (8*) is thus demonstrated.
b) HG2(8*) C $W. Let

G =055 (G, X 4);
denote

(0) —
G _‘2 Gl(vx.ﬂz----.vk) X Am,vx,...,vk

Vi Pgyeee Vg

G© is open because G, and 4,..,.., are open (in resp. R and 4)
We proceed as in (a) showing that @ = G,
The theorem is now completely demonstrated.

Bemark. We have seen that N(y) for 8 consists of all the
numbers

£ 1 ! 1 1

= [A(¥y, #y..., %) |4(21, 94,0y )

1t follows from Theorem VIII' that the variable base N(y) for &%
may be supposed to consist of the single point

1| 1|

=126 T T
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Theorem XIIB. &7 and 8% are projective rel. resp. & and §.

®
Just as in Theorem XIIA it is sufficient to prove that % is
projective rel §.
Proof Enumerate all the corteges (m,, m,,...,m,) of natural
numbers and let I(m,, m,,...,m;) be the number corresponding to
- (myy Myy ey M),

o 1, 1

For any y=— 4,

{my ;m;

-+ ...eJ, denote by N,(y) the set of all

the points
o 1 I 1 |
§i= [(yy..ey my) + L(1my,..., my) +--

We shall prove that
§% = AN
and conseqnently that §% is projective rel. §.
a) 99 C it (9%).
Let G ¢ . Denote
Grimyma.myy = SkG® 1el. 6y .-

mg) =

In Theorem XIIA the corresponding sets ¢, were open. In this
case it is mot always so (We can not use the theorems of introdue-

tory chapter because J unlike 4 is not a compaet space).
So we can not use the sets G themselves. Instead of them we
take the greatest open sets contained in them, i e. we denote

6, = ClC(@)
G = D5H(G X ).
We have to prove that G = G©.
a) GOC G Let
(& meGV; = Ay

|,

1574

Then (as G is open) there exist such neighbourhoods V;, V.
of £ and 7 in resp. R and J that

VX VOC GO
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Let k& be great enough that

(/]
6”'1."'11-—.Mk C Vr;

then
V§ C G;(m;,.‘.,mk)
whence
£e Gl(mx-m....,m,,)c 2 G«ml,me. my = ?Nx(ﬂ)({Gl})
i .
and

EMePEHUGXT) g e d
The rest of the proof is as in Theorem XIIA.

Remark. We have seen that N,(y) for 9% conmsists of all the
numbers

1 1
[tmyyec; m) T U(my,.., m)

It follows from Theorem VIII' that the variable base N{®(y) for
& may be supposed to consist of the single number

1| 1 ]
[E(m,) + fE(my, my) +
Corollary of Theorems XIIA and XIIB. The classes of pro-
Jections of sats belonging to the classes
1) Hy(#9); 2) Sty(8@);  3) SHy(FV);
are ds-classes
1) Hx(F); 2) Hy(S); 3) Iy (H); 4) Iy (9)
which can be represented by the following operations:

n 3 el

F=

&=

4) #y(89)

Evh% vk})’ V= 0, 1; E:"'f’""”‘ &

o
) 30 Frr o seves
(19,3)y -
3)2' Dy ({ ”E"""" Mg }), m; are natural ; Ervme-mi o F

4)2 QDN({ZE"" e "’k}) m; are natural; Erememi o @,

my,my,...
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We have only to approach Theorems IX, X, XIIA and B and
the formula (18,4) and to take into consideration that the operations

DD, Doy @Ng}}), By are equal resp. to:

. . : v .
H‘Eﬂ,(vnw.»uvk)’ ZEl(m.usn--,ng _”ﬂ’l(mnmz...,mkh ZEl(m‘,mnm.,mk)'
& k ] k

20. Theorem XIIL. The sais N, N, N', N’ of the preceding
corollary can be represented in the form

N = QN({KJ})
N = 0y ({L})
N'= Oy({ED)

= Oy({L})

Where K,, L, K., L; are certain sets of type &, in J (inde-
pendent of N).

(20,1)

Proof. Enumerate all the systems (s; #,, #,,..., ) Where

s=1,2,...; k=12..; »=01
and let o(s; ¥y, #3,-.., ;) be the number corresponding to
(85 vy, ¥gy.ey Vi)
Denote K7 the set of all such numbers

1

5 I +I +"'

that there exist two sequences (depending of £ e KY), (v, #,,...) and
(ny, ng, ng,...) such that

1)n.=s
2) Pty = O3 ¥y, Vg,y...y %) for i=1,2,..; k=1,2,...
and let

K= :g ;.

