210 W. Sierpinski.

stration de M. Lindenbaum (qui paraitra dans le vol. XX de
ce journal) est cependant fort compliquée. \

Les théorémes I et II peuvent étre sans peine généralisés. An
lieu des images continues on peut notamment prendre les images
de Baire et, plus généralement, une famille quelconque de puis-

sance du continu de transformations des ensembles & I'aide de fone- |

tions mesurables d'une variable réelle. En effet, on voit sans peine
que si f(x) est une fonction mesurable d’une variable réelle, dont
I’ensemble de valeurs est non dénombrable, il existe toujours un
nombre réel a, tel que l'ensemble de tous les x réels, pour lesquels
f(#)=a, est de mesure nulle. La démonstration que nous avons
donné pour le théoréme I s’applique done dans ce cas.

Or, le probléme se pose: les théorémes I et II restent-ils vrais
pour les familles de puissance du continu (ou, seulement, pour les
familles dénombrables) de transformations des ensembles & Vaide
de fonctions quelconques d'une variable réelle? D'un théoréme que
nous avons trouvé récemment avec M'® Braun?) résulte que ce
n'est pas le cas pour le théoréme II. En effet, comme nous avons
démontré, si 2% =y,, il existe une suite ififinie de fonctions d'une
variable réelle, f,(z), fi(x), fi(2),..., telle que, quel que soit l'en-
semble linéaire non dénombrable N, il existe un indice k (dépen-
dant de N), tel que la fonction fi(x) transforme N en l'ensemble
de tous les nombres réels.

En s'appuyant sur ce résultat, on voit tout de suite que la né-
gation de Uhypothése du continu équivaut & la proposition swivante:

F étant une famille de puissance du continu d'ensembles lindaires
de puissance du continu, et D ume famille de puissance du continu
de fonctions d'une variable réelle, il existe toujours un ensemble lindaire
non dénombrable, E, tel que toute fonction de la famille @ trans-
forme E en un ensemble distinct de tout ensemble de la famille F'3).

1) ce voh'lme, p. 1

*) Cf. mu communieation au IT Congrés ~de Mathématiciens Roumains & Turnu
Severin, Mai 1933,
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On the functions of Besicovitch in the space
of continuous functions.

By
S. Saks™) (Warszawa).

1. In their very interesting new proofs for the existence of con-
tinuous functions without derivatives, Banach and Mazurkie-
wicz showed that the class of continuous functions without finite
one-sided derivative in any point is the complement of a set of
the 1% category of Baire in the space € of continuous functions?).
The same method, and with the same result, could be applied to
the evaluation of the class of continuous functions without both-
gided finite or infinite'derivatives in any point which we
shall call briefly functions of Weiexstrass' type.

The problem was set by Banach and Steinhaus whether
these results may be extended to the functions of Benicov.it«-:h’s
type i e. continuous functions without one-sided deuvahxres
(finite or infinite) in any point. We shall give hex:a a Degative
answer to this problem, showing in the first part of this paper that
the complement of the class of Besicoviteh's functions is every-
where of the 2* category in the space G.

Banach has informed me in & letter that this theorem may
be considerably strenghtened. First of all, as showed by this author,

*) International Research Fellow, . .

) Mazurkiewion, Sur les Jonctions non ddrivables, Stu(zlm fothcmatwa,
1, 11X, (1981), pp. 92 - 94, Banach, Uber die Baire'sche Kategorie gewisser Ili‘unb
tionenmengen, ibid., pp. 174—179; Steinhaun, Anwmdu?@gm_ flcr Funktional-
analysis auf einige Fragen der reellen Funktionentheorie, ibid, t. I (1929),

. b1—81,
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the class of Besicovitch’s functions is the complement of an
analytic set (or of a Souslin set or a set (4))* and therefore
satisfies the property ot Baire %), Consequently a sphere § exists
in the space G where either this class or its complement is of the
1" category. But by the theorem which will be proved below, this
complement is everywhere of the 2 category and therefore the
class of Besicoviteh's functions must be of the 1* category in §.
Now, being of the 1* category in one sphere, it is as we see easily
of the same category in every other sphere and therefore in the
whole space €.

