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une somme de N, ensembles de la famille F': nous aurons évidem-
ment S<C&,. Done, d’aprés la proposition P,:Pensemble S n'est

homéomorphe & aucun ensemble linéaire. Or, il en résulte que S= 2%,

puisque, comme on sait, tout ensemble plan de puissance << 2% est
homéomorphe d’un ensemble linéaire 1).

Les formules S KN, ot S = 2% donnent 2% = Ry

L'implication P — H est ainsi établie.

L’équivalence des propositions P et H est ainsi démontrée.

1) Clest p. e, une conséquence facile da théoréme que j'ai démontré dans
Fund. Math. t. 11, p. 89.
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On the Theory of Trigonometric Series VII.
By
S. Verblunsky (Manchester),

I. Introduetion.

§ 1. In §§ 2—4 of this paper, we give an extension of the general
Denjoy integral (or total), and we define a class of functions which
bear the same relation to the new process of integration as the
resoluble functions of Denjoy bear to the process of totalisation.
We call the new integral, the approximate Denjoy integral, (4.D
integral). The reason for introducing this integral lies in its appli-
cations to the theory of trigonometric series. If

va e e"""l
1

for all 8, then, we show, there is a function %(6), such that

© Lim

B~»00

< oo

1
(1) c,,=21—n f h(6) -0 46, n=12,.)
[
where the integrals in () are AD integrals (Theor. V). If, in addi-
tion to (1), the series

(m) 2 cy €™

1

is summable p. p. (presque partout) by Poisson’s method to H(f),
then h(6) = H(6) p. p. (Theor. VI). This last result is difficult to
prove, but we have been able to establish it by using some theo-
rems and methods of Khintchine?)

) Khintchine, Fand, Math, IX (1927) 212—279.
Fundamenta Mathematicae, t. XXIII, 13
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It is perhaps not superﬂuous to say that an extension of the
Denjoy integral is essential in order that the result expressed by (1)
shall be true. It has been shown by Neder %) that there is a series ()
which cc verges for all 4, while A

- Sae
1

is not uniformly convergent. Now, if (i) were true with Denjoy

integrals, (1v) would be the Fourier series of a continuous (complex)

function. It would thus be tniformly summable by Poisson's method,

and therefore, since ¢, =0, (1), uniformly convergent. Any method
_ of integration for which the result expressed by (u) is true, must

therefore, be such that the indefinite integral is not necessarily

continuous, »

In the latter part of this paper, we give two applications of the 4D
integral to the question of deciding what can be said of a trigomo-
metric series which is summable p. p. to zero, while one of the
Poisson sums is infinite at an at most enumerable set (Theors, VII,VIII).
In the case of Theor. VII we have thought it desirable to show
by examples in what respects the theorem cannot be improved.

At the end of the paper will be found a correction to a paper
which recently appeared in this periodical 8).

II. An extension of the Denjoy integral.

§ 2. Definition 1. Let f(x) be defined on a perfect set P with
extreme points ¢ and b. Then f(x) is said to be resoluble on P if,

t. = (a,, b,) denoting the contiguous intervals of P, the function g(x)
is resoluble in (a, ), where

g@) =fx) if «2CP
=/ + g (S —fla} i a, <2< b
This definition is due to Den]oy 9.

Definition 2. Let F(z) be defined in the elosed interval (a, b).
Then F(x) will be said to be approximately resoluble in (a, ) if it
possesses the following two properties:

%) Neder Math, Ann, 84 (1931) 117—136.

%) Fund. Math, XXI (1933) 168—210.

4) Denjoy Comptes Rendus 172 (1921) 653-—656.
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(1) F(x) is a differential coefficient;

() Given any perfect set P in (a,b), there is a portion of P
on which F(z) is resoluble,

By (1) we mean that there is a function () defined in (g, ) such
that ¢'(2)=F(z) for ale<(d, while ¢! (a)=F(a)and ¢’ (b)= E(b).

Theorem L. If F(x) is approzimately resoluble in (a, b), then
F(x) has an approximate derivative p. p.

We call £ a point S if F(x) is not resoluble in any neighbour-
hood of £ (or any one-sided neighbourhood, if £ is an end point
of (a,b)). By () Def. 2, the set of points S is non-dense, and it
is manifestly closed. Let F; be this non-dense closed set, and let
(ay, b,) denote a contiguous interval of Fy. If a,<a<g<b,, then
F(x) is resoluble in (e, §), and therefore has an approximate deri-
vative p. p. in (@, f), and so p. p. in (a,, b,), and p. p. in CF,,

Let P, be the perfect kernel of F,. By (i) Def. 2, there is
a closed set #,(C P, and non-dense in P,, such that if (a,,d,) be
an interval contiguous to Fy, then F(x) is resoluble on P, where P
denotes the portion of P, which lies in the open interval (a,, b,).
Let @, § be the extreme points of P{, and (a,,f,) its contiguous
intervals. The function

G (x) = F(z)
= F(av) + ﬁ % {F(ﬂv)

z(C P®™
e, <x<f,

Fa,)}

is resoluble in (a,) and therefore has an approximate derivative
p- p. in (@, B). Since G(x)=F(z) on P®, at a point of P at
which this set has unit metric density, F,(z), the approximate
derivative of F/(x) equals G,(), provided the latter exists. Hence Fa(x)
exists p. p. in P{”, and so p. p. in P, — F;. Since F; — P, is
enumerable, F,(x) exists p. p. in CFj. Proceeding in this way, we
infer the desired result.

§ 3. If g(z) be totalisable in (e, §), we shall denote ita total, or
general Denjoy integral in (g, §), by

D f g(x) da.

13*
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Let f(x) be a function defined in the interval (a,3). We say
that £ is a singularity of f(z), if f(#) is not totalisable in any
neighbourhood of £ (or any one-sided neighbourhood, if § is an
end point of (a,d)). The function f{z) will be said to be approxi-
mately totalisable in (a,d), if the following three conditions are
satisfied, and if #(b) — F(a) can be calculated by the following
three operations.

Condition 1. The set of singularities of () in (a,b) is non-dense.

Operation 1. If (o, f) is a closed interval which is free from
singularities, then .

F(B)— Fla)=D f ) dt.

Oondl’uon 2. If F(8)— E(y) is known for all y, 6 which
satisfy ¢ <<y <<d<Cf, then F(z) is totalisable in (e, 8), and the two
limits

Jim 1p f F@—F@)dw;  lim 7 1D f (F(y) — F(a)} ds

. gk
exist.

Operation 2. If e <y <{d < §, then

[
F(p)— 7)) =Jin 3 D [ (F) — F(O) dr;
ath

F()—F(@)=Jim 3D [ {Fo)— F@) é=.

Condition 3. If F(b,) — F(a,) =w, be known for the inter-
vals (a,, b,) contiguous to a non-dense perfect set P, and if
9(@) = f(=)
¥,
by,—a,
then tcllxere are distinet points ¢, d of P, such that g(z) is totalisable
in (c, d)
Operation 3. If ¢,d have the above significance, then

«xCP
a,<<z<b,

F(d)—F()=D f 9(2) da.
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A function which is approximately totalisable in (a, 5) will be
called integrable A D in that interval. If f(z) is integrable 4D
in (a,b), we can calculate F'(b) — F(a) by an enumerable set of
the above operations. We write

F(b)— F(a) = AD f f(2) daz.

