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closed curve which I shall call J;. There exists (in 4 dimensions)
a set K which is homeomorphic with a plane, contains no point
of H, but is such that K + J; is homeomorphic with a circle plus
its interior in a plane. Let M denote H-- K. Then obviously A/
is not a manifold, But it has the arc property, and contains a simple
closed curve J, such that M -—J, is connected and every simple
closed curve in M - J, separates M — J,.

Consider the following condition: ,The set M contains & mutually
exclusive simple closed curves e, @,..., @, whose sum does not
separate M, but such that M — 3% e, is separated by every simple
closed curve which it contains“. The example given above shows
that if this condition replaces the last condition of the theorem the
conclusion no longer follows.
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Concerning the proposition that every closed,
compact, and totally disconnected set of points
is a subset of an arc.

By
G. T. Whyburn (Baltimore).

1. The theorem that every closed, compact and totally discon-
nected set of points in a space 3 is a subset of a simple continuous
are in 3 was stated by Riesz !) in 1906, and by Denjoy? in
1910 and was generalized and proved by Moore and Kline?)
in 1919 for the case where 3 is the plane. It has been well reco-
gnized among topologists that this theorem holds true in case X is
a euclidean space of any number of dimensions ¢). Evidently it is
not valid in case 3 is the space composed of the points of a con-
tinuous curve M [= a conuected, locally connected, loeally com-
pact, metric and separable space] unless some restriction be placed
on the continuous eurve. For if M is the sum of three ares az, bz
and cx, where az. bz = bz.cx = ax - cx = z, then obviously no are
in M contains the set a4 b c.

The problem of finding a simple and not too restrictive con-
dition on a continuous curve M in order that this proposition be
valid in M has been the source of eonsiderable discussion among
topologists in recent years. In this article I shall give a solution to
this problem embodied in the condition that the continuous curve M

1) Comptes Rendus, vol. 141, pp. 650—655.

1) Ibid, vol. 1561, pp. 138—140.

3) Ann, of Math., vol. 20, pp. 218—223.

4) Bo far as the author kmows, however, no proof has been given, up to the
present time, even for this case of the theorem.
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ghould have no local separating point?). In fact we shall show
that with this restriction on the space M the following stronger
proposition is true:

Every closed, compact and totally disconnected set of points K is
a subset of an arc pg in M, where p and q are points arbitrarily
chosen in the set K.

Before proceeding to the proof of this result we first establish
some preliminary theorems and lemmas which are needed. We
conclude the paper with a discussion of the proposition announced
in the title from the point of view of the cyclic-element theory
and give a necessary and wufficient condition for the validity of
this proposition in uni-coherent spaces M.

2, Preliminary Theorems (Concerning Continuous Curves in General).
We consider a locally compact metric, separable, connected and
locally connected space which we denote by M and which we call
a eontinuous curve. Any connected open subset of M will be called
a region; and it B is a region, F(R) will denote the boundary of R.

(I). If R is a region and K is any closed and compact subset
of B, then there exists a region U such that KCUC UCR?).

For each positive number d, let B(d) denote the set of all points
of R at a distance d from F(R). Let f=1/2¢[F(R), K]. Then K
is contained in a finite number C,, G,,..., C, of the components of
R — B(f). For each integer i, 1 <i<{n, there exists an arc

in R joining a point of C; to a point of C,. Let G =:?C’,+ ﬁt,,
1 2

let h=1/2¢[G, F(R)], and let U be the component of R — B(h)
containing G. Then U has the desired properties.

(I1). If R is any region, K is a closed and compact subset of R,
and A and B are any two components of K, then there exist two
mutually exclusive regions B, and R, containing A and B respectively
and such that R,-+R, DK and R.F(R,)=R-.F(R,)=R—[R,+ R}

1) A local separating point of a continuous curve M is a point which is a cut
point of some region (= connected open subset) of M. An interesting example of
a continuous curve having no local separating point is that of the universal plane
1-dimensional curve due to Sierpifiski. See Comptes Rendus, vol. 162, p. 629.