Evidently -all the K e& (in J) and therefure K. e& (ind)
Now let
M = Oy({Ky)).

Fand ta Mathematicae t. XVIIL 17



Yakuza


2H8 L. Kantorovitech and E, Livenson:

By (7,5) and (19,3) we have. only to prove that

M= 2‘ ?N ({ II Dd(s;u;,vb...,vk)})'
Fapil P

Let
1, 1] Y]
= T on s M.
: A + |y Toe
Then there exists such sequence i, i,,... that
L1 1
=" +-+. ... eM=0
2 i, T e M= PG
i. e. there exists such .
1 1
TS;, !‘gl +‘. s € N
that ‘ ! '
§' € Ksj =2 K;:’
. rml
for any j. »

Or for any j there exists such 7, that ¢ K. We have thus
shown that £e M if, and only if, there exist such sequences:
(85 Bgy.- )5 (819 8ay--2)5 {71y 724--)5 (ny, 7,...) and (w,, #,...) that

1, 1]

) ~“4+—~—+4...eN

2) n, =5 for any j

3) Pat-dgy=0(n; ¥y, 9,..., %) for any ! and %,

These conditions are equivalent with the following: there exist
such sequences (v,, #;,...) and (s, &,...) that

1], 1]
) Yt B
)Esl—f—zsi+...eN

2) Among the numbers p, are found all the numbers
o(3;; ¥, %y,..., %) for any j and k.

But these conditions are fulfilled if, and only ‘if,

3o (7 L2

‘ -

EeM
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is equivalent with

yoee

The rest of the relations (20,1) can be proved in the same way
so that we shall give here only the definitions of L, K, L.
I7 is the set of all the points
1], 1

s 1]
Q_EP1+‘P2+.“

such that there exist three sequences

(1y Vay-o); (g, Masen); Ry Kayen)
such thav
1) n,=s
2) P1=0("l; Y1y Voy-eny '”bt)'

To define K. and L, we must enumerate all the systems
(3 My, my,..., m;) Where n=1, 2,...; F=1,2,..; m=12,..
and proceed as in defining K, and L,.

21. We have proved thus that the class of projections for the
classes oy (F®) and Sy (SW) are ds-classes over & resp. 9 in case
R®— A and R®=J. We shall prove now that the vases (most im-
portant to us) when E® is a compact metric space and when R®
is a continuous image of J can be reduced to those mentioned above.

We shall begin with the following two lemmas. ‘

LemmaA. Every uncountable compact mertic space (more generally
every continuous image of J) contains a set A" homeomorphic to A.

Proof. As is well known?) every uncountable (4)-set (i e
continuous image of J) B® contains a perfect subset P.

R® is a metric space?). We shall define a system of open spheres
{6,,m.... %} and {6, ,, .. (»n=0,1) so that '

1) Hausdorff, p. 180.
3) op. cit. p. 209,
17*
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a‘) evl,vg,...,vk C 8;1,112'm. Vi

.
b) Gvum-».vk,vH_l C V1,20 VE
,

P G) 8:&.%,..-,:’ ,0° Om,vg....,v g1 = 0
(3 1,1) d) P. Bv,,,.:__,,vsz: 0 &

, 1
B) d(Ovl,m,...,v,g) < "’;

We can define them recurently as follows: let these sets be
defined for k=~F, and let them satisfy (21,1).

Take any 6, As
(2171‘1)) @m.va.m.vgo - P :# 0
it contains at least two points p, and p, (P being perfect and
L S open).. ' ’

We may evidently find two spheres €,,, ., ,and 8,,,, ., ,
with centres at p, and p, and satisfying the conditions (21,1b),e)
and e)).

If we now denote 6, ...,
8, ipgagyy Vith Tadius equal to half of the radius of the latter,
then all the conditions (21,1) will be evidently satisfied for b=k, 1.

So we may suppose that the systems {6, ,, ,} and {8,,,, .} are
already constructed.
Denote now A’:ﬁ P

Rl (v vy .. vg)
homeomorphic to A. Moreover this homeomorphy make correspond

A ) to A

| 218 D TP [ 1Y

Ve Vg

the sphere concentric with

As is lightly seen 4’ is

V0Wieea¥p

R TN

Lemma B. Every uncountable (A)-space R® contains a set J’
homeomorphic to J.

Proof. Consider the set 4" of the preceding lemma.

