Finite arc-sums.
By
Norman E. Steenrod (Dayton, U. S. A.).

The principal contribution of the present paper is a set of
conditions which are necessary and sufficient in order that a conti-
nuous curve should be the sum of a finite number of ares. In
a recent paper!), Whyburn considered the analogous problem
for & countable number of arcs. He obtained a solution by reducing
the problem to the same one for the true ecyclic elements of the
continuous curve. A like reduction is made in this, the finite case.
Conditions analogous to those of Whyburn's paper are given,
wherein the word finite is used instead of countable. The conditions
obtained in this manner will be shown not to be sufficient to
characterize a finite arc-sum; but, due to the highly specialized
nature of this type of curve, to require additional conditions to
complete the sufficiency. For particular kinds of continuous curves,
such as the acyclic curve and the boundary of a simply connected
domain in the plane, exceedingly simple conditions are obtained.

The problem naturally arises as to the degree of complexity
possible in a subset of a finite mumber of ares. In theorem 6 we
answer this question by showing that any closed and bounded
set M in E, is a subset of fwo arcs if it contains no continuum
of condensation. It is obvious that this is, in a sense, an extension
of the Moore-Kline theorem giving the necessary and sufficient
conditions in order that a closed and bounded set M should be
a subset of one are ®). Furthermore, it is an extension to any finite

) G. T. Whyburn, Continuous curves and arc-sums, Fund, M.ath., vol 14
(1929), pp. 103—106.
) R. L. Moore and J. R, Kline, On the most general plane closed point-

set through which it is possible to pass a simple continuous arc, Annals of Math,
vol. 20, pp. 218—223.
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number of arcs, for the theorem implies that any point set which
is a subset of n arcs is a subset of fwo arcs

I wish to express my thanks and to acknowledge my indebt-
edness to Professor R. L. Wilder for his valuable suggestions
and constant encouragement.

The following lemma will be found useful.

Lemma 1. If no one of the closed point sets M,, M,,..., M,,
contains a continuum of condensation, then the set M, + M,--...4 M,
contains no continuum of condensation 3).

Let C be a continuum contained in the set M; + M,. The set
of limit points of M,"— C- M, contained in C forms a closed and
totally disconnected set; likewise, the limit points of M, — C- M,
in C forms a closed and totally disconnected set. Sinece, as is well-
known, the sum of two closed and totally disconnected sets is itself
closed and totally disconnected, some point of C is not & limit
point of M, 4+ M, — C. The lemma follows by induction.

For the sake of completeness, we first state the following obvious
consequence of Lemma 1.

Theorem 1. If the set M is the sum of a finite number of arcs,
then M contains mo continuum of condensation.

By virtue of Theorem 1 and well-known properties of continua
that are not continuous curves, we have:

Theorem 2. If the continuum M is the sum of a finite number
of arcs, then M is a perfect continuous curve ),

The properties involved in the following two theorems were
proved by Urysohn 5) to be properties of any continuum containing
no continnum of condensation. By virtue of Theorem 1, they are
properties of a finite arc-sum.

3) A special cﬁue of this lemma was given by 8. Jauisiewski, Sur les conti-
nus irréductibles entre dewx points, Journ, Ecole Polyt., (1912), pp. 79170 Tl.l' VIL
4} A perfect continuous curve is a continuous curve whose every subeontinaum

is 8 continuous curve.

5) P. Urysohn, Mémoire sur les multiplicités cantoriennes, II, Verhand.
Kon. Akad. v. Wet. to Amsterdam, Eerste Bectie, vol. 13 (1928), No. 4. See
especially pp. 57 and 69.
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Theorem 3. If the continuum M is the sum of a finite number
of arcs, then M is a regular curve.

Theorem 4. If the continuum M is the sum of a finite number
of arcs, then M can be decomposed in a unique manner into the sum
of a closed, totally disconnected set F and a set, at most denumerable,
of open, maximal, free arcs that are mutually exclusive. These free,
open arcs contain no points of F, but their end points belong io F,
and if they are infinite in number, their diameters converge to zero.

Theorem &, For the bounded continuum M in E, to be a subset
of two arcs of E,, it is necessary and sufficient that M contain no
continuum of condensation. '

The necessity of the condition follows from Theorem 1.

The condition is sufficient: Let 3/ be a continuum containing
no continuum of condensation, Then M can be decomposed in
& unique manner into the sum of a closed, totally disconnected set ¥
and a set, at most denumerable, of open, maximal, free arcs that
are mutually exclusive. These free, open arcs contain no points of ¥,

but their end points belong to ) and if they are infinite in number,

their diameters converge to zero 5). Let #, be one of these open,
free arcs; and let P and Q be the end points of ¢, in the order
P<@Qon t,. Let Py, Py, Py,... be a sequence of points of ¢, having P
as a sequential limit point, such that on ¢ they are in the order
Bi>P>P>..>P. Let ¢, @y, Qy,... be a sequence of points
of #; having Q as a sequential limit peint, such that on ¢, they are
in the order P, < Q; < @, << @y <<... << Q. Let the set K, consist
of the following ares of ¢,: P, Q,, P, P,, Qs @5, P, Py, Q, Q;,... ete.
Let the set K, consist of the remaining arcs of , namely: P, P,
0O, Py Py, Q;Q,, P P,,... otc. Let the sels K, and K, be defined

as follows: &, =IEK1,<, K,=23K,,. It is evident that every com-
S

ponent of K, is either a point (of F) or an arc (of some ), and
Do interior point of an arc component is a limit point of points
of K, not on that component, By the theorem ¢ of Moore and
Kline referred to in the introduction, K, is a subset of an are.