%) This result is an immediate consequence also of a theorem of R, L. Wil-
der's; see Bull, Amer. Math, Soc., vol. 84 (1928), p. 662.
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A simple application of the Borel Theorem shows that there
exists an open subset G of £ containing 4 but not B whose boun-
dary H is a subset of R and contains no point of K. Let g be
a positive number which is less than ¢[H, K- F(R)] For each
number d, 0 <<d < ¢, let L(d) denote the set of all points of ¥
at a distance d from the point set H. Then for each d, L(d) is
a cutting !) of B between A and B which contains no point of K.
For each d, let V(d) be the component of B — L(d) containing 4,

let B,(d) be the component of B — V{(d) containing B, and let R,(d)

be the component of B — R,(d) containing 4. Finally, let X(d)=
:= B+ F[R,(d) = R+ F[R,(d)|. Then for each d, X(d) is 2 cutting
of B between 4 and B. Furthermore, the collection of cuttings
[X(d)] is non-separated ?). For take any two d's, dy and dy, and

suppose dy > dy Then V(dy) D X(d,), and V(d,) containg mo point
of X(d,). Hence X(d;)C R,(ds), and thus X(d,) does not separate
X(d,). Since X(dy)CRa(dy), therefore Fy(dy)=Ry(ds)+X(ds) CRildn)
and thus X(d;) does not separate X(d,). Therefore [X(d)] is non-
separated. Accordingly, since this collection is uncountable, there
exists ) a number d such that B — X(d) is the sum of two con-
nected point sets, and these must be the sets R,(d) and R,(d)
The regions B, = R,(d) and R, = R,(d) satisfy all the conditions
on the regions desired, for X(d)- K =0.

(III). Under the same hypothesis as in (II), there exist regions U,
and U, containing A and B respectively and such that U, 4 U,CR,
T.-T,=0, and U,+ U, DK

First apply (II), getting regions R, and E,. Set K,=—=K-R,,
K,— K- R,. and then apply (I) to the sets R, and R, getting re-
gions U, and U, containing K, and K, respectively and so that
U,CR, and U,C R, Then the regions U, and U, will have the
desired properties.

1) A set X is called a cutting of a region R between two connected sets 4
and B if A and B belong to different components of R— X, and X is called
simply a cutting of B if R — X is not connected. A collection G of cattings
of R is said to be non-separated if for each pair of elements X, Y of G, X Lien
in a single component of R — Y and T lies in & single component of R —X.
Seo the abstract of my paper Non-separcied ctettings of continua, Boll. Amer.
Math. Boe., vol. 36 (1930), p. 218.

1) Loe. cit. g

Fand ta Math ti t. XVIL $
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(V). Let B be any compact region and let N be a closed subset
of M— R such that N-R is totally disconnected. Then there exists
a compact region G containing B but containing no point of N and
such that (1) @-N=N-E, (2) G+ N-E contains_a continuous
curve H which contains N+ R and is such that H~— N. R is connecled
and contains R, and (8) each point qf N-R is accessible from H— N.R
and hence also from G.

Proof Let K, denote the set of all points of & at a distance
=1 from the point set B . N; and for each integer n > 1, let K,
denote the set of all points # of B such that 1/n < o(x, B+ N) <<
<1f(n—1).

A simple application of the Borel Theorem proves the existence,
for each positive integer s, of a finité number of compact continua

1, C3,..., Ch each containing a point of B and whose sum C*
contains K, in its interior (rel. M) but contains no point whose
distance from K, is greater than 1/4n. For each 4, 1 <<i<m, let
t; be an arc in R joining a point of C} to & point of C;. Add all
these arcs #, to C" and call the point set thus obtained D,. Then
D, is a compact continuum which contains K, but contains neither
a point of N nor any point of M — R whose distance from X, is
greater than 1/4n, By a theorem due to Ayres and the suthor?),
M contains, for each n, a compact continuous curve H, containing
D, but which contains neither a point of N nor any point of M — R
whose distance from K, is greater than 1/2n.