Clearly, F'(«) —
a<laz<b
Theorem IL If f(z) is integrable AD in (a, b), and

F(a) can be calculated in the same way for

F(&)— F(a)=AD f At a, (@a<z<b)
then F(x) is approxémately resoluble in (a, b).
By Condn. 2, F(z) is totalisable in (s, 5). Let
G(m)=D/F(t) at. (@<z<b)
Oondn. 2 and Operation 2 imply,
G (2)=Fx) (a<<a<bd); Gi@)=Fx) (as<xz<)b)

Hence F'(x) is a differential coefficient.

Let P be a perfect set in (a4, b), and (a,, b,) its contiguous in-
tervals. By Condn. 8, there is a portion & of P whose end points
are ¢, d, such that g(x) as there defined, is totalisable in (c, d). Let

h(@) =D f 9(0) dt. (c<z<d)
Then h(x) is resoluble in (o, dc) For 2z C &,
h(z) = ng(t) dt
= sz) — F(e)
by Operation 3. For a, <<z <b,,

h@) =D j D f xg(t) at,
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The first term of the second member is F(a,) — F(c), by Ope-
ration 3. The second term is

—a, z— a,
e = o {Fh) — Fla)

by the definition of ¢(f) and w,. By Def. 1, the fact that h(x) is
resoluble in (¢, d), means that #'(z) is resoluble on & Thus F(z)
satisfies the two conditions of Def. 2.

Theorem III. Let F(x) be approximately resoluble in (a, b).
Then F,(x) is integrable AD in (a, b), and

F(t) — F(a) = 4D fzr,, () dz.

Let 7y denote the closed set of points £ with the property that
there is no neighbourhood of £ in which F(z) is resoluble. By (m)
Def. 2, F, is non-dense. If & be a contiguous interval of #,,
and d be a closed interval interior to d, then F(z) is resoluble in d,

Hence F,(z) is totalisable in d = (g, ), and
) g
F()—F(a) =D f F. (%) de.

Thus f(z) = F,(2), (defined p. p.), satisfies Condn. 1, and the
operation 1 is valid.

Since F(z) is a differential coefficient, it is totalisable, and it is
the differential coefficient of :

G@ =D f F(t)dt,
Hence,
1 v
FO=6@=ln 3D [Feds @<i<d)
and ¢ |
. 1 n
)= m=lnsd [Fai  @<q<y

74
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Let P be a perfect set, (a,, b,) its contignous intervals, Since F(z)
is approximately resoluble, there is a portion @ of P on which F(z)
is resoluble. Let ¢,d be the extreme points of @ By Def 1, the
funotion

H(z) = F(z) : zCa
=F(a) 4+ —2(F(,) — Fa,)} a,<z<b,

bn_an

is reéoluble in (¢,d). Now. p. p. in &, H,(x)=7F,(z), while for a,<2<b,,

I (b,,) ""F (a,,)
by—a,

Since H(x) is resoluble in (¢, d), -

F(d) — F(o)= H(@) — H()
=D f H,(2) d.

H,(z) =

Thus f(z) = F,(x) satisfies Conda. 3, and the operation 3 is
valid. This proves the theorem.

§ 4. Definition 3. Let f(z) be a finite function defined in the
closed interval (@, 5). Then f(x) is said to possess the. property R,
if, given any perfect set P in (a,b), there is a portion of P on
which f(z) is eontinuous.

'Theorem IV. Le F(x) be defined in (a, b). -Suppose thai

(1) F(x) has the properly E; .
(2) Fl(a) is a differential coefficient.

Let E be an at most enumerable set in (a, b). Suppose further, that

(8) At each point of CE, at least on one side, F(z) has finite
derivatives on a set of lower metric density > %.

Then F(x) is approximately resoluble.

By (3) we mean that on one side of a point £ C CE, say the
right, there is a set G, and a positive number K such that
. mGEELR 1
= o
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and such that

TP
for §4+2G.

Lemma 1. Any perfect set @, on which F(z) is continuous,
contains a portion & on which the variation of F(x) is defined.

If for every portion & of &,, ,
D 1F) — F(a) = oo,
®

where (a,, b,) are the intervals contiguous to @, and the summation
is taken over the intervals contiguous to @,. then by an argument
of Denjoy %), there would be a residual R of @,, at each point
of which the following condition is satisfied. If ECR, and K is
any positive number, the set G'= G (K, &) for which

Pe+h—F@
EEh=T0 E+hCa)

satisfies the conditions

mmOEEED _ 1 mGE—h g 1
— Sy ImEEeenics

Since R is un enumerable, this contradicts the hypothesis (3) of the
theorem. Hence there is a portion & of @, such that

o S FG)— Fla)| < oo
@
Lemma 2. Let p be a perfect set on which F(x) is continuous.
Then F(z) is resoluble on p.

Let a, 8 be the extreme points of p, and (a,, 8,) its contiguous
intervals. We define the function G(z) by

G(e)= F(z)
=Fe) + 5 == (F () — F(ay).

a,

zCp
a,<zf,

?} Denjoy Ann, de I'Ecole Normale 83 (1916) 127—222 (207). In this paper,
Denjoy is concerned with continuous functions. But the argument referred to
only requires the fanction to be continuous on &, .
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Then G(2) is continuous in (a,8). If G(z) is not resoluble in
(a, ), there is a perfect set ¢ of measure zero such that, either (a)
the variation of G(z) is not defined on any portion of g; or else (f)
the variation of G(2) is defined on ¢ and is not zero and of the
same sign, on every portion of ¢g. Now the event (@) cannot oecur.
For if it did, then since G(z) is linear in each interval of Cp, we
would have ¢(C p. Then F(z) is continuous on ¢. By lemma 1,
q contains a portion & on which the variation of F(x) is defined.
Since ¥(z)= G(z) on &, the variation of G(z) on & is defined ;
a contradiction, i

If now the event (8) occurs, then supposing as we may, that
the variation of G(z) on each portion of ¢ is positive, there exists
a set of points y, everywhere dense in ¢, such that

(1) G(x) has on ¢ the unique derivative 4 co at 7.

(1) For every point 6 C ¢ in a neighbourhood of y, the set of

values taken by G(z) on ¢d is of measure > gd, where d
is the interval whose end points are y, d.

This follows by an argument of Denjoy %). Since F(x)= G(z)
on g, we can gay,
(1) F(x) has on ¢ the unique derivative -+ co at 7.
()’ For every point 6 (C ¢ in a neighbourhood of 7,5 the set of
values taken by F'(z) on ¢d is of measure > Ed'
Now (1) (u) imply that there is a residual B of ¢ with the

following property. If £§C R, and K is any finite number, the set
G =G (K, §) for which

w})l;ﬂf) <K E+rC®
satisfies
h;%b ) - =] h

This follows by an argument of Denjoy"). Sinece B is une-
numerakle, this contradicts the hypothesis of the theorem. Thus (8)
cannot oceur, and G(z) is resoluble in (a, B).

%) Denjoy loc. cit. 204, .
) Denjoy loc. cit. 204—206. The argument only requires F(z) to be
continuous on g.
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We can now complete the proof of the main theorem. Let P he
any perfect set, Since F(z) has the property R, there is a portion &
of P on which F(z) is continuous. By lemma 2, F(z) is resoluble
on @& Since F(z) is a differential coefficient by hypothesis, it is
approximately resoluble.

III. Applications to Trigonometric Series.

§ 5. We write

A,(x)=a, cos nz -} b, sin nx, B,(x)=b,co8 nx — a, sin nz.

Lemma 3. If for every x in (0,2m) which doss not belong to

an enumerable set E,
P HO
1

G@)=_J A(z)/n
1
converges for all x, then G(x) has the property R.