Denote I the set of all the points of A" which correspond to
the endpoints of the intervals contiguous to A (in I) (black inter-
vals). Then J'= 4" — D’ is homeomorphic to J.

The set corresponding to 0, ..., (in this homeomorphy) we
shall dencte d,,,, . It is an open set in J' and thus is common
part of J' and a set 9,,,,..., open in RY. We may suppose that
these sets Ymymy...m; Batisfy the conditions:

1) '3mx-”’ln..,m,~,ml+1 C ‘Slﬂll,mz....,ml; 2) 8""1:”‘5---,”11.'"1_*_1 . 3’"1:"“b~-ﬂ”“'-”':‘+1 _ 0
: 7
if meyy = my,.
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Theorem XIVA. If R® is an uncountable compact metric
space then '

1) the class & of projections of sets belonging to & ds-class Hy(F™)
is identical with the class & of projections of sets belonging to Fy (F)
and similarly

2) the class @ of projections of sets belonging to Hy(9®) is iden-
tical with the class @ of projections of sets belonging to Fy(§P).

Proof a) #C &. R®is a continnous image of 43) (RV=gp4).
Let ¢ be the ,inverse funetion® i.e. ¢ K, (K B™) is the set of
all such points ¢4 that gz ¢ K; we shall write also p y for (y)
(if y e B® and therefore (y) C B™). The following well known pro-
perties of v are nceded here and further

a) WIK=39¢K; wyIIE=IIyK
B pEY—K)=A—yK

(21,2) | o) Ke& implies pKe&
d) Ke8 (rel. BV) implies 3 K e 8 (rel. 4).

Denote now w(x,y) = (z) X ¢y for any (z,y)eR® and let
Ped i e

P=PrP®; PO=0,{F)); F,e&
It is evident that
P="Pr Oy({y F.)); ¢F,e&O,

Dy ({w 7)) € Hy(F?)
Ped q e d

The inclusion @ (C @ can be proved in a similar way
b,) & C& Let A be a subset of B® homeomorphic to 4
(4" = x4, see lemma A). Denote

2(% y) =z, zy) for avy (z,y) e E®
2R = R@ C RO,
Evidently R©" is closed in R® and consequently sets closed in

R@® are closed in RO.

) Hausdorff, p. 197.
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Let now Ped 1. e,
P=PrP®; P,= Oy({F.}); FneFO.
Then evidently

P=PrP® where P'©= @y({xF.y); zF.eF®
or .
Ped q. e. d.

b)) @CQ Let Qe@ i. e
Q="PrQ9; QV=0y({G}); G,c89

but G, as open sets can be represented in the form

(21.3) G,=3 V& X IS,

(z.y) e Gx
where

V% is a neighbourhood of z in R and I'Y), is a 4,,,, ..

Denote
e ==e,, ., if I=A,, . (see (21,1)
(2114) G," =2 V;n;y) X I!'((lg)
(@ 9)eGn

QO = 0y({G.); @ =Pr@©.

We have to prove that @ — @’
a) @ C Q. It follows immediately from (21,1a), (21,3), (21,4) that

2G.C G, for any =.
Hence '

0= Proy(6.) = Proy((16.) C Proy(GN =@ g e d
8) ¢ C Q. Let x¢ @’ then there existsa such ¢ that
(@, ) e Q0= Dy({G.})
i e. there exists such .
v 1|

ot

(@ ¥) EHG;‘-
i

1
[y

~+...eN
that
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i
1
’ ‘(ny)
4 E]I Lesy
i

But one may easily verify that

I'9,# 0 implies ” et 20 (see (21,1d).

whence

1]

Take y 6111 I'%? | then evidently

x5y

@ y) e JI Vi 18 C Jff 6.,C 06 = @
I i

or
zePr@O=¢ q. e. d.

Theorem X1V B. If R" is an uncountable (A)-space (RV=4J) then
I) the class @ of projections of sets belonging to Hy(§®) is iden-

tical with the class @' of projections of sets belonging to Hy(§Y).
II) If ‘moreover RO contains ¢ set J' such that

1) J’ is homeomophic to J (J' =@ J)
(21,6)  2) Eedty(FO) implies E-(R X J’) e Hy(F?)

then the class & of projections 'of sets belonging to Foy(F®) is iden-
tical with the class & of projections of seis belonging to Hy(FY).

Proof The inclusions #C &, QC @’ and @' ( @ are pro-
ved as in theorem XIVA. (Except that we apply lemma B instead
of lemma A and substitute J,, for 8

gy My oo,y -y,,v»...,vk)'

It remains to prove that &'(C &
In fact let Pe&”, i e.