This result shows that the class of Weierstrass’ functions
being the complement of a set of the 1" category is in a certain
sense much larger than that of Besicovitch's funetions which is
of the 1* category itself. This explains perhaps the difficulties con-
nected with finding the first example of a continuous function
without either finite or infinite one-sided derivatives in any
point ).

2. We shall extend this theorem in the second part of this
paper and prove that every continuous function with the exception
of a class of the 1* category in the space €, has a right-sided
derivative 4 co in a non-denumerable set of points. This assertion
reduces to the proof that the set of such functions has the property
of Baire, and then the complete proof follows by the same argu-
ment of Banach and by the theorem of § 4.

The first part of this paper is quite elementary. The second
although shorter is really much less elementary because substantially
based on the general properties of analytic sets and on a new me-

%) For the definition of these sets see for instance Haus dorff, Mengenlehre
2. Aufl, 1927, :

3) Nikodym O., Sur une propriété de lopération A, Fund. Math. t. VII,
(1925), pp. 149—154; Bzpilrajn E., O mierzalnosci 1 warunku Baire'a (in
Polish) C. R, du I Congrés de Mathématiciens des Pays Slaves (1980)
pp.. 297 —303.

‘) The first example of such functions was given by Besicovitch in 1922
(in Bussian), Bee Besicovitch, Discussion der stetigen Funktionen in Zusam-
menhang mit der Frage ilber ihre Differensisrbarkeit, Bull. de I'Ac, des Se. de
Ruasie, 1925, p. 527. The reasoning of Besicoviteh was simplified by E. D.
Pepper (On continuous functions without a derivative, Fund. Math., t. XII,
(1928), pp. 244—253).
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thod developed by Tarski and Kuratowski?®) for the evaluation
of classes of sets in abstract spaces.

I
3. Lemma. Let x(t) be continuous in an interval (a.b) and let
b
(1) o)) —mt 40| <26 (m>0, £>0)

for every a<St<Cb. Then there exists in the interval (a, a—;—b)
a non-denumerable set of points ¢ with the property that
@) @(t) — @(c) = (m — &) (t — )

Sfor every c<I<{bY)

Proof. Suppose that the set of points ¢ (agcg a—;— b) satis-
fying (1) is at most denumerable and let {c} (i==1,2,...) be the
sequence of these points. Let © be an arbitrary positive number.
Denote by ?#, the upper hound of the set T' of points ¢ (& <#<h)
verifying the inequality

®

®) a(t) — 2(@) <(m—e) t— )+ 3 o,

(¢ .

where the summation Zl is extended to all such values of n for
n

which ¢, <t We assert first that

@ n= 3

Indeed if ¢ is an arbitrary point of (a, aé—b) verifying (3) but

) Kuratowuki et Tarski, Les opdrations logiques et les ensembles pro-
jectifs, Fund, Math., t. XVII (1981), pp. 240—248; Kuratowski, Evaluation
de la classe bordlisnne ou projective d un snaemble de points & Vaide des symbols
Togéques, ibid., pp. 249272, .

%) For our purposcs (wee § 4) it suffices only that there exist two different

‘ points ¢ with this property.
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not belonging to the sequence {c} then there exists by assumption
_a point % > ¢ such that
(u) — 2(t) <(m —e) (4 — 1),
and we obtain from (3)
. (2)

a(1) — a(@) <(m — &) (u—a)+ I I,

that is to say » belongs to 7,. On the other hand, if a point ¢,
satisfies (3) i e. if

, (ex)
(6) 2(0) —2(@) <(m—e) (h—a) + F' g
then there exists a point 4 >> ¢, such that
2(1) — z(cp) < E,Zi
and we infer from (3)
(cg)

a() —2(0) < (m— o) (4 —a) + Y k455
"

<tn—e) @w—a+ 3 g

It means "however that u belongs also 1o T, and therefore no
point of (a, a-i—b) could be the upper bound of the set 7}. This
proves the inequality (4). |

Thus it follows now from (1), (3) and (4)

b—a
—5 > [ (k) — mt, +n] — [#(a) —ma -+ n]|
> m(ty — a) — |2(t) — x(a)|
>e(to—a)—1q

b—a
> g e

This is however contradictory as the positive number % may
be arbitrarily small.
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4. Theorem. The class of functions continuous in the interval
(0, 1) with the right sided derivatives existing and - oo in a set of
the power of the continuum, is everywhere of the 2 category in the
space € of continuous functions.