< oo,

Tim

n-—>00

and if

By hypothesis, there is a finite function M(2)> 0, defined in CE, -

such that for  (C CE,
< M=)

S 4@

for all m. Then for such z,

2 A, (2)n

1
< r<y'<v)

»
D 4@

<

Let E, denote the set of z in (0,2n) at which Mz)<m.
Then CE=ZE,. For any v and # >, we have

v
| D 4@m<Z. (@C E,)
By continuity, ’ )
6) D A@n|<T @CF.)

where F, = £, -} E. is closed.
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Let E be enumerated as x,,,,... Then (0,27).1i8 the sum of
the closed sets ), x;, Fy, ,,... Given any perfect set P in (0, 27)
one of these closed sets contains a portion & of P. The closed se::
in question must be an 7, say F,. By (1), there is uniform conver-
gence on &. Hence G(z) is continuous on a.
Let f(z) be defined in a neighbourhood of the point £ Let 6 be
number which satisfies 0 < 6 < 1. By the symbol

“‘°°<Dof(§)<°°

. we mean that there is a set X such that

hr_%mE(g;f"'h); 8

and a number & such &at for 2 C E,
L =18 <,

H

Lemma 4. Let 0 << 6<<1. If

Hm 2',4,,(5)’ <eo, Im Z Ba(8)| < oo,
then ' »
®  re=—3%0  ep=3%0
satisfy
3) —oo Dy F(f)<oo, — o0 DyG(f)<<oo.

We may without loss' of generality suppose that £=0. Then
there is a C>0 snch that |a,|<<C, |b,|<C for n=1,2,...
Hence the series in (2) converge p. p. as well as at £ In virtue
of the symmetry of the enunciation, it is sufficient to prove the
first relation in (3). For almost all A, we have

PR —F(0)_ v sin2nh  wr, sin'nh
“2h “.12“" 2nh “;12”" nh

Write :

S sinnh > . sin®nk
nW = a——  aB)= b~
1 1
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It is sufficient to prove that there is a K>0 and a set E

such that

lim

A=p+0

yAON
m }(la )>0

S. Verblunsky:

and that g,(h) has a similar property.
By hypothesis, there is an 4 > 0 such that

for all n. Write

Then

P1

n

o

1

<4,

8, = S .

1

zu'b,,, <A
1

lps(B)| < K for ACE,

sinnh in(n41)A
0= F (TS

h—l]

=3+3
U

= 5,(k) + 7, (h).

In (0, 1), sin #/z diminishes. Hence

(A1

l“l(h)l<‘42(smnh si(x:g(:_—i—)}l}h)

< 4,

if h<<1. We have

sinnh  sin(n--1)h _1—cosh sinnh sink cosnh

sinnh

nh +Dk =k a1 & n—|—1+nh(n+1)
so that
__1—cosh sinnh sink cosnh sinnh
h) =
s (k) [h1]+in+] G Dt " phin1)
e L AR LI NN
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‘We have
v !
PACTREp —
h -~ _Hn n(n41)
< 4.

Let 0<<e<<l, O0<<%<<1l. Let E, be the set of points % in
(em,m) at which |J;(h)] > B, where B is a positive number. For
en<{h<C 17, we have

[(eﬂ)‘ll |
- Wi (B) — S < 2
[

<< 2A4log —‘1:_,

and

BimE, < | Jih)dh < 2ﬁJ1(h)“ (m)]* ah + 2fJ?(ﬂ) ah
€n ¢

n
1\ 2
<8q4 (log;) + 2n[2_1']m
. " Yi
@) < 8qdr (log;) t 27ty

We choose ¢e=e¢4 where 4 > 1 and ¢4 << A2 Then the
expression in (4) does not exceed 167 A4 If now we choose
B=4A3 we infer that the set in (0,7) at which [J,(k)] > 443
is of measure less than

2
e'l]—l-—mE'l <I'£

The same evaluation applies to J,(k). Hence the set in (0, ) at
which |@, ()| > 1043 is of measure less than i—’i We can choose 4
so that

1—h>0
Let K ==10 A3, Let E(z) denote the set of h in (0,7) at which

|9, (B)| << K. The measure of this set exceeds 76. Let the rational
numbers in the open interval (0,7) be enumerated as 7, 7,...
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Let E= 3 E(x,). Then for hC E, |p,(h)| << K, and for any positive
h<n, if 5, is a sequence of rational numbers tending to 5,

m E(0, k) —1lim™ E(0,1,)

b Ny
>0

Consider now ¢, (k). Write 0, = Enb,,,. Then
1

_w, (sinfnh sin?(n1) K
(Pg(h)-—;a,,( nh - (ﬂ+1)h )
1 = '
=3+
O SRSt
=N+ L)

In (0,1), sin? x/ is increasing. Then

L P
sin?(n-+1)h sin®nh

<A
if h<<1. We have
sinfah  sin*(n-1)h
nh m4+10)nr

8in2k sin2nk  sin®h cos2nk sin®nk

2h w1k al +nh(n+I)’

so that
__ sin2h sin 2nh  sinth cos2nh
A= T T h et T
sin?nh
+2“"nh(n+1)'

The three sums are then treated precisely as J, (h), J,(h), J;(h)
respectively.

§ 6. Lemma 5. Let 4,() = O(1), B,(&) = 0(1). If

~ 2 Boym, 3 4,

icm

Trigonometric Series 207
converge to F'(§), G(&) respectively, and if
Ho)=—3Y 4.(@)n, (@)= — ' B, (@),
then
(5) H(E)=F(¢), K(@E=a(@.

. It is no loss of generality to suppose that £==0. We may
further suppose that

(6) 2 b,/n=0, 2 a,/n=0.

In virtue of the symmetry of the enunciation, we need ouly
prove the first of the relations (5). We have

H(2r) — H(O) b, sin2nh a, sin2nh
2h "—2‘7{%’*‘27{' nh
=@:(h) + ¢ ().
That @, (h)—>0 in virtue of b,= O(1) and the first equation

in (6) is a known theorem of Hardy and Littlewood®).
That @, ()—> 0, may be established by similar arguments. We write

B

W)=Y+ ¥
R L B
== ry(h) + 73 (h).
Put
Sy =2 a,[m.
Then l
¥ (A

0=3+3

where N is an integer such that |S,|<<e for > N—1. Then

N—1
2
1

) Hardy and Littlewood Proc. Lond. Math, Soc. 22 (1924) XVIIL

<e for O0<<h<h(e),
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and
L I Ll

2 =2 (5 — 5,0) 02 gin? nh

51n’(N——1)h+[ y

= — 8N-1

sm’ nh s (n4-1)k

ek

sin? [A~"| b

T o s

The first and third terms do not exceed e in absolute value.

Since sin? z/x increases in (0, 1), the second term does not exceed e
in absolute value. Hence

|ri(R)] <4e for 0 <A h(e).

