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M- T,. Then by the preceding paragraph, M. U, is a simple Peano
continuum or is cyclicly connected. As it cont;ains two end points,
it cannot be cyclicly connected. Then M .U, = 4,. Similarly
M.(E,—U,)=4,. Thus M is the simple closed curve J==4,-- 4,
and our proof is complete.

Corollary. If every local cut point of a Peano continuum M
in E, is an ordinary point of M, then every point of M is of order ¢
or every point is of order < 2.

The following simple example shows that neither the theorem
nor the corollary is true unless we assume that the continuum M
is a Peano continuum. In E; let M consist of the points of the
curve y=sin(1/z) for 0 <21 together with the points (2, y)
for —1=S2<50, — 1=y 1.
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On joining finite subsets of a Peano space by arcs
and simple closed curves ?).

By
W. L. Ayres (Ann. Arbor, Mich.).

1. Introduetion. Two of the most fundamental results in the
theory of Peano spaces ?) relate to the joining of two points by
an arc or a simple closed curve. One of these is that every two
points of a Peano space can be joined by an are lying in the space.
The other is that if two points are not separated by the omission
of any single point, then they ean be joined by a simple closed
curve. It is the purpose of this paper to give generalizations of
these results to sets of n points.

Our conditions are only sufficient. If the Peano space is itself
a simple closed curve, then none of our conditions are true but all
of the results hold. The determination of necessary and sufficient
conditions for n-points seems to be a very difficult problem. Also
it seems likely that if the problem were solved, the conditions would
be 8o complex as to be of little interest.

2. Historical Note. The theorem that every two points may be
joined by an arc was proved by Mazurkiewicz Kaluzsay,
Moore, Tietze and Vietoris?). The theorem for the joining

1) Presented to Akademie der Wisseuschaften in Wien July 4, 1929, and
American Mathematical Society August 30, 1929.

) Following Rosenthal, Math, Zeit., vol. 10 (1921), pp.-102—4, and K-
ratowski, Fund. Math, vol. 13 (1929), pp. 307—18, we shall cell a metric
tpace, which is the continuous image of a closed interval, a Peano space. Other
terms commonly used are continuous curve, im kleinen zusammenhdngendes Kon-
Unuum, and tinu de Jordan. '

%) 8. Mazurkiewicz, O aryimetyzacii kontinudw, C, R, de la Bociété de
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of two points by a simple closed curve was prov.ed by G.T. Why-
burn 4 for the case where the Peano space is a subset of 'the
Euclidean plane. This result was announced at about the same time
by W. L. Ayres %), but was never published. F_or regular curves
it was proved by K. Menger ). The theorem for a generfxl Peano
space was proved by W. L. Ayres 7). Conditions under which three
and four points lie on an arc have been given by W. L. Ayrest)
and E. W. Millers). Conditions under which three points lie on
a simple closed curve have been given by Ayres ). Fiually con-
ditions have been given under which a clused set is a subset of
an arc in the space considered, by Moore and Kline!!) where
the space is the Euclidean plane, and by Miller'*) where the

Sciences de Varsovie, vol. 6 (1913), pp. 306~311; and Sur les lignes de Jordan,
Fund, Math,, vol, 1 (1920), pp. 169—209.

C. Kaluzsay, A felilletre vonatkoss Jordan-titel megfordfitdss, Mathema-
tikai és Physikai Lapok, vol. 24 (1916), pp. 101—141.

R. L. Moore, A theorem concerning continuous curves, Bull. Amer, Math,
Boc., vol. 23 (1917), pp. 233—236,

H, Tietze, Usher stetige Kurven, Jordansche Kurvenbigen und geschlossene
Jordansche Kurven, Math. Zeit., vol. b (1919), pp. 384291,

L. Vietoris, Bereiche 2weiter Ordnung, Monatshefte f. Math, u. Physik,
vol, 32 (1922), pp. 208—280.

%) G. T. Whyburn, Some properties of continuous curves, Bull. Amer, Math,
Boe., vol. 33 (1927), pp. 306—308. '

%) Un the separation of points of a continuous curve by arcs and simple
closed curves, Bull, Amer, Math, Soe., vol. 33 (1927), p. 266,

%) Zur aligemeinen Kurventheorie, Fund. Math., vol, 10 (1927), pp. 95—115,
Satz g,

) W. L. Ayres, Concerning conmtinuous curves in metric space, Amer,
Jour. of Math., vol. b1 (1929), pp. 577—594.