¢) For the generalization of this theorem to dimensions, cf. E. W Miller,
On subsets of a continuous curve which lie on an are of the continuous
Amer. Jour of Math,, vol, b4 (1932), pp. 397416, Theorem I,

curve,
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Likewise K, is a subset of an arc. As K, + K; = M, it follows
that M is a subset of two arecs,

Theorem 5 seems hardly intuitively evident, Consider, for example,
the well-known acyelic curve whose end points are identically the
Cantor terniary set on the unit interval. As the curve contains no
continuum -of condensation it is, by Theorem 5, a subset of the
sum of two ares,

The following eorollary makes Theorem § seem even more
surprising,

Corollary. There exist, in the plane, two arcs whose sum con-
tains a connected subset which is not arcwise comnected,

This follows from Theorem 5 in view of an example 7) due to
Whyburn of a continuum, in the plane, containing no continnum
of condensation, which contains, nevertheless, a connected subset
not arcwise connected.

It is possible, however, to prove a much more general theorem
as follows:

Theorem 6. For the closed and bounded point set M in E, to
be a subset of two arcs of E,, it is necessary and sufficient that M
contain no continuum of condensation.

The necessity again follows from Theorem 1.

The coundition is sufficient: Let K be a set which consists of
one point from each component of M. The set K is closed, bounded
and totally disconnected (for if K containg a continuum C, then
since C(C M, C-K is at most one point and therefore C' would
be a continuum of condensation of K and of M).- By the above
mentioned theorem of Moore and Kline, K is a subset of an
arc t. By Lemma 1, M/ 4 ¢ is a continuum containing no conti-
nuum of condensation. By the preceding theorem, M-}-¢, and the-
refore M, is u subset of two arcs.

The proof of the following lemma is quite obvious.

'} G. T. Whybuarn, Sets of local separating poinis of a continuum, Bull.
Amer, Math, Soc., vol. 39 (1938), pp. 97—100.
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Lemma 2. If P is a cut point of the continuous curve M,
and D is a component of M — P having a point in common with an
arc t of M, then D contains an end point of the arc i. :

Theorem 7. If the continuous curve M is the sum of a finite
number of arcs, then the modes ®) of M are finite in number.

The nodes of M fall iuto two classes: the end points?®) of M,
and all true cyclic elements containing only one cut point of M.
It is evident from the definition that every end point of M must
be an end point of at least one of the finite set of ares making
up M. Thus the end points number at most 2n if M is the sum
" of n ares. Let C be a true cyelic element of } containing only
one point P which cuts M. C— P is not a subset of one arc
ginee C— P= C contains a simple closed curve, So C— P has

points in common with at least two of the # arcs making up M.~

The set (— P is a component of M— P, hence, by Lemma 2,
C— P contains two of the 2% end points of the # ares whose sum
is M. Thus, there can exist at most » true cyclic elements of M
containing but one cut point of M. In fact we have shown that
the number of end points plus twice the number of remaining nodes
cannot be greater than 2#; for, if this number is as great as 2n,
we shall have accounted for all 2n end points of the n ares whose
sum is M.

Theorem 8. If the continuous curve M is the sum of n arcs,
then every irue cyclic element of M is the sum of n arcs; and, for
all but o finite number of true cyclic elements, these arcs begin and
end at cut points of M. ‘

8) A node of a continuous curve is a cyclic element of the continuous curve
which neither is itself a cut point nor contains more than one cut point of: the
continuous carve. Cf. G.T. Whyburn, Concerning the structure of a continuous
curve, Amer. Jour. of Math., vol. 50 (1928), p. 178.

) An end point, of a continuous curve M is a point of M contained in no
arc of M as an interior point. The definition given here is the one most convenient
for the proof. It has been shown by W, L. Ayres that an end point in this
sense is equivalent to an end point in the ordinary sense, Cf. W, L. Ayres,
Concerning continuous curves in metric space, Amer. Jour, of Math. vol, b1
(1929), pp. 577—59%4, Theorem 5.
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In the theory of cyelic elements, as developed by Whyburn)
a true cyclic element has the property that, for every pair of it;
points,  and y, it contains every arc of the continuous curve
from z to y. Let C be a true cyclic element of M, and t,,4,..., ¢,
be the ares of which M is the sum. Let z; and y; be the first and
last points respectively of C on the arc #,. Since (' contains every
arc of M joining @, and y,, it must contain the sub-arc of t; join-
ing @, and y,. It is easy to see that z, is a cut point of M if it
is mot an end point of #; similarly y, is a cut point of M if it is
not an end point of #. Since there exist only 2» end points of

- the arcs ¢, for all but 2 of the true cyclic elements, the end

points of these sub-ares are cut points of M. If an are i; has but
one point in common with C, join this poiut to some other point
of C by an arc; in case C is not a node, let this other point be
& cut point of M. If an are £, has no points in common with C,
corresponding to #, select some are of C; in case C is not a node,
select this arc so that its end points are cut points of M. Evid-
ently C is the sum of the # arcs constructed in this manner. Since
the nodes are finite in number, by Theorem 7, it is evident that,
for all but a finite number of true cyclic elements, the end points
of these arcs are cut points of M.