Proof. Let K be an arbitrary open sphere in the space € of
functions continuous in (0, 1) and {4,} a sequence of nowhere dense
sets in €. We shall show that there exists then a function belonging
to K — 3 A, whose right-sided derivative exists and ‘becomes po-

n

sitively infinite in a perfect set of points. This will prove our
theorem.,

We shall define for this purpose by induction a dyadic system
of subintervals {I, ..., == (@sny...xp nym,..n,)} in the interval (0, 1),
a sequence of continuous functions () (0<#< 1) and a sequence
of open spheres K in the space @ satisfying the following con-
ditions :

A) By=K, K,CK,, EXA4=07 (j=1);
B) ,(¢) is the center of K, (j==0,1,...);
O) 1'!1,'!5,...,!!1,_1,'!/ C In;,n,,...,nj_l;
1 .
|Im.n..u..u_,' < 3" (.7 2 1; njj": O’ 1) 8)'

D) @,(¢) is linear with the coefficient j [x,(¥)=j¢ -} const] in
each interval I,,,.,, of the jth order;

I”la"ﬂ:-n:"j_lno X Inunn.-mnj..l.l = 0;

E) if ¢ belongs to1,,,,..,, and u to the interval (bu, my...n;» Bayvunyy)
(1 <i<<j) then

oz — ()
‘ w—1t
Suppose that the functions a;(#), spheres K; and sub-intervals
Iym..,n, have been determined already for j=1,2,...,r and obey
the above conditions. We shall define a continuous function 2.,

a sphere K, and a system of intervals of the r 41 th order.
First of all the set A, being nowhere dense there exist in every
neighborhood of ,(¢) continuous functions g(t) belonging to K, — A,
Since, by the condition (D) (for j=1), #(#) is linear and has the

~i—2

1) 4 denotes as usually the closure of 4.
%) |1| denotes the length of the interval I,
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coefficient » in each interval I, . .. of the rth order, we
can choose g(f) sufficiently close to «,(f) so that according to our
lemma (§ 3) there exist in each interval I,,,.,,, two points, say
brq,ng,...,n,.oy bm,n;,....n’.,lj B\l(‘h th&t ’

0 g(t)t —Z(bn..n’f‘('f.’l'f':*_1?>r-f—1 O byyngmyngs < b < By

ARty ety gy

(n,q_l == 0, 1)

Then we slightly modify g(f) by replacing it by a fanction A(f)
linear and with coefficient j -1 in a couple of distinet subinter-
vals 0, 5. 00 Ormy.n, of I,,,..s, Whose right ends are the points
b b , respectively. We can choose these intervals suffi-

1

R

Ry Ny eyt 03 Uy Ry Ry

and further A(f) sufficiently close to

ciently small less than
g(t) so that

8) h(t) belong to K,— 4,,
and

hit)— h

t—b

n,,ng,..,,n,,n,,_l_l)
> r— 1 fOl' bm,n;,...,n,.,n,q_l <t < bn,,n,,...,u,

ML My Ry Py

(”,;*_1 = 0, 1).

The funetion A(f) chosen in this manner will be defined as
%.1(f), the corresponding intervals &, ,, . .. Oum,.. 88 the inter-
vals of the r—1th order I, .01 L. Tespectively. Finally,
we can choose easily an open sphere K., with the center z,(f)
1

o i that

and the radius less than

KEuwCE, KuXA.u,=0
We see at once that then the conditions (A—E) remain verified
for j==r- 1.
Now by the conditions (A, B) the sequence z;(f) converges uni-
tormly to a continuous function x(f)e K— 3 A4,. We shall show

that @ (f)==oco in a perfect set of points.
Indeed, set for every sequence ,, ny,...,n,... (n,=0, 1)

' (2) tn;,n;,...,nj = In; X In,,n, X ver X Inl,m.....nj X s
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We have then from (1)

a; (u) — ay(t

w— tm,n,,...,nk,...