8) Concerning the arc-curves and basic ssts of a continuous curve, Second
paper, Trans. Amer. Math. Soc., vol. 31 (1929), pp. 596—612, Theorem 12; and
Continuous curves which are cyclicly connected, Bull, Acad. Sc. Polonaise, 1928,
pp. 127—142,

) E. W. Miller, Concerning subsets of a continuous curve which lie on an
arc of the continuous curve, Dissertation, University of Michigan, 1930.

') Continuous curves which are cyclicly connected, loc. cit.

") B. L Moore and J. B. Kline, On the most general closed point-set

through which it ig possible to pass a simple continuous arc, Annala of Math,,
vol. 20 (1919), pp. 218223,
1) Loc. cit.
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space is Euclidean n-space or an acyelic Peano space or the boun-
dary of a plane domain.

3. Theorem. Let K be a set consisting of n points (n>1) of
the Peano space M. If no two points of K can be separated by the
omission of n—1 points of M, then there exists a simple closed curve
of M containing K.

4. The case n=2. This case follows as a special case of theo-
rem 6 of my paper, Concerning continuous curves in metric space
(loc. cit.). But we shall give here a simpler proof following along
somewhat the same lines as it is this proof, slightly generalized,
that we require for the general case of the theorem of § 3.

4. 1. Lemma, If p is a frontier point of a domain D1%) and
for each € >0 there exists a 6 > 0 such that only a finite number
of components of D - S(p,¢) contain points of S(p, 8), then p is
accessible from D.

For a proof of this lemma, see theorem 1 of my paper, Con-
cerning continuous curves in metric space.

4. 2. Definition. If « is an arc of M, pea and the set DC M — e,
then p is said to be chain-wise accessible from D if there exists
a countable set of arcs %y, (i=1, 2,... ad. inf) such that (1) z,--
+uCea, <zy>")CD, (2) @y) (5y)=0 if ji{2 and
(z:y)« (x;y)) is vacuous or the single point y, =gz, if j=1i4 2,
(8) on the are @ we have the order z,2,y,2,y,%,...p, (4) 1132 diam z,y,=0,

lim @, =lim y,=p. We say that the set {z,y} is a simple chain

of ares of D from x, to p. Also a finite set zy, (i=1,2,...,n)
of ares is said to be a simple chain from =, to p if (1), (2) and (3)
are satisfied and y,=p. (See diagram in § 4.6).

4. 3. Lemma, If & is an arc one of whose end points is p, D is
a component or set of components of M — a, and there exists an € >0
such that for every 0 << d-<Ce infinitely many of the componenis of
D - S(p, &) that have limit points in M — S(p, &y contain poinis' of
S(p, 8), then p is chain-wise accessible from D.

1%) 1t is assumed of course that D is a subset of the Peano space M. All of
our sets are in M so it is not necessary to state this on each occasion.

) If xy is an arc with end points x and y, then zy>, <zy and <zy>
denote xy — y, *y —x and xy — x — y respectively,
Fandamenta Mathematicae t. XIX. 6
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There exists a set of numbers &, such that (a) £>d,>2d,,,>0,
(b) if w4 9C @, wnon-e S(p, 6), veS(p, 64), then we have the
order uvp on a. By hypothesis there exists an infinite set of dis-
tinet components H,, Hy,... of D+ S(p, &) such that

(1) ‘ (M - S(I’) E)) ° ﬁl#o)
@ S(p, 6) - H, D ps.

Let H,,= C(p,, H,- 8(p, 8)), i. e. the component of H,-S(p, d)
containing p, (j <i). There exists an arc z,, such that &z, ¢c-
- (8(p, 6)— S(p, &)y yrea-(S(p, &) — 8(p, 6u)) and the arc-seg-
ment z,y, belongs to one of the sets H,, for i = 8.