We have
ra(h) _Z 6, 1 —cos 2nh 2nh
[h“H-1
a,cos2nh
=32 2 nih 4= n 2nh
Now
00 a 1 n
2 L e Max Za /n
3 = —1 n
SN TF D o | 4
€

Finally, supposing as we may that |a,| < 1, let k= [e—}]. Then

j‘ a, cos2 nh < 1
e P n 2nh R+ E[A)
<k
<2¢ *
And
k[ 9nk
g, cos2n
M 2 n  2nk
141

can be expressed as the sum of groups of comsecutive terms, such

. 2nh . :
that in each group, 032——;} is of one sign, and varies in one sense
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as n increases. To each group, we apply Abel’s lomma. The absolute
value of each group, does not exceed e. The number of groups is
less than 2 plus the number of intervals of the form (%, (r+1) %),

7 an integer, which are contained in (1, k). The number of groups
is therefore less than 2k for sufficiently large k. Hence the absolute

value of (7) does not exceed 2¢¥. This proves the lemma,
§ 1. Theorem V. Let

lim

n-»00

a, — ib,)

2 Cm e"”"‘t < oo (e.=
1
for all x, except those belonging to an enumerable set E. Let
im
1

converge for all x. Then F,(x), G.(x), the approzimate derivatives
of F(z), G(x), exist p. p., and

= F(x) — i G(z)

v n
a,,=%AD/F,(@cosnmdz=m$ADfG,(x)sinnxdz,_
1 d . 1, f
b, =-;ADfF,,(a;) sin nx dor = ;AD/G,(x)coanxdm.

‘We have
— ¥ B@)n,  G@)=3 A@)n

Flx) =
By lemma 3, F(z) and G(x) have the property E. By lemma 5,
F(z) and G(x) are differential coefficients. By lemma 4, taking
6>4%, F(z) and G(x) have at each point of CE, (on both sides),
finite derivatives on a set of lower metric demsity >>%. Hence by
Theor. IV, F(z) and G(%) are approximately resoluble. By Theor. III,
F,(z), G.() exist p. p, and

0 = F(n) — F(—n) = AD f F.(x) dz.

0= G — G(—m)= Apfa.,(z) de.

Fund ta Math 3

T. XXIIL 14
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Let u# be a positive integer. Consider the expressions

N—p

N pu~-1
1) 2 M 2' — i) 5'
e cmem‘—cy-'- p—r'e rx_l_ ,u+"
1 re=1

. ral

where N> p. Write d,=c,,, (;'= 1,2,.

im 2"' d, e™
1

..). Then

< oo

n—>00

for all z of CE. We have
w1

Fle)—igey =it J g et F i

Denoting by K a suitable constant, we have
pu~l
P, T R
]d 2 z(y.-—r z'r

Crtr
+Z z(pir) ir’

K+, f [Fo—ig@pem—

Hence,

Kip +iﬂf [{F(t) — i G — ffi] dt=

2 # ’(zr z(y—r)) ~m+2 “""( ,u—f-—r))
and so
{Fl@)—iG@)ye'w - Kip i uf [{F(t) — G et — :—Z] di =
’4—]
-3 >
Writing
Hy=— a4 3 2o

we have that

icm
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converges for all x to

F(z) —i GW(2) ={Fz) —i Q@) e+ Kip+

+ip j [{F(t) — 1 Gt)) e~ — f’i] dt + H(z).
J u
By what has been proved above, it follows that

0=4D F(")(z) do — ADfG(’"(a:) da.

-7

Now
FP(2) — i G () = {Fo(2) — i Gu(a)) e — ¢, + H,(2)

for almost all x; and by the definition of H(x),
fm@m:a
Hence -

®) a,= %E AD f (. (@) cos pz — G, (a) sin ) der,
9) b”=§1;ADf{F,(z) sin p 2 -}~ G,(z) cos px} da.
We now consider the expression

N N
eil‘*z ¢, ™ =2' ¢, emtux,
1

en=10 m=12...u
m=p+t1u42,.

‘Write

C == c"""‘[l

Zu'e,.e"“
1

Then
< oo

Iim
n=—»00

for & " CE. We have

{F(x) — i G(z)} e -—2 i(rwu)

rm ‘u+1
14*
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Denoting by C a suitable constant, we have We require a series of lemmas,

e Lemma 6. If
c+ ﬁF(t)——-zG(t)} e’f“dt._z'z i e
Hence nlin:. Za,,, < o0,
1
1 d ’
Cip +in f () —i G0 e dt _2 (z — ?r-) ¢, an .
and €1) 2 @p =1,
x - 1
(F(@) — i G(z)) v — Cip—ip f{F(t) —iG@Oyemdt= 3 " om then .
—x =it lim a (sm nh)’= .
s e k=0 " nh :
= ¥ 1
peiid We may suppose that s=0. Write

Writin
e Feu(g) — i GTa(m) =

n n
8 = 2 Gy Oy == 2; 8.
1 1

—(F(s) — i G@)) v — Cipp—i ‘uf{F(t) — i G(p) emtdt,
- We may suppose that

we have by what has been proved above, (10) 8] < 1, n=1,2,.)
x x and we have _
0= 4D [P ds=4D [6rn) iz 1) | 0= o(n)
But ” N Write
FEa (z) — i GEM(2) = {F, (%) — i G, ()} ¢ B — (BnF
for almost all 2. Hence v = ( h )
‘Then
0=AD [ {F.(x) cos px } G, () sin px} dz, ’ sink fcosh sink
] v =27 (T T):
(12) g 20083k dainh | o 2k
0=AD [ {G,(x) cos px — F,(x) sin px} dz, ()= - +

-

These equations together with (8) and (9), give the desired result. We use the notation

§ 1. Theorem VL. If, in addition o the hypotheses of Theor. V. Advnh)=ypnk) —¢n+1)h;
' T » a Hpmh)=pnh)—2¢9@m+Dh+ w4 2k

im ¥ ¢, r"e™ = f(z) —ig(z). We have

re>1

Ezists p. p., then F(z) = f(2), G,(x) =g () p. p. 12' a, ¢(nh) ——-‘lzvvs. dynh)
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Let k>1 be a positive integer, For nh >k Aw(nh) =
=—nhy'(n+ )k, 0<< <1, so that by (12),

4
(13) Ay (nh)| < . (nh>F)
Hence
—1
X aven <%[§] |
n>klh
< 8/k.
Further,
(k/A)+1 (k/h]
2‘ s, dw(nh)= 2‘ 0, 43 (k) +- [, A (A= (1) -1
1 1

By (10) and (13), the last term tends to zero as h—>0. Let
N = N(e) be an integer such that

(19 0. < enm (nZ=N)
‘We have to consider
[k/h] [+  [k/A]
Sesvon=3+3
N [
=J, + J;.

We see from (12) that for h<<1, |¢”(h)|<<C, an absolute
constant. Since A?¢(nh)="h*y" (n4-26)k, with 0<<6<<1, we have

|43 @ (nh)| << CB3. (nh<1)

(>

|J1|<Ceh’2'n

N

Hence

< 2Ce.
For h>>1, we have by (12), |¢” (k)| << Ch~>. Hence

|42 g ()] < (nh=1)

Hence
|k/h)

5] < O 3 |ou] n.
-1+

icm
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In the ringe of summation, we can write |6.| << nn(h), where
(k) — 0 with h. Hence

|/3] < Cq(h) log k,

and this tends to O with k. Since ¢ can be made arbitrarily small
and k arbitrarily large, the lemma follows.

Lemma 7. Under the conditions of lemma 6,

sin? ¢
I|—>0 Q, — 3 f di = 0.

We may suppose that s==0, and that (10), (11) are satisfied.
The proof is similar to that of lemma 6. Write

’p()_lfsmt :

Then ¢(x)—> 0 as 2 —>co, so that

oa

2 o, p(nh) =2‘ s, Ap(nh)

)

x M
¢(x)———°m’”—-1-hf—““; Far.

‘We have

z?