Let Hy=3H,, and let H=H, +E.N.For each , let @, be
1

a compact region containing H, but containing no points or boundary
points in N and containing no point whose distance from H, is greater

than 1/2n. Let G = E G,. Then the sets & and H have the desired

I

propertles

For it is ensily seen that H, is connected, that H is a continuum,
and that H=2FH,.H must be a continuous curve. For if not, it
fails to be locally connected at some onme of its points p belongmg
to H,, because H— H,=N-EKis totally disconnected. There exists
an n so that p belongs to H,. If p belongs to Z, it is contained
in the interior of H, relative to M and in this case H is locally

1) 8Bee Bull. Amer. Math. 8oc., vol. 84, (1928), p. 350.
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connected at p. If p does not belong to R, then g(p, K,)<<1/2n
and hence ¢(p, R- N)> 1/2n Hence p cannot belong to H,, for

any m > 6z Then since EH, is locally connected at p, H must
. 1

be locally connected at p. Thus H is a continuous curve. Since the
boundary H — H, of H, relative to H is totally disconnected, it
follows 1) that every point of H— H, (= E - N) is accessible from H
and hence also from G.

(V). If K is any closed, compact and totally disconnected subset
of a region R, then for each &> 0 there exists a finite collection of
compact regions R, Ry,..., R, covering K each of diameter <& and
such that for each i, j<n, B;+ B;=0 and R,C R.

Proof. It is well known that X is the sum of a finite rumber
of mutually exclusive closed and compact points sets K,, K;..., K,
each of diameter < /4. With the aid of the Borel Theorem it follows
from the local connectivity of R that there exists a finite collection
of compact regions U,, U,..., Uy in B covering K and each con-
taining at least one point of K, each of diameter < e/4, and such
that for each i<Ck and each j<{m it is true that if U, contains
a point of K, then d(U) <1/2 ¢(K;, K — K)). Now let 7V, 7,,., V,

%
denote the components of the point set 2 U,. Then since d(K))<e/4
1

for every j<m, it follows at once that d(V,) <Ce for every r<{n.
Now for‘each r <, let K,=K-V,. Then K, is closed and com-
pact; and applying (I) we get a regions R, such that XK,CR,CE,.C
CV,CR. The sets B, R,,..., R, thus defined have the desired
properties.

8. Preliminary theorem (concerming contintious curves without local
separating points).

(VI). If the space M has mo local separating point and if H
and K are mutually exclusive non-degenerate %) subsets of a region R,
then R contains two mutually exclusive arcs each joining a point of H
and a point of K.

ibelity, Fand. Math,,

1) See the author’s paper A generalized notion of
vol. 14 (1929), p. 315.

1) A set of points is degenerate or non-degenerate according as it does or
does not reduce to & single point. .
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For since M has no local separating point, R can have no cut
point. Hence (VI) follows at once from a theorem of Ayres®).

Definition. By an arc-region chain C in a region B of a conti-
nuous curve M between two points p and ¢ is meant the sum of
a finite number, # -1, of mutually exclusive closed and compact
regions, Ry, R,,.., R, and of n mutually exclusive arcs 4,, 4, Ay,..., 4,
such that for each i, 0 < i<(n, 4, bas one endpoint p, in R,
and the other g, in R, but otherwise has no point in common with

:‘11—1’;, such that pC B,, ¢C R, and R, and R, may or may not be
0

degenerate but B, (0 <<i<n) is non-degenerate, and finally such
that for each i, 0 <Ci<Cm, the points ¢; and p,, are accessible
from B,. The sets [B,) and [4,] will be called the region-links and
the arc-links respectively of C.