This may be proved as follows: From 1) and 2) it follows that Hy (4= 8)
contains a point zpre §'(p, d,) and a point @g e S'(p, d,), where S'(p, K) denotes
the set of all points ¢ such that g(p, ) =% As M in locally connected and the
points zy; belong to different components of M — a, every limit point of the set
Szy belongs to o, and hence to o' S/(p, d,). Let x, be one such limit point and

let @, 29, %oy,... be & subsequence of Zay; such that lim Xy, == Xy, Let a, be
7”00

8 limit point of Jay, (wgea* S'(p, dy)) and let gy, s, .. be a subsequence of
Z oy, such that lim xge, = 2,. Obviously we have lim a, == x,. Let 7, and 7,
be positive mumbers such that S(z,, 7,)C S(p, 6,) — S(p, d,) and S(x,, 7,)C
C S(p, d;) — 8(p, J;). There exist positive numbers &, and Gy such that any
point of S(wy, Gs) may be joined to x; by an are C S(us 7s) for s =2, 8. There
exists a number # such that 2, eS8 (w;, Gs), =2, 8, Let &, be an arc with ond
points &5, and x; such that as(C §(as, %5). There exists an are 4 (C Hyx, with
end points az, and ws,. In the order from o, to x,, let o, be the first point
of @ on a,, and in the order from , to oy, let 2, be the firet point of A, on
the subare x, o, of @, Similarly we may define a subarc y, 2, of ¢, such that
(y,25) ¢=y, and (y,es)'ﬁ,’K:zaA Then the subarc x, 2, of @, plus the subarc
2,7, of f; plus the subare 2, y, of &, is the required are a, Y.

Similarly there exista an arc z,y, such that x, eca-(S(p, 6,) —
— 8(p, bs)), s € @+ (8(p, 615)—S(p, d,5) and the set <z, y,>> belongs
to one of the sets H,, for i =13 and i ==k, Continue this process,
In general there exists an are x,y, (¢ >1) such that (c) x,ea-
* (8(p, G5s) — S(p, der—s)), @) yrea-(S(p, Forpa) — S(p, desta))s andn
(e) the set <<z;4,> belongs to one of the sets H, s, for i =>=6541_
and (f) not equal to any value of i such that H, ) z,y, for r<t1s).

%) For example, when r=1, Hy, D, y,.
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Now let us consider the conditions in the definition of chain-
wise accessibility, Condition (1) follows from (c), (d) and (e). From (f),
it follows that

3) <are z;y,> - <arc z;y,> = 0.
From (¢) and (d), we have
4 @4y« (% +y) =0.

Then from (3) and (4), we have
(are 2,,) - (are 2 y;) =0,

which satisfies condition (2) of the definition, Condition (3) is satis-
fied from (b), (¢) and (d). From (a), since arc 5, S(p, ds_s), We
have condition (4) satisfied. Then p is chain-wise accessible from
M— a.

4. 4. Lemma. Let a be an arc one of whose end points is p and S
be a set of components of M— a such that (a) for each &> 0 there exists
a 6> 0 such that if DeS and diam (D)> e then S(p, 6)- D=0,
(b) there is @ point q=Fp of a such that if x e between p and g
then there exists a DeS such that « lies between two limit points
of D on a. Under these conditions, p is chain-wise accessible from S.