P=Pr PO, PO= 0y({Fy}); F,eF?
and denote ¢(z,y) = (2, 4). Then
9 PO =9 Oy({F,)) = Oy({p ).
But ¢ F, are closed in K )X J’ and therefore
9F,=(RXJ) ¢F,
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or
21,6) @PO=By({(BX J) - 9F) =B X J): On({p F.}).
But we have
Dy ({p F}) € St ()

whence taking into aceount (21,5) and '(21,6) we have

9 PO ¢ (5
and therefore
Pe=FProP®c§ q. e d

22. All the main results of this § may be summarised in the
following :

Fundamental Theorem on Projections ). If BR® is an un-
countable compact metric space then the classes of projections (upon R)
of sets belonging to Hy(F®) and Hy(9®) (for any N) are them-
selves Os-classes Hy (&) and Hy(§) where

N == @N ({Ks})
= On({L))

K, and L, being sets (of irrational numbers) of the type I, (in J). .

These classes are defined by the operations

o II Epmenl]; w=0,1; Bpm-med

L¢3 T

EQN({Z E’:‘l-%.v*}); 1’i=0, 1; E:iwz...,,vkeg.
S & ‘

Remark., An analogical theorem exists for the case when R®
is a half compact (&,)-space.

The operations in this case are:
y Z'GN({ZEMM )i m=1,2.,, n=1,2,., k=1,2,.., =0,1
m YV

1) This theorem comprises and generalises all the results concerning this

question viz: Our own theorem (see our note in C, R. th, 4°) generalised by
Miss Braun (See Braun) and theorem of Mr. Sierpiniski (Sierpifski V).
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and

3 ol [T 7=

m Yyuvy ..
The proof is immediate.
A similar theorem exists for the case of R® being an (A)-space

(with certain resirictions rel. Sty (F®) see Th. XIV B). The operations
in this case are

2 By ({ ]I B --un-k}) C om=1,2,3,..., Emm-mcF

myy My, .

2 I ({Z Epmeml); m=1,2,3,..., Epmemses,

my,ms, ..

§ 4. Further Properties of the Class Jy(c¥) ).

28. In this paragraph we shall study some properties of the
class Sy (), chiefly those properties of & which are unaffected by
the operation . We mean by this that these properties are such
that if they belong to a class Ji then they belong also to Jy ().

Such properties we shall eall transitive i. e.

Definition 15. A property (§) of classes of sets is
called tramsitive if it is possesed by JHy(¥) (with an ar-
bitrary base) every time when it is possesed by JL

A simple example'of a transitive property is given by the pro-
position :

If ¥has 2% elements, then () has the same power?).

Some of the theorems of this paragraph are true for any (even
uon positive) analytical operation W({E)) and the corresponding
classes (%) (see def. 4).

Some of the properties considered are not transitive; properties
considered here are the following:

1) A considerable part of the theorems of this § are already known, We dee-.
med better, however, to give the full proofs of all the thecrems for the sake of
systemacity, In all cases when the theorems or the proofe are not new, we give
the literature.

3) Cp. Hausdorff, p. 181,
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1) The property of having a ,universal series“ (see def. 16 bis
below). This is a transitive property.

2) The property of having a ,universal set“ (def. 16). This is
not a transitive property, but 1) always implies 2).

3) The property of having a set £ ¢ % such that C() non e .
This property of ecourse is not transitive but it is closely connected
with property 2).

4) The topological invariance of a class. This property is not
transitive unless &% = &.

24. Let classes & and ™ be defined in the spaces resp. R
and R® =R X R®, and denote (for simlicity)

(24,1) E—=8(, a)¢EB)
for any EC R® and a ¢ R” and in the same wmanner
(24,2) E=_§8((a,2)e k)

for any E(C R and a¢R.
We have then the following definitions.