We can choose the positive integer % so that |@’(z)] <<~ for

2>k Then
wad |4 @(nh)| << n~*h b, (nh = k)
2 s, 4 (p(nh)i <‘2k“".
We have o
e bte 1ty

0

For 2<1, |¢"(#)|<<C, an absolute constant, Hence the sum
which eorresponds to J; of the preceding proof, does not exceed
2Ce For 2>>1, |¢” ()| << Cz so that the proof can be completed
as in lemma 6.
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Lemma 8. If

lim 5 e, oo
n—>00 1

and
lim @, r" =S8,
r—>1

then

Ja=s 1)

This is a special case of a theorem of Hardy and Littlewood 9),

§ 8. Iemma 9. (Khintchine™). Lt ¢(x) be integradle L
in the interval (E—u, E-+1), and let

O(2)= | p(f) dt.
o

If
Do =lim 2R + BE—1) —20(¢)

=0 h?

exists, then

1 f — o(E—

where the integral is taken as

h
Hmf.
E*-)Oe

Lemma 10. Let (z) be integrable L in an interval, If the
mean derivative of @(z), i. e.

k
(16) q),(:c)—_—jl‘iﬂzl f '&M i

i8 ,measur.able and exists p. p., and if the approximate derivative 0.(z)
of (@) is measurable and exists P P, then @,(2)= g, (z), p. p.

+%) Hardy and Littlewood Journal Lond. Math, Soe. 6 (1931) 281—286.
1) Khintchine Fund, Math. 9 (1927) 212279 (221),

icm
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It has been proved by Khintchine that if @ (%) is continuous,
then p. p. in the set in which ¢,(x) exists, @,(x) exists and equals
@n(2). In the above lemma, @(z) is not restricted to be continuous
Bat in virtue of the other hypotheses, we are able to establish the
result by adapting the proof of Khintehinel)

By a theorem of Lusin 1?), there is a continuous funetion P (x)
such that ¢'(x) =g@.(x) p. p. By subtracting this function from
¢(z), we reduce the lemma to the case in which @,(z)=0 p. p.

Suppose then there is a set £ of positive measure such that
for xC E, ¢, =10 while ¢, exists and differs from Q. Then there
is a sub-set J of E, of positive measure, at which say,

(p,,,(x)=0, ?a(m)>k>0 (xCJ)

We can find a diminishing sequence %, —>0 such that in the
interval (h,y, k), the oscillation of

1 (o@t+)—o@)
Euf_——"“—t it

for each z of J does not exceed 1/n. If follows by the theorem
of Egoroff1#) that given a positive number #<C%/3, there is
a sub-set H of J, of positive measure, such that

1 [oWw—
(17) !t_xf‘p(“’)‘_f(”)du

where [ is a fixed positive number, the same for all z of H.
Let x, be a point of H at which H has unit metric density.
The set K of points  such that

<n @CH, 0<i—a<L)

PE)—plm)

T — T,

has unit metric density at z, So then has the set HK. Let ¥ denote
the perfect set of points z of HK with the property that every

u) Khintchine loc. cit. 276—279, 233.
13) Lusin Comptes Rendns 1562 (1911) 244,
1) Egoroff Comptes Rendus 152 (1911) 244,
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neighbourhood U(x) of « satisfies mU(x) HK > 0. Then m F=—m, HEK,
2,C ¥, and F has unit metric density at z,. Hence

(18) 2= 0@ WCF, y>a)

Let €< 1/3 be a positive number. For all sufficiently small
h<<l, we have

(19) m F(zy, 2, +h) > (1—¢) h.

We may suppose that there is a sequence +Fh=5>5>..,
£.—> =y, of points which do not belong to . For otherwise, (18)
would hold for all y>>g, and sufficiently near to it. This would
contradiet (17).

Consider the interval 4, — (&xt1 ). Liet e denote a measurable
set in 4,. Then

o) — 9o
u—uwx,
is an absolutely eontinuous funetion of ¢. It is therefore possible

to find a finite number of non-overlapping intervals d,,, Opas...y O,
such that

P() — p(=,) @ (¥) — @(x,)
(a) a5, _——“':Ko— adu > (1 - GL/ “T:_?—g- du.

and, since the integral last written exceeds the fixed positive num-
ber km Fd,, such that

(8) the end points of the d,, are limiting points of 7, and
therefore points of 7

Let n, be chosen s0 that
n
2mFd,>(1——2s) h.
1

We then have r, -, ... 7, =P intervals d,,. Let these be
numbered from left to right as

(a‘h bl) (an b:)'-- (ap1 bp)‘

icm
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These intervals consist of m, groups. For each group, (a) holds.
Hence by (18), (20),

e 3(;,,,/;, U—Z “>1—ek(l—2qh
> (1—38e)kh

We now evaluate the integrals over (3, a,), (b, a,),.-. (b, a,),
where by =3,. We have ¢ (u)— p(zy) =9 (u)—9(5,) + 9(,) — 9 zz).
Since b, C ¥, we have by (18), p(5,) — ¢(2,) > 0. Hence

Gnil “ntl
I = (p(u) - ‘p(‘”g)_du >f¢(u) —(p(bu) du == J‘.
" U — 2, U — I,
b’l

n

In J,, the integrand can be wriiten

U — bn.¢(u) _ ¢(bu)
U — x, % — b,

The first factor ijs monotone in the interval of integration. The
second factor we denote by «,(«). By the second mean value theorem,

Gpdy

= | fae]  Ge<E<an
'n+1 05

-
<|f v an

Since b, C FCH, and a,,—b,<<§, we have by (17),
IJﬂt < 2(a'u+1 - bu) 7 and so In > —2 (an+1 - bn) 7. Hence

—1

‘):1,,> — 24k,

=0

.

+ f () du

By (21),

'p
2(“) — @ (=) du>(1—3¢e)kh—2nh.
U -,
x

—_ — . i h> b _'xo,
Hence by (17), 7(b,— zo) > (1 —3e)kh—21h Smc'e "
this gives 39 > (,1 —p3€) k. For sufficiently small ¢, this contradicts

n < kf3.
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§ 9. We can now prove Theor. VI. By the symmetry of the
enunciation, we need only prove that F,(x) = f(x) p. p. Let & be
a point at which

lim lim

ZBM(@’ < oo,
1 |

and for which f(£) and g(£) are defined. By lemma (8),.

J4@=r& @1 I BE=9® (€1

By lemma 6,
D*H(§) =f(§),

where H(z) has the meaning of lemma 5. By lemma 9,

Now

FE+20)+FE—28)—27(E) _ v Bu(8) sintnh
2k =2 3 .

p. p- in A The second number is

L gBE_ 1 yB@
FD n T T comnh

If 0<d<gq, then

PE2h+ FE—20—25@ .
2k -

%2‘%‘@_)_ dThZB"T@cos2nh.
s

2 '(E) —2'cos2nh

is a Fourier Lebesgue series in %, and hence

2 '(g)cos2nh 2' B, OOS2nhdh.

But
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Thus

f’F(5+2h)+F(§—~2m—2F(§) 2 &Q(E)fsin’nhdh

2h
s

(23) —2 2 B.(¢) f sintt o,

By lemma 7,
q
1n?2
24) lim 3 26 f S0ttt =0,
70 nq ; t
A fortiori,

lim B,;l(E)fsm tdt._O

8—>0
0

In (23), let 6— 0. Divide both sides by g and let ¢— 0. By (24).

1f"F§+2h)+F(§ 20 —2F @)

g0 qo 2h

Hence by (22), F,(€)=f(€. Thus p. p. F(z) has the mean
derivative f(z). By lemma 10, F,(2) = f(z) p. p-

The following result, which we express as a lemma, should be
noticed.