On ¢ we will define order as being from ¢ to ». Let y, be
a point of @ between ¢ and p. Let S, be the set of all components
of S such that y, lies between two limit points of the component
on a. By hypothesis (b), S; 5=0. Let K, be the set of all limit

points of the components of S,, and let z, be the last point K,
on a. By hypothesis (a), 2, & p. Let S, e S such that 2, lies between
u, and v,, the first and last limit points of S, on a. The set S
contains a component S, which has a limit point w, on & between
u, and 2z; and such that g(w,,2,) < 4. And, as the accessible points
are dense ‘on the boundary of a domain, there exists an arc z, y,
such that =z, 4 4, C e, <<arez, y,>(C S,, =, precedes y,, y, fol-
lows Uy, oy, ) < &

Let S, be the set of all eomponents of S such that y, lies bet-
ween two limit points of the component on a. Let K; be the set
of all limit points of components of S, on e, and let 2, be the last
point of K,. Since S, eS;, 2, precedes z,. Let S, ¢S such that z
lies between u, and v,, its first and last limit points on e. There

o*
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is a component S, ¢ S;, which has a limit point w, on ¢ such that
both 2, and u; precede w, and @(iy, 23) < 1/4. Then there is an
arc @, y, such that =z, precedes y, on a, y, follows u, and 2,
0(ya w3) < 1/4, <arezy %o >C 8y As 8§, non-¢ Sy, y, precedes i,
or Yy == Xy,

Continue this process. In general let S, be the set of all com-
ponents of S such that y,, lies between two limit points of the
component on o. Let K, be the set of all limit poiutg_ of the com-
ponents of S, on @, and let 2, be the last point of K,. By hypo-
thesis (a), 2,=F p. And since S, € 8S,, 2,1 precedes z,. Let S, ¢S
such that 2, lies between u, and v,, the first and last limit points
of 8, on e There is a component S,n__le S, which has a limit
point , on @ such that both 2,_, and u, precede w, and @ (w,, 2,)<<2™".
Then there is an are x,y, such that z, precedes y,., on @, y, fol-
lows both z,_; and w,, 0(y,, w,) << 27, <arew,y,>C ;S’J,"__l. As y,
follows 2,4, S, _, non-¢ S,y. Hence y,_, precedes @, or y, ;= 1,

We shall see that the conditions in the definition of chain-wise
accessibility are satisfied. Condition (1) is evident. Conditions (2)
and (3) follow from the order properties proved above. We shall
prove now that lim y,=p. Since y, precedes y,,,, it is evident
that lim y, exists. Suppose lim y, =0 = p. A8 @(¥s, 2,) = 0 (¥, w,) +
+ o(w,, 2,) =2, we have limz,=b. And as z, precedes 2,
we have 2, precedes b for every n. Let S,e¢ S such that b lies
between u, and v, its first and last limit points on @. There exists
an integer m such that y, lies between u, and b since lim g, = b.
Then S, 8p41 and v, e K,yy. Thus 2,4, follows v, or 2,4 =1,,
and z,,, follows b. But this is a contradiction as every 2, precedes b.
Now as limy,=p, we have lim diam (are 2,y,)=0 from hypo-
thesis (a). From limy,=p and lim diam (arc z,y,)=0, we have
lim ,=p. This completes the proof of condition (4). Then p is
chain-wise accessible from . :

4. 5. Lemma. If p and q are interior points of an arc e, and
S is a set of components of M —a such that if = is any point of
the subarc pg of a then there.is a component of S which has x bet-
ween two of its limit points, then there is a finite simple chain of
arcs of S from a point of @ preceding p to a point of « following q.

The proof of lemma 4.5 follows closely that of 4.4. We take
%o = p. From this point we follow the previous proof exactly and we
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may prov< that for some n, g precedes y, on ¢ in exactly the same
way as we proved in 4.4 that lim y, = p. Then @, y,, 2y #,..., 7, ¥,
is the desired simple chain.

4. 6. On the basis of the preceding lemmas, we shall now prove
the case #=2 of our theorem. Let K=p-}-¢ and let o be an
arc of M with end points p and g. Since no point separates p
and g, for each point z of <Ca>> there is a component D, of M —«a
such that z lies between two limit points of D, on e.