Definition 16. A set E(C R® is called universal for the

class o if whatever be Eed¥ there exists such acR®
that

(24,3) E=E

Note that if E is a universal set for & then C(E) is a uni-
versal set for &,

Definition 16 bis. A sequence E,, E,,... of subsets of R®
is called a universal series for % if whatever be sequence

Eyy Ey,... of sets belonging to # there exists such acR®
that "

a

(24.4) E,=E, for any .
Note that if {E,} is a universal series for o then

1) any subsequence of {E,} is a universal series
2) all the sets F, are universal sets for & and
3) the sequence {C(E,)} is a universal series for &,
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Definition 17. The pair (J, #®) posesses the property
(U) if there exists a set EeH©® universal for o

Definition 17bis. The pair (9 #®) possesses the pro-
perty (U) if there exists a universal series for & {E,}
such that all E, e

Theorem XV. The property (U) is transitive, i. e. if (K, )
possesses (Us) and if U is any ds-operation (or more generally any
analylical operation) and I is the corresponding operation upon clas-
ses, then (F(H), H(HKD)) possesses (U).

Proof. Let{E,}, (E,; e #©@), be a universal series for & and let
(24,5) H,= ?({Ex*—’(zu—n})-

The sequence {H,} is a universal series for ().
(Evidently
H, e FH(KD).

In fact let H,, H,,... be any sequence of sets belonging to

(). Th
($0). Then Hy= O(EY); Kied

or denoting E,t—i4, ;= K we have
(24,86) H, = ?’ (Bar—uny)); Epe

As {E,} is s universal series for & we can ﬁﬁd such a ¢ R™ that

E, =i'7,, for any .
But then (by def. 1 and (24,1), (24,5), (24,6))
H,— ?‘({Ez“-’w—n}): a”:({iz"—lm—n}) )=H,
for any k.
Which show that {H,} is a universal series for J(J) q.e. d.

25. Theorem XVI. If R has a countable system of ngighbour-
hoods and R™ =J then (8, §) possesses the property (U,)..

1) Bee lemma 2, art. 6.
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Proof.!) Enumerate all the neighbourhoods of B: V,, F,,...

and let K, be the set of all such points (z, y) ¢ R that

1, 1
=3 L ed
y i91+iq, o€

(26,1) € B Vo sy

ne=l

E, are open for if a point (x, y) e Z, then for a certain n:

. 1], 1l
T E qui"l(l’n——l)’ yqu—]—lil +...

but then any point (z’,5') which belongs to VHt 1 X 0y o,

s 101y Qs a9~
belongs to E, (by (25,1)) so that we may write ” o

¥
(25'2) EI: =2 Vq ~127-1) X 6q,,q.‘5...,q_.,k-1(h_1)
(I195-- Gk 1 (2_3))

which shows that E, is open.
We have now to prove that {¥,} is a universal series for &.
Let in fact {E,} be a sequence of open (in E) sets; then

E; =2‘ Vi

or denoting gut—1p,_y,== 0¥

(25’ 3) 2 22' qu*"‘(u—l)'

Denote now

1, 1]
= t
y ;91+§9 '

2
We have then according to (25,2) and (25,3)
Ii:E,, for any & q. e. d.

BRemark L The pair (5, ) being identical with (8,, §2) (see
notations) possesses also the property (U,).

1)‘ The method hers adopted is that of Mr. Sierpifiski, Fand, Math, t. VII
p. 198. Cp. Kolmogoroff, p. 418 and Kantoroviteh, p. 16.
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Remark II. We can replace in this theorem the condition
R® =J be the following: R™ contains a set J' homeomorphic to J.
In fact let J' = @.J and denote ¢(z, §) = (x, @ y). Let now
= (g UE).

Then, as one may easily verify, {#,} is a universal series for .
Approachivg Theorems XV and XVI we have the following
important

Corollary Y). If U is an arbitrary analytical operation, J the cor-
responding operation on classes, R ix a topological space which pos-

* sesses a countable system of meighbourhoods, R® is a space containing

a set homeomorphic to J, and R® = R X R"; then the pair (H(9).
FH(GO)) possesses the property (U;) and consequently the property ().

26. A property of classes of sets, closely related to the pro-
perty (U) is that of having a set (belonging to J) whose com-
plement does not belong to &. In order to show that under certain
conditions this property is a conseguence of the property (U) we
shall prove first the following:

Lemma ?). Let: 1) E be a universal set for (EC R®).
2) M C R® be a set such that: a) for any xeR, M consists of

not more than one point; b) Prgy M = R,
Then
(26,1) C(Prg(E - M))non e &.

Proof. Suppose the contrary, i. e. that
C(Prr(EM)) e K.

Then (by def. 16 and the first condition of our lemma) there
exists such y e RV that

(26,2) E = C(Prg(EM).
But we have (by condition 2b of the lemma)

y € Prey M.