(VIL). If K is any closed, compact, and totally disconnected subset
of a region R in a continuous curve having no local separating point,
G is any collection of regions covering K which satisfy the conditions
of (V), and p and q are any two points of K, then there exists an
arc-region chain Cin R from p to q such that each region-link of C
is a subset of some region of G and such that the sum of all the
region-links of C contains K in its interior. :

Lemma to (VII). If X is any arcregion chain in B from p
to g, 8 is a sub-region of R such that S« X =0 and (§— §).-K==0,
T is any arc in B one endpoint of which belongs to S and the
other to X but which otherwise, contains no points of X4 S,
and U is any region whatever containing 7, then there exists an
arc-region chain X’ from p to ¢ which is a subset of X+ U4 8
such that every region-link of X’ is a subset either of S or of
some regionlink of X and such that the sum of all the region-links
of X’ contains in its interior the point set K-S+ K-(V,+ V,+...4- V),
where V,, V,,..., V, are the region-links of X.

Proof of the lemma. We may suppose without loss of gene-
rality that for some 4, 0 <(i <#, the point 7. X belongs to V,, for
an obvious modification of the argument which is to follow takes
care of the other simpler cases which might arise. We may suppose
also that the end point of T' which belongs to V; is neither of the

!) 8eo Amer. Journ. Math., vol. 51, (1929), p. 590.
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points ¢; and p,., (i. e. neither of the endpoints of the two are-
links @; and @, of X ending in V); for with the aid of (V) it
follows that there exist in U two mutually exclusive ares from S
to ¥;; and if Uis chosen so that it does not contain both ¢, and Pegry
then one of these arcs, say a, fails to confain either g; or p,y;
and hence either ¢ contains a subarc from § to V; having only
one point in ¥V, or it contains a subare 7" from a point a’ of S
to a point 4’ which is an interior point of some arclink a; of X
and such that 7" X=1,"; and in the latter case, it will be seen
that if in the argument below 7' iz replaced by T’ the proof is
only simpler than in the case there treated. Finally let us suppose U
so chosen that U eontains no points of g, poy, + (X — V;)

Now clearly the sets U-¥; and U-S are non-degenerate, and
thus by (VI) there exist in U two mutually exclusive ares z,y,
and x, z, such that @ 2, (C U-V, and y, 4 y,(C U- S. Since g,
and p,, are acce:sible from V;, it follows that there exist mutmlly
exclusive arcs 4, g, and h,p,,; which are subsets of V,4-¢,— U

cand ¥+ piyy — Vi U respectively. Now the set of points K*

= K.V;4+ h; + by +2, 4=, is & closed subset of V,. Hence, by (I),
there exists a region Q containing K* and such that ¢ C V.. Now
in the orders from the points Ay, &,, 2y, #; to the other ends res-
pectively on the arcs hy, g, Ay Py, 1 %1 80d Ty, ¥y, lot 2, 25 4y,
and w, respectively denote the last points belonging to Q. Let N
denote the set of points which is the sum of the four ares g ¢,
2 Puys 0,y and w0, y, together with all points of the space which
are not in V;. Then N is closed and N- Q=2 + 2 -+ w, + 1,.
Hence by (IV) it follows that ¥V, contains a continuous curve H
such that H- N=2, + 2, + w, + w, and H— H-.N is connected
and contains Q.

Now since H contains @ and @ ean have no cut point, it follows
that no point of H separates the point sets 2z -2, and w, + 1,
in H. Hence by a theorem of Ayres?), there exists in H two
mutuslly exclusive ares joining these two sets. The two possible
cases here are alike, so we shall sappose that mutually exclusive
ares 2, w, and 2, w, exist in H Let K° denote the point set
K.V,+ 2w, + 2w, Then K° is & closed subset of H and
2w, and 2w, are components of K° Thus, by (II), there exist