Suppose p is a limit point of some component D of the set {D,}.
If p is accessible from D, let 8, be an arc with end points p and
some point » of D, such that §; — p(C D. By definition every com-
ponent D; has at least two limit points on @. Hence there is an
arc f; with end points » and r, e@ —p such that 8, —z,(C D. The
set 8, 4 B, contains an are z, y, where y, = p. If p is not acces-
gible from D, there exists, by 4. 1, a number £>> 0 such that
infinitely many components of D . S(p, ) contain points of S(p, d)
for every 0 <Cd<Ceé Then p is chain-wise accessible by 4. 3, and
there exists a simple chain {r,y} of arcs of D from some point
r of atop

Now consider the case where no component of {D,} has p as
a limit point. Then {D,} contains infinitely many distinct compo-
nents, If for each £>>0 there exists a 6>>0 such that S(p,d). D, =0
for every D, such that diam D, > 2e, then p is chain-wise acces-
sible by 4. 4. If there is an ¢ > 0 for which this is not true, then
the hypothesis of 4. 3 is evidently satisfied and p is again chain-wise
accessible. Let {z;y,} be the simple chain from some point z, of a to p.

In precisely the same way we may determine a chain {i, v},
from some point %, of & to ¢. The set {u;v} contains either a sin-
gle are or an infinite number.

We denote order on « as being from p to q. If u, precedes z,
on o, let » be the largest integer such that %, precedes z,. There
exists a largest n unless #, = ¢, in which case {z,y} is a simple
chain from p to ¢. Let m be the largest integer such that z, fol-
lows u,. Then we have the order p...y, %,y U, %, U4y v,...9 0D a.
It <x;9> - <wv>=0. for any i=m and j ==, then {z,y}+
+{wv} for i=m, j=n is a.simple chain from p to ¢. If
<zy>+<wv;>==0 for every i=m and j=n, let n* be the

largest integer j such that <{w,v> - §<a:, y>> =0 and let m* be
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the largest integer i such that <in v,> - Lz 4> =k 0 Then the
86t Uy Vi = Zpps Yo CODEAINS BT ATC Y Vps with end points y,. and
v, such that <ymv,>-a=0. Then {z,y} for i>m* plus
{4,v) for j>>n* plus the arc y,.v, is a simple chain f'x;'om ptog.

If , =z, or x, precedesu, on o, by 4.5 there exists a finite
simple chain covering the subarc z, u, of o. With this finite chain
and the two chains from #, to p and u, to g, we may determine
a simple chain from p to ¢ as above.

-—K—-—M——(Xz

Fig. 1.

In any case we will denote this simple chain by {z,y}, where
i may run through all integers (positive and negative), be bounded
ahove or below, or both above and below. We assume {z, y;} satis-
fies conditions (1), (2) and (3) of 4.2, and condition (4) is repla-
ced by the following: ,(4) If s is the largest value of i, then

y,=p. If i is unbounded above, then lim diam z, ;= 0, lim x,=0p.
1400 {00

If ¢ is the smallest value of i, then z, = ¢. If i is unbounded be-
low, then lim diam x,y, =0, lim z, = ¢“. In case of i bounded we
I—>—oa

t> o0
may assume that s=0 and ¢t < 0 without loss of generality. Now
we may 'select two arcs from p to ¢ as follows:

a,=p-+q -|—2‘ arc 2y, Yy, +Z subare yy; 2, of @,
i [

H

ay=p-gq +2 are Ty Yot +2‘8“b‘“’° Yorpy Ty of 0.
i '

In order to have the above formulas hold in all cases we define
Yopr==p, %,y =4q. Then a, ay=p ¢, and @, 4 a, is a simple
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closed curve containing K =p - g. This proves the case # =2
of our theorem.

5. The general ‘case. Since the theorem has already been esta-
blished in § 4 for n =2, we may prove the general case by ma-
thematical induction. Suppose the theorem true for n =k — 1. Now
let K=p, 4 p;+...4p: and suppose no two points of K may
be separated by the omission of (k — 1) points of M. Then, as the
theorem is true for n ==k — 1, there exists a simple closed curve
J of M such that J ) p, +p,+...4 pey. On the curve J we
may assume the cyelic order p, p,... p,_, p;. Let I, denote that arc
of J with end points p, und p,, (subscripts reduced modulo ¥ — 1)

A1 .
which contains no other point of Jp,. In case p, & J, our proof is
1

complete. If p, non-eJ, we shall proceed to our proof through se-
veral lemmas:

5. 1. Lemma. Suppose (a) H is the set consisting of a simple
closed curve and an arc a which has just one end point in common
with it, (b) p denotes the other end point of @, (¢) D is a component
or set of components of M — H, (d) there exists an e > 0 such thai
Jor every 0 < 8 < e infinitely many components of S(p,e)-D that
have limit points in M — S(p,¢) contain points of S(p,0). Then p
is chain-wise accessible from D.