Lemma 11. If

2,‘0,,, o

converges to f(E) — ig(E), then F,(§)=f(£), G.(§)=29(§).

This is established by modifying the proof of lemma 4. We
must now show that @, (k)—>0 approximately, and that g,(h)—>0
apprommately We remark incidentally, that @, (h)—>0 approximately,
is a result die to Rajehman and Zygmund ). The modification
of the treatment of (k) in lemma 4 will be obvious to the reader
on examining the proof of lemma 19, V 1%); and then the modifi-
cation of the treatment of ¢,(k) will be equally clear.

) Rajechman and Zygmund Bull. Acad, Polonaise 1926 69—80.
1) Fund. Math, XXT (19383) 168 —210 (190).
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§ 10. Let }
(25) 1o+ Y 4,6
1
be a trigonometric series. We write

P(ra)=}a+ Y A(x)r,
and
P(g)=1lim P(r,2); Plz)= 1151' P(r, z).

r—1

If P(z)=P(z) we denote the common value by P(x). If
a, = o(n), b,=0(n), and P(x)=0 p. p., while P(x) is finite exoept
at an enumerable set & at which

26) lim (1 — 7) P(r, ) = 0,
r—>1
then
a°=0, a,,=b,,=0. (n=1, 2,...)

If the condition (26) is omitted, the conclusion no longer holds.
For example,

%—}—2 cos nx

satisfies P(2) =0 for ==0 (mod. 27).

Consider the case in which E is reducible; i. e. the derived set
of E is enumerable. We have,

Theorem VII. Let (25) be a trigonometric sertes with a,=o(n),
by=o0(n). Let P(z)=0 p. p., and let P(z) be finite except at a re-
ducible set E. If

(27) —'2 An(’)/ng

converges for all z, then the series

— 3 B.(z)/n

is the Fourier AD series of a function which, in each interval u,

(m=1,2,.) contiguous to E-E', is of the form — & ay 2+ o,
where c, is a constant.

Trigonometric Series 223

The set £ - B’ is enumerable. Let , = (a,,, §,) denote a con-
tiguous interval. Let #'(z) denote the sum of (27). By lemma 15, IT 1¢),

(28) Fa)=—%}062'"tcpz+d, (e.<z<Bn)
where ¢, and d, are constants. Since (27) converges for all z, and
its coefficients are o(1/n), it is a differential coefficient. Since E -+ E’
is enumerable, given any perfect set P, there is a portion & of P
which is contained in a contiguous interval u,. By (28), F(z) is
resoluble on &. Hence F'(x) is approximately resoluble. We have

Fﬂ(x)=F’(x)=_igoz+cms (am<m<ﬂm)

and
F(x) — F(0)=AD f F(t)dt,

the integrand being defined for ¢ not belonging to E+ E'. In par-
ticular,
0=A4D jn F'(b) dt.
Sinee (27) is the Fourier Lebesgua series of #(x), we have
27 B 1 2
1 ,. : —
(29) —Z—;:Efﬁ'(m)cosmdx, —ﬁzﬁfﬁ'("’)mnm‘i‘”' (n=1,2,.)
0 0

We must show that in the formulae (29), we can integrate by
parts. Consider the first formula. If ¢, <a<<f<f., then

f pF(a:) cos nx do = [F(a:) Binnm]i ——% &[ ;” () sin nx dz
(30) — [F(x)'“i“n””}i —lap f F (<) sin ne da.

The first member tends to a limit as 8 — §,, @ - &, indepen-
dently. Since F(z) is a differential coefficient, (28) holfis' for
2, <z <P, Hence, the AD integral in (30) .tends to a limit as
8 — 8., @ —> a, independently. By § 3, Operation 2,

sin n
n n

oy

(31) f mF(a:) cos ne do = [F(x) ”]‘*"’ ~Lup f e () sin 7w da.

1) Proc. Lond. Math, Soc. 34 (467—491) 466.
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Let (£,1) be an interval contiguous to the derived set of £ E’.
If there are no points of E -4 E’ in (,7), then (§,4) is an interval u,,.
If these is a finite number of such points, then by the addition of
a finite number of equations of the type (31), we obtain an equation
-of that type with £, # taking the place of @,, 8. respectively. If
there is an infinite number of such points, then they cen be
represented as .

ey <Oy <Ly < gy <<, <

where the sequence is infinite in one or both directions. Suppose
that it is infinite on the right. Then a,—>7n. We have an equation
of type (31) for every interval (a,,a,4), r==0,1,..., and hence for
every interval (ay,a,), r==1,2,... Further, we have an equation
of type (30) for every interval (a,,t) where a,<?<Ca,.; hence
also, for every interval (ao, t). Thus,

fF(x) cos nx de = [F( )sm m} —mADfF'(ac) sin na da.

The first member tends to a limit as t—>n. Since F(¢) is a dif-
ferential coefficient, so is F'(#) sin #t. Hence

n S . .
lim %f [F(x) sin m] it — [F(x sin m:]ﬂ_
k40 n a n
1,——11

By § 3, Operation 2, we bave

3
f F(zx) cos nx dzr = [F( )Eull nm] — % AD f F'(x) sin nx dz.
2
ag

The interval (§, a,) is treated similarly. Thus we have an equation

of type (31) for every interval contiguous to the derived set of

E+E’, and for every interval contained in such an interval. Pro-
ceeding in this way, since in the enumerable well ordered set of
derivatives of E 4 Z’, each is non-demse in those which precede,
we obtain the equation

2 27

fF(z)cosm:dx [F( )‘“‘”””L ——%AD/F’(:») sin ne d.

0

0

icm

Trigonometric Series 226

By (29)
B

n

——ADfF’ (%) sin na dz.

By & similar argument,

27
Q‘ = lAD f F' (2) cos nz dz.
n n

Q

§§ 11. In the simplest case, when the derived set of £ consists
of a single point (mod. 27), it can happen that the series (27) is
not convergent at that point, while the other hypotheses of the the-
orem are satisfied. We shall illustrate this by an example.

Let g(z) be an even periodic function such that g(z) is convex
in e<o<<nm and g”(x) is continuous in that interval, for every
positive ¢ <7, and such that g(z) > oo as z—0, and

(32) lim nfg(w) cosnz dx, = 0.

n—roo

Such a function is

k(:c)—__—l/log%:f, o<
F(—a) = k(2).
We have
sinne
fk(.b) cos nx dx = Enf dz.
l/log—
Now if 0 <Te<]m,
v
tim &n?}de_O
n—>3 lo 2__—
L
while
| Al 1 " sin
fl =1/ 2= dx O<¢<9
Al
0 € ¢
7
log?jf
15

Fundamenta Mathematicas. T. XXIIL
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Thus k(«) satisfies (32). Also k() is-continuous and positive
for 0 < z<m, so that k(z) is convex in that interval.
We are about to construct a series

-

(33) fl@)~ %a +2va,, 08 N,

" such that,

mofl

(i) 2 a, is divergent.
(ii) there is a sequence 7 =0a,> ¢ >..., lima, =0, such
that f(z) is linear in each interval (@, <2< @.).

Then Jna,cosnz is summable (P) to zero for all x==0
(mod. 27), ==, (mod. 2m).
If 0 <a<B<<m we denote the interval (@, §) by J, and we
write
M(6) = Max ¢’ (z).
asx<sg

I‘aet a=§>&>..., §—0 be a sequence of numbers. Divide
the interval 8, = (&1, £,) into ¥ equal subintervals d,,... d, . Let
8, = (a, §). Let o

aQ

9@ —g(@).