1) Leec. cit.
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mutually exclusive regions H, and H, (rel. H) containing 2y w,
and 2, w, respectively and such that H, 4 H, DK° It follows
. by (I) that there exist regions L, and L, (rel. H) such that H, D D
DL DH ‘K% and H, DL, > Ly H, - K° and thus L,-L,=0.
Now it is easily seen that there exist regions ¢, and Q, ‘ (rel. R)
containing L, and L, respectively and such that Q.- Q=0 and
¢ + Q. C V,. On the ares p;g;2, and y, w, in the orders p,2

and y;, w,; let g; and Py respectively denote the first pomfs belon-.

ging to Q,. Similarly on the ares g,y P12 and yyw, let p'y and
g4, denote the first points of Q. Now with the aid of (IV) it follows
that there exist regions G, and G, (rel. E) containing @, and @,
respectlvely and such that if F' denotes the sum of the four arcs
D190y Y1 Py Ya Gy 804 Piys 3 Ji1y then @, - F'=g' + piy1 80d G, - F=
= Q1o =+ Piys, such that G, Gy =0, G;+ G, C 7, and such that
g, and pj,; are accessible from G; and gj, and ps are accessible
from @,.

By virtue of (I), there exists a region D such that K-S+ -+
4+ % CDCDCS. Let giyy and p;y, respectively denote the first
points on the ares p; 9, and g, %, in these orders which belong
to D. It follows with the aid of (IV) that there exists a region B
which is a subset of S and is such that £ (pry gr + Pivs Gipe) =
= ¢i11 -+ Py, and the points g7, and p;, are accessible from E

Now, for each integer j, 0<j<<i, set V;== V", and for 0<C 5 <4,
set pj=1p and g;=g,. Set p,=p;, Gy =V} E= Vi, G, =V,
Qi1 = Qiysy and for each integer m, i <m<n, set V,= Voo and
for i -1 <m<n, set pp = Pnyz 804 g, = gnio. Finally, set

n42 n42

X :—_02171 +;p' q)-

Then clearly X' is an arcregion chain from p to ¢ which lies
in B and has all the desired properties for the lemma.

Proof of (VII). Let the regions of the collection G be denoted
hy G, Gy, Gy,..., G, where G, contains p and @, contains g. By
virtne of (I) there exist regions V, and V; containing the sets
Go-K and G-K respectively and such that V, C G, and 7V, " C Gy
There exists an arc 4, in B having one endpoint, p,, in V,, and
the other, ¢;, in V, but otherwise containing no point of Y, + 7y
By (IV), there evist regions .R, and R, which lie respectively in @,
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a;nd G, and contain V, and V, respectively and are such that
R,+ A, =1p,, B,+4,=g¢q, and the points p, and ¢, are accessible
from R, and R, respectively. Clearly the point set C = R, 4,+ R,
is an arc-region chain in R from p to ¢ every region-link of which
is a subset of some one of the regions Gy and G, and such that
the sum of all the region-links of C contains in its interior the
point set K- G, 4 K- G,.

Suppose now that for any integer n, 0 < % < m, we can define
such a chain C in R every region-link of which is a subset of some
one of the regions G,, G4,..., G, and which contains in the interior
of the sum of all its region-links the point set K-Gy-K-Gy+..-} K- G,.
We shall proceed to show that under these conditions we can define
such a chain C such that the sum of all the regionslinks of C
such that the sum of all the regions-links of C contains the set
K.G,+K-G+...4 K- @,y in its interior and hence by induection
establish (VII).

We have then, by supposition, a chain C= ER,-{—EAi such

that Z'RiDZ' K.@G, and such that for every i<{n’ there exists
[} 0
a j<Cn so that R,(C G,. By virtue of the condition last stated,

G, can have no point in common with the set 3R, It may, ho-
0

wever, have points in common with 3 4, Now if G,y has at most
1

one point or has only boundary points in common with C (and

therefore with 5 A)), then with the aid of (I) we can replace G,

by a subregion G,,.H of G,y which will contain K- @,;; but will
contain mo points of C and will have no limit points in C and
thus reduce this case to the case in which C- G,y =0. In this
case, since there exists in B an arc 7 joining a point a of G
and a point & of C bat which otherwise is free of points of G,,_H—}—C
then by applying the lemms, using G,;; =3, we obtain an are-
region chain having the -desired properties.