6. 2. Lemma. Suppose (a),(b),(c), of 6.1 are true, and (d) for
each €>0 there exists @ 6> 0 such that if D, eD and diam
(D1) > € then S(p, 0)- D, =0, (e) there is a point g = p of  such
that if xea between p and g then there is a D, e D such that x
lies between two limit points of D, on a. Then p is chain-wise acces-
sible from D.

5. 3. Lemma. Suppose (a),(b),(¢) of 6.1 are true, and (d) ¢
and r are interior points of a, (o) if = is any point of the subarc
or of « then there is a component of D which has x between two
of its limit poinis on @. Then there is a finite simple chain of arcs
of D from a point of a preceding q to a point of a following r.

The three preceding lemmas are slight generalizations of 4.3,
4.4 and 4.5 and may be proved in the same way.

6. 4. Lemma, Suppose there exists at least one arc a of M
whose end points are p, and a point of I, (i=1,2,...,k — 1) such
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thal a-J is this single end point belonging to I, Then either there
is ¢ point = p, such that every such arc a contains q, or there
exist two such arcs o, and @y such that @, . ay==p,.

Suppose the lemma false. Let § be one of the arc a with end
points p, and r. Since r == g;, there exists an arc y (of the type a)
with end points p, and s and not containing ». In the order from
s to p, let £ be the first point of 8 on y. As we have assumed the
lemma false, we have ¢==p,. Let D, be the component of
M —(7+p) containing the subset <fs>> of y. Let D be the set
of all components D, for all ares y of type & not containing r. If
P, 18 & limit point of some component D, of D, it follows from
our assumption that the lemma is false that p, is not aceessible
from D,. From 4.1 then, the hypothesis of 5.1 is satisfied and
e 18 chain-wise accessible from D,. If p, is a limit point of no
component of D but p, £ D, then the hypothesis of 5.1 is again
satisfied and p, is chain-wise accessible from D. Then there is a simple
chain of arcs {z;y} of D such that (1) z, el,—r, g, —-}—ji(mj—{—yj)c

C<B>, <zy>C D, and 2), (3) and (4) of 4.2 are satisfied
with p, replacing p.

If p, non-¢ D, let u be the last point of D on g in the order
7 to p,. Let 2¢ subset up, > of are §. As 2=k ¢, there is an are
1 of type @ so that z non-¢ 4. The are 7 contains a segment which
has no point in common with 8 and such that the end points of
the segment are on § and 2 lies between these two points on g,
Let S, be the component of M — (J -+ B) containing this segment,
and let- S be the set of all such sets 8, for all points 2. With the
use of 5.1, 5.2 and 5.3, we may obtain from S a simple chain
{my) (7=2,3,...) from a point @3, which precedes u on g, to
Py just as in 4.6. Evidently this may be done so that #, lies on
the subare up, of B, for if this condition were not satisfied it could
be obtained by omitting a finite number of the ares {2y} and re-
lettering them, As ue D there is an arc z,y, such that o, &I, —r,
y, & subset <Cz, u of B, <y y,>CD. As D.8=0, (2, %) (2y) =0
exCopt (2, Y1) « (24 y5) may be y, = %y =u. Then when p, noun-e D

we have a set of ares {2y} (j=1,2,38,..,) exactly as in the case
where p, e D.
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Let r ==y,. Then

a, =p,+ 2 Zog You —I—E subare gy, , &, of §,
n [

a; = p, +2w:r2,,_1 Yan +2 subare y,, ; Zoyy of B

are two arcs of type o such that e, - @y =p,, which is contrary to
our assumption that the lemma is false.