1) This theorem in a less general form was proved by Kolmogoroff,
p. 418 and Kantoroviteh, p. 17.
%) Cp. Sierpinski (F. M. t. XIV, p. 83).
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Therefore there exists such z ¢ B fhat (x, y) e M.
Two cases are possible a priori:

(26,3) 1) @»yek
Then
(z.y)eE-M
% ¢ Pro(BM)
znon e C(Pro(EM) = E (by (26,2))
i e
(z,y)none B
in contradiction with (26,3).
(26,4) 2) (z,y)none E.
Theo

(z,y)none EM
but M = (y) (by condition 2a of the lemma); therefore
znou e Pro EM

e O(Pro(BH) =B (by (26,2))

@yekE
in contradiction with (26,4).
Thus both suppositions (viz. that (z, y)e E and that (z, y)non ¢ E)

lead into contradiction. Hence our original supposition (viz. that
C(Pre(EM)) ¢ ) is false and the lemma is proved.

Theorem XVIL. If: 1) R and B™ are topological spaces and
BO— R X R

2) M is a sel such that:
a) .M consists of one point which we shall denote px
b) Prka)M R®

3) H® iz a class of sets in' RO

4) & is a class of sets in R containing all the sets of the form
Pro (K- M) where Ke X

5) (¥, H™) possesses the property (U,)

6) N is a set of irrational numbers;

then there exists such set L e Hy(J) that C(L) non e dy(d¥).
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Proof: First of all from the definition of M (2a) follows easily
that for any

El y Mgy (-Ei C Rm)

P’)‘R(II.ElvM)=ﬂPrR.E1M

we have:

whence:
Pre(@y (E, - M})) = Oy({Prg(E, - M))).

Now if {E,} is a universal series for & (E, e #©) then the sets
B = 0y(E) |

and M and the class oy () satisfy all the conditions of our lemma
and therefore

C(L) = C(Prg(EM)) non ¢ Sty ().
We bhave only to show that L e &y (%)
In fact
L=PrEM=Pr®y {E M)=2

(by coud. 4) gq. e d.
The most interesting cases are when =& and when H=§.
We have then the following:

n({(Pr(E,» M)}) e Sty(%)

Theorem X VIIbis. If B is a space possessing a countable system
of neighbowrhoods and containing a perfect set and N is a sel of
irrationnal numbers then there exist surh seis Ly e Hy(S) and
L, € iy (&) that

C(L,) non € Hy(8): C(Lsy) non e Hy(F).

Proof Let

BR"—=R; RO=RXR; H"=8® or 9, =9 or &

Then all the conditions of Theorem XVII are satisfied.
In fact: 1) B and R® are topological spaces and R®= R R?.
2) Denoting @z == and M the set of points (z, %) we have:

a) M = () = (@ 2); b) Prro M=R®=R
8) H© is a class of sets in R™

4) K is a class- of sets in R; besides o evidently contains’ all
the sets of the form PrR(K M); KeH®
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B) (o, H®) possesses the property (U,) (Th. XVI and remarks I
and 1)
6) N is a set of irrational numbers.

We have thus all the conditions of Theorem XVII satisfied and
therefore its conclusion is true, i. e. there exists a set L e dty(d%)
such that C(L) non e &y ().

As =& or JH=2§ our theorem is now fully demonstrated.

27. We come now to another important property of Jy(8) viz.
its topological invariance.

Theorem XVIII. If B is a locally compact metric space and
the class § of sets open in R is a topological invariant then oy (9)
is a topological invariant.

Proof. We shall prove this theorem by a convenient modifi-
cation of a reasoning of Mr. Sierpinski?)

We may suppose N complete (N=N) (def 8, Art. 7).

Decompose N (and R ~ N) into two sets N; ~ N, and N, ~ N,
(see Art. 3), where 9, is the set of all the sequences of 3 which
contain only a finite number of different elements and

" =N—N,.
Let now -
P=0,(G); G.e

and let Q be homeomorphic to P(P=1 ¢; Q= ¢ P).
Denote

P = ®N1({Gn}); Q=
Py =0y(G); Qi=09P,.

Evidently: 1) P=P, + P,; Q=2¢, + @,
2) P,Gg' Q’Eg.

(because P, is open by the definition of 9%, ~ N, and ¢, as a set
homeomorphic to F,, § being a topological invariant).
Clearly we may suppose G, D P, for every n because

P= 0y({G,+ By)).