Thus we may suppose that C. @, contains at least two points.
Let 4, and 4; respectlvely denote the first and the last of the
arc-links A4, 4,,..., 4,, which contains points of G, Let 2, and
x; denote points belongmg to 4,-G,; and 4;-G, respeotxvely
Now by applications of (I) and (IV) we can obtain a region £
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which lies together with its limit points in @, and contains
K. G, + 2,2, and is such that the first points ¢; and p; on the
arcs 4, and 4, respectively in the orders p;, ¢, and ¢;, p, which
belong to E are accessible from E. Let X denote the arc-region
chein (B, +...+ Biy+E + B+ By +... + Bo) + [4; + 4, +
+ .44, 4+ arep, g; of 4, are pj g of A A, 45+ 4,).
Then X is an arc-region chain in B from p to g every region link
of which lies in some region of the collection [@,], (0<Cr<Cn-1),

- and such that the sum of all the region-links of X contains in its
interior the point set

n4l1 J~1
21(. G,——Z K-R,
fam] ! fasf

Now on the arc 4,, in the order g, p,. let 2 denote ths first
point belonging to £ and let 7' denote the arc zq, of 4,. There
exists a region U containing 7' and such that

X.UCE ad U. CC 4+ B — py,.

By the lemma there exists an arc-region chain X! from p togq
lying in X + U+ R, every region-link of which is a subset either
of B, or of some region-link of X and such that the sum of all
the region-links of X contains in its interior the point set K. &, K.
(the sum of the region-links of X), which is identically the set
Yk.6,—SkK.R,
tet feitl

Now, using the fact that the point Pua 18 accessible from R,
it is readily seen that R, Pia cODtains an are yp,, having only
the point y in common with X*. Then yp,, -4 4, is an are joi-
ning the point g,,, of Ry, and the point y of X1 Let w denote
the first point on this are in the order %141, ¥ belonging to X1,
and let 7' denote the subare of this are from Qs tO 0. Let U1
be a region in B containing 7 and such that U!.X ICR+E
and U'-CCR ARy + Ady,. Then, applying the lemma, we
obtain an are-region chain X2 from p to g lying in X{4 U1 4R,
every region-link of which is a subset of either B.;1 or some region
link of X* and such that the sum of all the region-links of X?
contains in its interior the point set KR, + K. (the sum of the
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region links of X7), which is identically the set of points

a1 J-1
ZK- G,—ZK- B,.
twl fuitd

Now, continuing this process, we see that after j — i steps we
obtain an arc-region chain X/ *'=C* from p to ¢ in B every
region-link of which is a subset of some region of [@,], (0<<r<ln-1),
and such that the sum of all the region-links of C* contains in its
interior the point set

a1 j-1 41

Z‘K-Gt*.Z'K.R,:_«EK-G,.
1 -1 1

Therefore, by the principle of induction, it follows that there
exists an arc-region chain C from p to g in R satisfying all the
conditions in (VII).

Corollary. With hypothesis as in (VII) except that p and q are
any two accessible boundary points of R, there exists an arc-region
chain C in R-p + g from p to q satisfying the conditions on the
chain C in (VIL). °

4. Theorem. If K is any closed, compact and totally disconnected

" subset of a continuous curve M having no local separating point and p

and q are any two points of K, then there exists in M an arc pg
which contains K.