5. 5. If there exists no arc @ with end points p, and a point
of I, such that a-J is the end point belonging to I, let ¢,=0.
If there is an arc @, then by b.4.there is a point g, such that
every such arc ¢ contains g, or there are two such ares @, and a,
such that @, .a@,=p,. If the latter is the case for any i, then
@, + @, - that are of J from «, +J to @,+-J which contains 3 P
is a simple closed curve containing K and our proof is complete.
But this must be true for some i for if the point g, is defined for
every i (vacuous or otherwise), we shall show that 3 g, separates
two points of K, which is contrary to the hypothesis of the theorem.

Suppose g, is defined for every i=1,2,....k— L. If p, e3¢
(n <k), then p,=gq, or p,=g¢, ;. In the former case Pryy DOD-
£2g, and in the latter case p, ; non-s3 g. For suppose p, = Gns
then every are of type a for I, contains p.; and if p,., e 3 g, there
exists an arc with end points p, and p,,, having only Papr in com-
mon with J. But this is an arc of type a for I, and must contain’
Pn, Which is impossible. Then there is a point p, of K — p, which
does not belong to g, The set g, separates p, and p, in M,
for if it does not then there exists an arc § with end points p, and
p: 0 that §.3¢,=0. In the order from p, to p, let v be the
first point of J on §. The point » exists for p,e§.J avd §.J is
closed. Suppose vel,. Then the subarc vp, of § is an are o for
Z, and thus g, & subarc vp, of §. But this is impossible as 8.3 ¢,=0.
This completes the proof of our theorem.

6. Theorem. Zet K be a set consisting of n points (n>1) of
the Peano space M. If mo two points of K can be separated by the
omission of. (n — 2) points of M, then there exists an arc of M
containing K.

Let pe K and let H= K — p. Since no two points' of H can
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be separated by the omission of (n — 2) points of M, by the re-
sult of § 8 there exists a simple closed curve J of M containing
H. If peJ, then there is evidentlv an are of J containing K, If

p non-¢J, let ge H and let o be an are of M with end points p -

and ¢. Denote by r the first point of JJ on & in the order from
p to ¢. In one direction on J from 7, let s be the first point of H.
Then the subare pr of @ plus that arc rs of J containing H is an
arc of M containing K.

7. Examples. We shall give two examples to show that the
numbers (n — 1) and (» — 2) in the two preceding| theorems can-
not be reduced. Let K consist of » distinet points p, on a line ab.
Let ¢, denote » — 1 distinet points on a circle with center on ab
and lying in a plane perpendicular to the line ab. Let

n—1 n

M":ZZPIQJ’

Juml el

where p; g, denotes the straight-line interval from p, to g, It is
easy to see that no two points of K may be separated by »n — 2
points of M. If there were a simple closed curve of M containing
X then it would counsist of # ares between the points p,, which are
distinet except for the points p,. But every arc of M with end
points p,, and p, contains a point ¢, Then no such simple closed
curve exists for there are but n — 1 of the points g, We see that
the number 7 — I of the theorem of § 3 cannot be replaced by
n—2,
Now if we take

n

n—2
2
v=2 no

J=1 =1
we have a Peano space containing a set K of n points such that
no two points of K are separated by the omission of any n — 3
points of M and there is no arc of M containing K, Thus the
number # — 2 of § 6 is s small. as possible,

8. The Plane Case. It may be noted that in the preceding
example M is not homeomorphic with any subcontinuum of the
plane for #>> 3; and similarly N cannot be mapped in the plane
for > 4. This leaves open the question as to whether the num-
bers #—1 and n—2 are as small as possible if we assume in

icm
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addition that the Peano space M is a subset of the Euclidean plane.
In connection with this it would be interesting to determine whe-
ther the following is a true theorem:

Let the Peano space M be a subset of the plane and let K be
any finite subset of M. Suppose no two points of K may be sepa-
rated by the omission of any two points of 3. Under these con-
ditions there is a simple closed curve of J containing J.
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