(See 3,2)

1) W. Sierpinski I. See also Alexandroff, Recueil Math, de Moscou
v. 31, p. 310,
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We shall call two corteges (finite systems of natural numbers)
(%1, ¥ay---, ¥s) and (u,, pg,..., ;) conjugated if

1) (‘V“ Vayeony Viy Mgy Byoey Bry By fye.-)e R (and therefore eM,)
2) (¥1, Vayere, v) and (4;, Kg,..., ;) possess no common element.

Let us now define for every n and for every

Yep(G,- £)— G,

a sphere S with centre at y so that denoting

(27,1) ~2‘ sm

yep(Gn P)—¢,

the following conditions are fulfilled:

1* The radius of S does not exceed %

20 8) p(8§P . Q) is compact; b) ¢(S}"372)C G, whenee

H,-Q+ 0, =9(G,-P)
30 If
yooneH, -H, ..... Hr,,; . <<n

then :

8 By B Hyy =0

4° If (v, 9y,..., %) and (y, fa,..., #) are conjugated then

m,-H,-. . B, -9(G,-G,-...- G, P—P,)=0.

In order not to break the integrity of our reasoning we sup-
pose here that the spheres S are already constructed (we shall
prove that such spheres exist in the next Art.).

Then I say that

Q= 0y({H,+ &)); (H,+ @, are evidently open).
In fact first of all evidently
Q=g P=g0y({G.) = Ox({p(G. - P)}) =
= Oy ({H, - @+ )) C Ox({H, + O}
We have only to prove that

Oy({H, 4+ 0N CQ

Fundaments Mathematioas, £, XVIIL. 18
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Let
ye Ox({H,+ O:})

then there exists such

1]
E-——-ih’;—}"—h’—"‘..-eN

ve flE,+ )= ]2+ ¢

Two cases only are possible:’

that

1) y e Q5. Then evidently ye Q
2) y eI H,. Then §eN,. In fact suppose §e N,; then among
i

the numbers #,,#n,,... there is only a finite number of different,
say %y, %,..., %. (So that for any i there exists such y, < k
that #,==,); we may suppose besides that » <<», <<..<<w,
and we have

yeH, -H, - "
i e. for any i<Ck there exists such
(27,2) Yiep(G, P)— 0,
that
(27,3) ye Sy

But then we come to a contradiction for it is impossible:
a) that k=1, because then

1, 1]
[”1+!” +l +€M

and hence G, C P, so that (G, - P)— Q,=0 in contradiction
with (37,2)
b) that

weB, H,--H,_ (&>1

VE—1

because (»,) is conjugated with (v, #,,..., »,_,) and (by property 4°)
(G, -P—P)-H,-H, ... H, =0

Vi—1

¢) that

yﬁ non ¢ Hm * HV: * H‘,‘~I (k > 1)
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because then (by prop. 3)

S"" H H =0

"k—*l
in contradietion with (27,3).
So the supposition £¢N, leads to a contradietion. Therefore

§e N,. Evidently we may suppose n, <<n, <7, <...
Define ) as before for any i such

y:etp(G.,,- P)‘_ &
that

ye Sy

Evidently lim y, =y (for o(y, y) <,; by property 1°).

We have moreover for any ¢ and for k& great enough (k> k)
Yne S0

Denote now z;=1y; and let z be any limit point of {x} (such
point exists because (S™.Q) is compact).
As yye S if k> k, we have xkezi;(—s@)_-_@) whence

zew(Sp2)C G, (by property 2°)

:ce_”G,,‘,CP

whence @z ¢ Q. But 2 being a limit point of {:vi}, px must be
a limit point of {px} i. e. of {y).
- Hence pr=y; ye@Q gq. e d

for any i. Or

28. We have to show now that it is really possible to deter-
mine a system of spheres {S;} satisfying all the four conditions
1°—4° of the preceding article. We shall prove it by induetion.

- Suppose then that we have built the spheres {S;} for any nataral
n<ny (n,2>1) and for any ye@(G, - P)— @, so that the condi-
tions 1°—4° (if in 4° we suppose all the »,<Cn,) are fulfilled. In
the initial case (n, = 1) our supposition is evidently true there being
no natural # << 1.