Proof. Let G! be a finite collection of regions Gy, Gy, Gy, Gs,
covering K each of diameter <C1 which satisfies all the conditions

of (V). By (VII) there exists an are-region chain 01=°§E + lf'v‘ 4,

from p to ¢ such that s."RODK and every region-link of C is
0

contained in some region of GL Now for each i, 0<Ci<Cmy, let
G? be a collection of regions Gy, Gy,..., G, covering K- R, each
of which is a subset of R; and is of diameter < 1/2, which satis-
‘fies all the conditions of (V). By (VII), and corollary, there exists
an arc-region chain Cf from ¢, to p,, (where ¢, is the end point-of
4, lying in R, and ¢,=p if i=0, and p,,, is the end point of
A, in R, and Py = ¢ if i ==n) which contains K-E; in the in-
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terior of the sum of all its region-links, is a subset of B, 4~ g, piys,
and each of its region-links is a subset of some region of G7. Cle-

b - -
arly the point set &, = 3'Ci is an arc-region chain from p to ¢
fn]

every region-link of which is a subset of some region-link of C;.
Continuing this process indefinitely, we obtain a sequence Gy, G, Cy,...
of arc-region chains in M from p to g such that, for each i, C,C C, 4
and each region-link of C, is of diameter <C1/i and is a subset
of some region-link of O, ;.

Let C=pq= ﬁ'(}}. Then C is an are in M from p to ¢ which
1

contains K. For clearly C is a compact continuum containing K. And
if # is any point of O distinet from p and from ¢, then either =
is an interior point of some arc-link of C, for some n, in which

case clearly C —e=1II P,,,-}—ﬁ Q. (where P, and @, are the

compouents of C, —a containing p'and g respectively) is not con-
nected, or else there exists a sequence of regions R, , R, ., Ry .mp-
such that for each i, R,, , is a region-link of the chain C, and

00
such that #=II R,,, ,. But in the latter case it is easily seen
1

that ¢ — & == [Lim P, — x] -} [Lim @, — =], where P, and @, res-
pectively denote the components of C, — R,,,., containingp and ¢
and that C—z is thereforse not connected. Hence it follows 1)
that C is an are pg from to ¢ which lies in M and contains K,
and our theorem is proved.

6. Conclusion. Let A denote the property of a continuous
curve M to have no local separating point; let B denote the pro-
perty of being such that if K is any closed, compact and totally
disconnected subset of M and p and ¢ are points of X then M
contains an arc pg which contains K; and let C denote the pro-
perty that each closed, compact and totally disconnected subset of
be contained in an arc in M, Then with the aid of our theorem esta-
blished above in § 4 it is seen that property A implies property B
but not conversely, and clearly property B implies property C but
not conversely. Thus we have the relation 4 — B—C.

1) S8ee R. L. Moore, Trans, Amer. Math, Soc., vol. 21 (1920), p. 340.
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Now every maximal cyelic curve of a continucus curve may
have property A and yet M not have property C. For let M be
a the sum of three sets P, ¢, and B in the plane each of which
is a simple closed curve plus its interior and such that P. Q=
=P.R=R.Q = one point z; and let K be the sum of three
points p, ¢ and r belonging to P — 2, @ — z, and R — z respec-
tively. Then no arc in M can contain K. However, we may state
the following

Theorem. (a). If cach maximal cyclic curve of a continuous
curve M has property B, then M has property C if and only if the
eyclic elements of M form a simple eyclic chain.

The condition is necessary. For if the cyclic elements of M do
not form a simple cyelic chain, then if E, and E, are nodes!)
of M and X is the simple cyclic chain in M from E, to E,, there
exists a component C of M — X which, then, has just one limit
point « in X. Then if a and & are points of E, and E, respecti-
vely which are non-cut points of M in case these sets or either of
them is non-degenerate and ¢ is a point of O, it is readily seen
that no arc in M contains the set a 4 b -} ¢, contrary to property C.