nyng, u;"h;--t)

>i—2

for every sequence {m} (m="0,1), j>i>1 and by, .>u>
> baymyengent It follows by passing to the limit

x(u) - w(tm,nq,..‘,n‘,...)
u—1

(LT L T

for i==1,2,... and by n,...n, > %> byn,..np.. LHUS

>i—2

x"*" (t”lu"lru-v"‘;m) = + oo
in every point (2). The set of these points being obviously perfect
our proof is completed.
IL
5. We shall now prove

Theorem. The class of continuous functions which have the right-
sided derivatives positively infinite in a set of the power R, is an
analytic set in the space € and therefore has the Baire property,

This will be an immediate consequence of the following.

Lemma. T denoting the interval (0, 1) the set @ of points (z,1)
in the product space T X € such that

. (b) = o0 ?),
i8 Fa’d‘

Proof. Denote for each couple of natural numbers m, n by @ns
the set of points (z, t) such that

0< hg% implies fﬁ‘i—"—}iﬂ >n.

Qmﬂ-z‘Qmm

") 2/,.() denotes tho right-sided derivative of 2(?).

Then
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and since P,, are closed sets, @ is a set X, and our lemma is

proved.

Now let B be the set of functions z in § for which the sets
E|(x t)e P] (P denotes the same set in the product space & X T
t

as above) are of the power 8. There follows from a theorem of
Mazurkiewicz and Sierpinski as generalized recently by
Kuratowski that this set is analytic %), This proves the theorem
stated at the beginning of this section as R is exactly the class of
continuous functions with right-sided derivatives - oo in a set of
the power 8. Furthermore, by the reasoning indicated in the intro-
duction, il follows now from the theorem of § 4 that the class R
is the complement of a set of the 1" category Q. E. D.

The theorem of Mazurkiewicz and Sierpifiski which we have used, was
stated by Kuratowski in the following general form for abstract spaces:

If @ is an analytic set in the product space ¥ X 1 of two compact metric
spaces X and || then the set X of points x in X such that the corresponding

sets E (2, u) e Q] are of the power N iz also analytic.
u

A very slight modification of the reasoning of Kuratowski shows that the
assumption of the compactness of the space X is superfluous in the above
theorem ; it suffices to suppose only that this space is complete!!), Indeed,
@ being by assumption an analytic set, it is the projection of a set Gy, W, in
the product space X X {1 ) T where { denotes the interval (0,1). If for some
zeX the sst F(x, u)e @] is of the power N, then it contains a perfect subset P

u

which is the projection on || of a closed set F in the space || % €. The spa-
ces | and {] %¢ ¢ being by assumption compact both classes S,B of perfect msets
PC U and § of closed sets F(C Ul XX T may be considered as complete metric
spaces 1%),

Therefore using the logical notations of Kuratowski we have

zeX=3 3 ”{[(u, t)e F) —> [(z, u, t) e W] (ue P)}

) Marurkiewics et Sierpifski, Sur un probléme concernant les fonc
tions continues, Fund. Math., t. VI (1924), pp. 161—169; Kuratowski, 1 e,
pp. 261—262.

1) It is important in our case as the space (§ of continuous functions is not
compact, i

1) As for the class § see Hausdorff, 1 o pp. 145160, As for P Ba-
nach proved that generally the class of perfect sets in a compact space (in our
cage in 1) is a G in the space of all closed subsets of that space (see Kur a-
towski, 1 c., 260). This means however (see Hausdorff, L. ¢, pp. 214—216)
that it may be ftself ,métrisable“ as a complete apace.
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where x¢X, uell, te T, Pe'P, Fef It follows
X= PPOPC(CF+ Gy F)

what shows that X is an analytic set.

The reader will find the complete explanations and details in the papers of
Tarski and Kuratowski quoted in§ 2, especially Kuratowski, pp, 261—2.
The only difference between the above reasoning and that of Kuratowski is
that we consider the closed sets F' in the product space U X T which is com-
pact with {] and T, wheress Kuratowski deals in this respect in the whole
space X > L X LI and subeequently assumes that ¥ should be also compaet,

Harvard University, Cambridge, Mass,, U, 8, A,
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