1) All the rest of the proof down to the end of the article is the same as in
Sierpinskil.
18*
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Let now
yep(Gy-P)— 0,
and let ¥y =w=; evidently x ¢ G,,; let T be a sphere having z
for its centre and such that 7 is compact and )
T2 C G,
T%. P being open in P, ¢(7T%- P) is open in Q; besides ¢(7;*- P)

contains y. Therefore we can find such sphere S having y for its
centre, that

S-QC o(Tx-F)
and therefore

w(S-QC Te-PCTr
whenece

P(8- Q) C T2 C G,
Denote 7,,(y) the radius of &S.
Take any cortege (v;, #s,..., ¥;) such that
1) vy=mny; »,<<m forany i<k
2) either k=1 - or
yeH,-H,-...-H, |

and denote T=R if k=1 and

(28,1) T—H,-H,... -H,__ if k>1

Ve—1

Consider all the corteges (t;, fs,.., it;) conjugated with (v, »,,..., %,).
The sets '
¢ (GIIo - P)

(p(Gm' Gpu""' G,u;'P)

are open in @ and consequently the sets

and

T'qj(Gm'P)

and
TGy Gy Gy P)
are open in 7- Q. On the other hand
(28,2)  To(Go-P)- @(Gy- Gy or Gy - PYC Qn
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In fact if k=1 then (28,2) follows from the definitions of ¢,
and of conjugated corteges. If ¥ > 1 then we have by 4¢ (which
we have supposed true for », < n,) and by (28,1)

T9 (GG, Gpyrenir Gyr P— Py) =0

(because the corteges (»,, #,...,%,y) and (ng, ty, Hy,..., 4;) are
conjugated).
But
PGy Gy Gpyr .. Gy  P— Py)=
=@(Go Gy ovr @y P)— @(By) = @(G P): (G + oo G P)— Q.
Hence (28,2).
From (28,2) follows that the sets

Z,=T-¢(G,, - P)— Qs

and .
Ly = TZ'(p(G’m- Gm""' Gm -P)— @,

(where the summation is extended over all corteges (i, g, ..., &)
conjugated with (»,,4,,...,%,)) are separated !) and therefore oy, Z,) >0
(because y ¢ Z;). We shall denote this number 2g¢,,,,. .,

It :

yononeH,-H,-...-H, |

and v, =mn, we shall denote

1,29(31; H,,- Hvx""'Hu,,__)-

ol'bl’l- rets ¥,

We can define now for any ye (G, - P)— @; the sphere S
as the sphere having y for its centre and the least of the numbers:

1.
;;;1 L) (I for every (v, 73,..., %)

such that
v <<ny, (<K ve==ngy
for its radius. We have to prove that 1°—4° are satisfied.
1) We can apply the following theorem: if I3 (C K and I,CE are open in E

then I',— I, and I,—I, are separated i. e. neither contains limit points of
the other.
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1° is evidently satisfied
20 is satisfied by the definition of r,(y)
3° is satisfied by the definition of g,,,,..,, in. case

yononeH,-H, -...- H,

Vi1

40 Let (#, ¥yy-..y %) and (gy, Hs...., ;) be conjugated and let
v, <L ny (1K) If w, <, for any i< % then 4° is satisfied by sup-
position; in the case when #, is among the numbers v, we have
evidently may suppose »; < n, for any i <k and »,=mn,. We have
to prove that

(28,3) - H, B, . My g(Gue- Gy P)C 01
Let
?/ET'q)(G;u' Gm""' Gp,'PJ_ ¢s CZR
then

oW, Z,)=¢>0.
Now if

yle‘Hv;'Hv:""'Hvk ("’k="o)
then there exists such
¥ ep(Gn- P)— Qs
that
(28,4) y’eHm-Hm-....H,,k-S},’f" (if k> 1).

Consequently y” e T' (See (28,1)) (because by the definition of
S¢ if y''non ¢ ' then by 3¢ S%- T'=0 is contradiction with (28,4).
Henee y" ¢ Z; and consequently

27 1 ’ 1 1 14
oY) =r=e oY) <, dSW< 00, H) <3
(by the definition of S) i. e.

Q(yliy)> %2 &

(IR

for any
veH, -H,-...- H,k.

We see thus that the distance between y and the points of

H,-H,-...-H, is limited from below by ~2€ and therefore

ynone H, - H,-...- H,

llh‘
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But y is an arbitrary point of
_ T-9(G- Gur oo G P) — Qs
whence ‘
H,-H,-....H, - T-9(G,-G,+...- G,» P)— Q=0
or taking into account that

H,-H, .. HCT

"1 vy

we have (28,3).

Remark. The class &4y (#) is not always a topological invariant
and that even in the case when R = I (see Supplementary Papers).
We have, however, the following theorem:

oIf Pedy(F) and if ¢ is a homeomorphic transfor-
mation of B then @ Pedty(&F)“ (ibid).

(Continuation in vol. XIX),
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