The condition is also sufficient. For suppose the cyclic elements
of M from a simple cyclic chain X in M between two cyelic ele-
ments E, and E,. Let a and b be points of E, and E, which are
non-cut points of M in case E, and E, or either is non-degenerate,
let N be the set of all those points which separate a and b in ¥,
and let K be any closed, compact and totally disconnected subset
of M. Let C;, C;, Cy,... be the non-degenerate cyelic elements of M,
and for each i, let a, and b, be the two points of C-(N+a-b).
It follows from our hypothesis, that for each i, C, contains an arc #;
from a, to b, which contains K- C, 4 a,-} b,, since this set is closed
compact and totally disconneeted; and it is immediately seen that
the point set N+a - b —}; 5 ¢, is an are in M which contains K.

Now in case the continuous curve 1/ is uni-coherent ?), it fol-

1) A mode of a continuous curve M is either an end point of M or a maximal
cyclic curve of M containing just one cut point of M, For definitions and theo-
rems concerning the cyclic elements of a continuous curve the reader is referred
to the author's paper in the Amer. Jour., Math,, vol, 60 (1928). pp. 167—194.

%) That is, if the common part of every two continua H and K whose sum
is M is a continuum: See C. Kuratowski, Fund. Math,, vol. 12, p. 24,
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lows at once that no cyelic element of M can have a local separating
point, and thus every cyclic element of M has property A and
hence also property B. Therefore from Theorem (a) we get

Theorem (8). In order that the uni-coherent continuous curve M
should have property C it is necessary and sufficient that the cyclic
elements of M should form a simple cyclic chain.

Remark While the condition in our principal theorem above
is not a necessary one, we see that the following condition stated
in terms of local separating points is a necessary — though not
a sufficient one: in order that a continuous curve have property C
(or, of course, B) it is necessary that M have no local separating
point p which cuts M locally into more than two components (i. e. such
that u region R exists containing p and such that R —p has more
than two components). For if such a point p exists in M, then if
X, Y, and Z are distinct components of B —p and [z), [4], and [2]
are sequences of points in X, ¥, and Z respectively each converging
to p, it is easily seen that no are in M contains the point set

p+ Z@tu+a)
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Uber die symmetrisch allgemeinen Loésungen im
Klassenkalkul.

Von

Th. Skolem (Bergen, Norwegen).

Einleitung.

Vorliegende Arbeit ist ein kurzer Auszug eines Teiles meiner
auf norwegisch geschriebenen Abhandlung ,Undersokelser indenfor
logikkens algebra vom Jahre 1913. Diese Abhandlung ist bisher
nicht verdfentlicht worden, sondern wird im Archiv der Universitit
Oslo aufbewahrt. Eine vollstindige Wiedergabe jener Arbeit wird
in den Schriften der Akademie der Wissenschaften zu Oslo bald
erscheinen.

Die Aufgabe, welche im folgenden behandelt wird, ist die,
Gleichungen oder Subsumtionen im Klassenkalkul in bezug auf
eine oder mehrere Unbekannten symmetrisch anfzulosen; man findet
solehe Aufgaben schon in Schroders ,Algebra der Logik®. Abgesehen
davon, daB ich 4 — B schreibe um auszundriicken, da eine Aussage
B ane der Aussage A folgt, sind die hier beuutzten Bezeichnungen
immer die Schroderschen. Weiter bemerke ich, daf ich die Addition
der Klassen (Bildung ibrer Vereinigung) und jhre Multiplikation
(Durchschnittsbildung) hier ohne Skrupel auf ganz beliebige Mengen
von Klassen anwende, wie es ja nach den Axiomen der Mengenlehre
moglich sein soll. Auf Grundlagenfragen soll hier nicht eingegangen
werden.

§ 1

In dem einfachsten Teile des Logikkalkuls (Gebiete- oder Klassen-
kalkul, anch identischer Kalkul genannt) hat man besonders die
Aufgabe zu studieren, Gleichungen oder Subsumtionen in bezug auf
eine oder mehrere Unbekannten aufzulosen. Ist die Zahl der Unbe-
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