Sf@)=yg(a) +Z: e<z<<fh)

Then

_g(@) 4 g(p) « ® — g(a |
68 for=tOFL0 (o *2‘*9)”2__5“). (a<z<p)

We denote by 6 a number which satisfies §2<C 1, and which
may vary at differen: oceurrences. If M/ = M(a, §), then

s

soms ()5 ()

From these relations we substitute in (34) for o 9
and fO]_‘ {g(ﬁ) S g(a)}/(ﬂ__ a), and obtain {g( ) + g(ﬂ)}/ b

s ) <

icm
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B—a)2M at+Bl(f—a) M
<= —l—lx~-§—~! oM

L

i e<r<p)
Again, '
| o382 t8) (28 * M
|9¢) 9(*5") ( 5 )9 (T)| <(”“QJ§5) 2
Hence
[f(@) —g@)| <(B—ea) M(a, 8) - (e<z<P)
Write
W) = f(&) — 9 (2) 0.
Then
Max h(s) < (3— o)t H(a, )
<(&— §u+1) 0, M(8,)/v.
Now
v én
tin 3 6, M(3,) = f 7" (z) da.
Hence B o

v .
31_)!1:0 g 1\(%3{ h(z)=0.

We choose » = #(n) so that

(35) 3 Mexh(e) < 55

()]

We have now expressed 0 <<z <7 as the sum of the intervals
8, (n=1,2,...; i=1,...7(n). We denote the end points, starting
from 7, by == @, >, >... Then lim &, =0. Consider the func-
tion h(z). We define k(o) = 0. This function is absolutely continuous
in (¢ 7) for all positive ¢ <z To show that it is absolutely con-
tinuous in (0, 7z), we must show that it is of bounded variation in
that interval. Consider the interval (@, @,). In this interval, h(z)
is concave, Thus h(x) increases from 0 to a maximum, and then
diminishes to 0. Its total variation in this interval is twice its

1b*
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maximum, By (85), the total variation of h(z) in (0,m), does not
exceed 4.
Since h(z) is absolutely continuous in. (0, ), and ~(0) = h(z) =0,
we have
n

limn [ h(x) cos nw dx ==

Ry

By (82), f(«)==g(x)} h(x) satisfies (38). Finally, f(x) > co as
2 —>0. Hence the geries (33) is not summable (P) at x =0, and
is therefors not convergent at that point.

§ 12, In Theor. VII, the series — 2 B,(#)/n is a Fourier AD
series, but not necessarily a Fourier Denjoy series; i, e. the sum
of (27) is approximately resoluble, but not necessarily resoluble,
even in the simplest case in which the derived set of E consists
of a single point (mod. 25). We shall illustrate this by an example,
We shall construct a series (33) such that

(i) Xa, is convergent;

(ii) there is a sequence m=@a,>a; >.
that f(z) is linear in @, <<z <<a,;

(iii) f{x) is discontinuous at the origin.

. lim a, =0, such

Then the series (33) will be convergent for all . The funection
f(®) being discontinuous at the origin, is not resoluble. Manifestly,
3na,cosnz is summable (P) to zero for all #==0, ==a, (mod. 27).

Let #,>>b be a positive integer; let

7T 1
w1+3)

elsewhere in (0, 7).

m@=sin2nm(a—2) (1 J<os
=0

There is an n; > 2n, such that

}n/tp,cosm;dw < =
Let

@3 () = sin B n, (m—,—?;) nf‘(l_.gl) <z

(n 2= ng)

<z(+}

=0 elsewhere in (0, 7).
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There is an n, > 3#, such that

T

1
<%7 <§;~ n=n,)

T
nfq;,cosm:dx
0

n f @, cos nx dx
Let
1

. 7 n L/ 1
@,(x) = sin 47 n, (m——-n—‘T Z(1-_Z)<x<_;;(1+z)

=0 elsewhere in (0, 7).

In this way we define ¢, for r 2= 2. Since #,44 > rn,, we have

n,+1(1+r+1) ; (1.—;1_)’

go that the intervals in which the functions ¢, differ from zero,
do not overlap. We write
=2 9.
2

Then for » > 3,

nj(p cosnwdx\'glnfn (5’ tp,,) cosmodw\+
+\nf (jq),,) cosm:dz\
Y\
<11+12+Ia

The function 3 @, is O outside the interval
rH1

@, Co8 1w dz

+in

(0o ()

and does not exceed 1 in absolute value within that interval. Hence

2
ﬁ—(;—);i—%< —:E for n <Ny

Again, by construction, for n Z=n,,

nE/(p, cos nx dx | < ),, ‘ j(p,_, cos nz dz | <

(36) L <

1
o <=1
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so that

1
I’<r—1 for nZ>=n,.

We write
Z(1+3)
_nfqn,cosnzda:—nf%cosnxdm.
0=3)
Put
= (1—-1-' g= _(1+
=il s=xl+)

In the interval (e, §), we have
. E7
P (x) =sinmrn, (m— ;l:) .

Since ¢ (a)=¢,(8)=0, we have

8
U, = —fqn;(a':) sin nz dz.

Let » denote a positive integer less than #,. Then

8 -8
Uy — Uy = f @, (z) sin nx (cos vz — 1) dz -+ f @, (x) cos nz sin vz da.

In the interval (@, 8) of length 2m/rn,, the total variation of
each of the functions cos»z — 1 and sin #z, does not exceed

277.
prgn

< —
Hence

8
f(p,smmcd:c‘—{— Max lfq;icoamdx

a<y<d<p | v ]
¥

a<sy<d<p

luu_un+v[<.2r [ Max

Now the funection ¢,(x) varies in (¢, §) in the same fashion as .

sinz in (—m, #). In particular, we can divide (@, @) into three
sub-intervals in each of which @j(x) is of a constant sign. Hence
for (y,d) in (@, §), we can express (y,d) as the sum of at most
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three intervals, in each of which g, is of a constant sign. But in
an interval (4, u) in which @; is of a constant sign, we have

r cos LA I
sl funs
<2 '
Hence
24 ‘
(38) Jthy — theg | <= 1<r<n)
We now observe that
(39) =0 for n=0 (mod. n,).
For
26+
u,=mn [ sin nrn,.(a:—-— —i—f—) cos nx da
26-3) '

L
™y

= fsin wrn,t cosn (t—{—%) dt

m 7

When n==Fkn,, k an integer, we have

b3

mp

U, = (—1)* nfsin srn,tcosnt di

i3

me

=0
since the integrand is odd. By (38) and (39), we infer that

(40) L=l <2 (n=1,2)
By (36), (37) and (40)

267 1
<m+r——1

® cos nz dx (n, < B 1mg0)
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Thus
(41) lim n6/.¢p cos nx de = 0.

The function @(z) is discontinuous at the origin. We define an
even periodic function g(z) by

g@) =) for 0<z<Cr; g(0)=0; g(—2)=g(x).

The function g(z) is bounded. It is also approximately continuous
at the origin, For if

T, 1 7 1
() < <5 [1=3)
and E denote the set in which ¢(x)3= 0, then

EQ,a) _nyutr+1) 2 2
PR '+r+2 [(f+1)"n+x+('+2)”r+2+M]
1
r+1[1+r+1+<r+1)2+“']
<;§
while if
1
w17 se<i(1+3)
we have
mE(O ) 2 2
<r—-1[ +(_r+1)"n+l+m]
2r
<(r—ﬁi'
Hence,

Hence the Fourier series of g(x) is summable (P) to zero at
¢=0. By (41), and the definition of g(z), the Fourier constants of

1 .
g(x) are o (}z—)' Hence the Fourier series of g(x) converges for £=0,

It manifestly converges for z==0 (mod. 2).
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Consider an interval

T I\ = 1
G (=3) S =
in which ¢ = ¢,. It is convex in (@, y), where 2y = a8, and

concave in (y, §). By the argument of § 11, we can divide (a, y)
into ¥ — 1 equal sub-intervals, such that if

e=0, < a,<..<a,=79
are the points of sub-division, and if f(x) is defined in (a,y) by
f@) =9

f(z) is linear in @, << << @y,

for z=ua, (i=1...9)

(i==1,...,9—1)

then the total variation of f(z) — @(x) in (e,y) does not exceed =

1
2r+l
We can choose » — 1 equal to an even integer, in which case
(¢ +7)/2 will be a point of sub-division, and then, since ¢(z)=g,(z)
in (@), we shall bave f(a-7)/2)=p,(@+7)2)=—1 Olearly,
we can carry out a similar sub-division of (y, 8) and a corresponding
definition of f(x). Then the total variation of f(z)— () in (¥,)

will be less than é;lﬁ, and f((y+8)/2)=1.

In the part of (0, ) which is complementary to the intervals (a, §),
we put f(a:)-—O i e. flw)==@p(x). We define the periodic function
f@) in (—m,0) by f(—=z)=/(2), and we take f(0)=0. Then
f(x) — g(x) 18 absolutely continuous and periodic Hence its Fourier

constants are 0(1) So then are those of f(z). Also, the Fourier

series of f(z) — g(z) converges for all 2; so then does the Fourier
series of f(x). The function f(z), like g(z), is discontinuous at the
origin; and it manifestly possesses the property (un).

§ 13. The following theorem is analogous to Theor. VIL

Theorem VIIL Let — 3 A,(x)/n? be the Fourier series of
a differential coefficient. Let the series

20+ 4.6
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satisfy P(x)=0 p. p, and P(x) finite except at an enumerable set B,
Then — 3 B,(z)/n is the Fourier AD series of a function which in

. 1
each interval u, contiguous to E-E' is of the form — 3 8% + Gy
where c,, is a constant.

Let F(x) denote the differential coefficient of which

— 3 4@

is the Fourier series. Since

(42)

h

F(t)dt=F(z),

lim o
x~h

for all z, the series (42) is summable (P) to F(z), for all = If

then, we can show that

(43) F(x)=— 4% ay2® + cpx + dm, (@n <2< B

where 4, == (¢, B): then the proof can be completed as in Theor. VIL
Now in @, <z < fiu, P(2) is finite. By II lemma 121¢) F'(z) is

upper semi-continuous in the open interval. Further, by I Theor I117),

D* F(x) > P(z) — }a, for all z of the open interval. Since P(x)=0

p. p. in the interval, there is a function g(x) such that g(a,)=0,

9(8x) > — ¢, g(x) non-increasing and absolutely continuous in (@,,, 8,),
g’ (%) = — oo at the points where P(z)=E0, Then if

G@) = f 900 dt,

we have D? G(x) << P(a) for all = of the open interval. Hence the
upper semi-continuous function F(z) — G(z) satisfies

D (F@)— G(a) > —ja0 for an << b
By II lemma 14 18) F(z)— G(z)+-}a,® is convex, and therefore

1) Proc. Lond. Math, Soc. 84 (441—466) 445,
1) loc. cit. 14) 487,
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continuous in the open interval. So then is F(2). If e, < a << fn,
then by the remark which follows II lemma 10 19),

Flo) = f &y [ PO—ta)di+4a+B  (@<a<h)

=—ta 2"+ ps+q

We can let ¢ tend to a,, and § tend to §,. Then p and g
must remain unaltered, and so we have an equation of the form (43)

CORRECTION.

Fund. Math, XXI 168-—210.

This paper stands in need of two corrections.

(2) In the proof of lemma 15, pp. 186—187, that part of the
proof which appears on p. 187 should be deleted, and the follo-
wing substituted:

By (10) and lemma 13, the function F(z-t)— F(x—1)—2 F,(x)
is non-increasing in — A () << #<C (7). At $==0, it has the approxi-
mate derivative zero. By a theorem of Khintchine (lemma 27,
p. 210), it has a differential coefficient equal to zero; i e.

JFeth—Fe—h

)it %

=== Fu (2).

Hence by (9),

F(x+ k) _ Flz—h)
5T > F,().

By the last equation on p. 186,
F(x+6h)+ F,(x—6h) —2F,(z) >0,

which implies D2F, (x) > 0.

(b) In the proof of lemma 15a, pp. 209—210, the last two
lines on p. 209 should be deleted. On p. 210, delete lines 13, 14
and 16 from the top and substitute the following:

1) Joc. cit. 1¢) 465,
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Hence by (22) and (21),

FE+6h—F(E—06h)
ST > F.(é)

By the equation which follows (22), we infer

F (6406 h)+ F,(E—00h)—2F,(§> 0.
which implies D? F, (§) > 0.

Sur la théorie de la mesure dans les espaces
combinatoires et son application au calcul des
probabilités I. Variables indépendantes ?).

Par
Z. Ltomnicki et S. Ulam (Lwéw).

L’analogie entre la mesure et la probabilité est connue depuis
longtemps 3).
~ La probabilité pour qu'un point appartienne & un ensemble A
d’'un espace donné remplit les postulats de la mesure d’ensemble.
On admet notamment la rdgle des probabilités totales — c.-4-d. l'ad-
ditivité finie ou dénombrable de la mesure. (Dans le cas ol I'espace
est dénombrable le postulat de I'additivité finie est souvent plus
adéquat),
La théorie de la mesure pour un espace constitue cependant une
théorie d’une seule variable éventuelle et ne semble pas donner un

1) Les résultats concernant la théorie de la mesure dans les produits ont été
exposés par les auteurs dans un- Béminaire de M. H. Steinhauns (Mai 1932).
Les théordmes relatifs ont été présentés i la séance de la Soc. Pol. Math, Bection
de Lwéw du 2. VIL. 1932 (v, anssi la note ds l'un de nous insérée dans les ,Ver-
handl, des Int. Math, Kongr. Ztirich® 1932, Band II). Les applications au caleal
des probabilités qui se trouvent dans la deuxiéme partie de ce travail ont été pré-
sentées & la séance de Iz Soc. Pol. Math, Bection de Lwéw le 18. TTI. 1933.

%) E. Borel, Sur les probabilités dénombrables... Rendiconti del Circolo
Mat. & Palermo, 1909, p. 247—281. — A. Eomnicki, Nouseaua fondements du
caleul des probabilités. Fund. Math. T, IV, p. 36—71. — H. Bteinhaus, Lee
probabilités dénombrables et leur rapport & la théorie de la mesure. Fund. Math.
T. 1V, p. 287—3810. — R. v. Mises, Grundlagen der Wahyscheinlichkeitsrechnung.,
Math, Zeit. Bd. 34, p. 668—619. — P. Lévy, Caleul des probabilités. Note (p.
395—345) Gauthier-Villars, Paris, — Cf. aussi une étude approfondie ches A. Kol-
mogoroff, Grundbegriffe der Wahrscheinlichkeitarechnung dans les Ergebnisse
der Mathematik und shrer Grenzgebiets, Berlin 1933.
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