By the order of a cyclic element we shall mean the number
of complementary components of the cyclic element Thus, end
points and end elements are of order one.

Theorem 9. If the continuous curve M is the sum of n arcs,
then the order of any cyclic element of M is at most 2n.

Let C be a cyclic element of A/, and D a component of M—C.
D is a complementary component of a cut point of A, namely, its
boundary in C. By Lemma 2, it follows that D contains at least
one end point of the 2 end points of the n ares whose sum makes
up M. Thus, there can exist at most 2» components of M— C.

Theorem 10, If the continuous curve M is the sum of n arcs,
and C is a true cyclic element of M of order 2m, then C is the only
true cyclic element of M.

19) For ap exposition of this theory cf. (. Kuratowski and G T. Whyburn,
Sur les éléments cycliques et lewry applications, Fund, Math., vol. 16 (1930),
pp. 805 - 331. :
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Since there are 2n components of M— C, each component con-
tains one and only one end point of the 21 end points of the n
ares whose sum is M. By Lemma 2, it follows that each component
of M — C cin contain points in common with but one of the n ares,
and is, therefore, a subset of that arc. Thus, every component of
M— C is a semi-open arc, and C is the only true cyclic element of M.

Theorem 11. If the acyclic continuous curve. M is the sum
of n arcs, then the branch points of M number at most 2n—2.

Let , be one of the » arcs; set f;, = M,. Since M is connected,
t, has points in common with at least one of the remaining n —1
arcs. Let such an are be 4; set #, +#,=M, In general, since M
is connected, M, must contain points in common with at least. one
of the remaining n—% ares. Let such an are he #,.,; set f, 4
+ty+4 ...+ tiys= M,y Evidently each of the sets My, My, ., M, =M
is an acyelic curve, since each is a subcontinuum of an acyclic curve;
and each is obtained from its predecessor by the addition of an- are.
The theorem is true for the acyclic curve M,. Let us assume the
truth of the theorem for the acyclic curve M,; we shall show that
the theorem is true for the acyclic curve My,,. If M, has two points
in common with #,,,, every point of #;,, between these two points
must also be point of M,, otherwise M,,, would contain a simple
closed curve. Therefore the only branch points which ean be cre
ated by the addition of #,,, to M, are the first and last points of M,
on the are f,,,. So M,; contains, at most, two branch points more
than M,.

The analogy existing between acyclic curves and continuous
curves when considered in terms of their cyclic elements hag been
stressed by several writers, particularly by Whyburn. It is of
interest to observe that the analogy persists in a very detailed
fashion when we compare acyclic curves which are the sum of
a finite pumber of arcs with general continuous curves which are
the sum of a finite number of ares. Since the node of the general
continuous curve is the analogue of the end point of the acyelic
curve, the theorem that the end points of an acyclic curve are
finite in number, if the curve is the sum of a finite number of
arcs, suggests the analogous theorem that the nodes of a continuous
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curve are finite in number under the same hypothesis, This we
proved in Theorem 7. :

Let us define a branch element as a cyclic element belonging
to no other eyclic element such that the order of the given eyclie
element is greater than two, Evidently a branch element is the
analogue of the branch point of the acyclic curve. Analogous to
Theorem 11, we would have the following theorem : If the continuous
curve M is the sum of n arcs, then the branch elements of M number
at most 2n — 2. In Theorem 12 we shall not prove quite so much,
but the theorem will be found more useful in the proof of Theorem 13.
But, first, we will need the following lemma,

Lemma 3. If P is a cut point of the continuous curve M,
arnd D is a component of M — P, then D - P contains at least one
node of M.

If D4 P contains no cut point of itself, then D -} P is itself

‘a node of M. Suppose, then, that D4 P contains a cut point of

itself. Then D -+ 2 is a continuum which is the sum of a collection
of cyclic elements of A, and has more than one cyclic element of
itself. By a theorem ! due to Whyburn, D -+ P contains at least
two nodes of itself. Since P is a non-cut point of D~ P, not more
than one of these nodes can contain~ P; the other node is evidently
a node of M. ‘

Theorem 12. If the nodes of the continuous curve M are finite
in number, then the branch elements of M are finite in number.

Under the hypothesis of the theorem, the order of a cyclic element
of M is always finite. For suppose C is a cyclic element of M such
that M — C has infinitely many components, Dy, D,,..., where the
boundary of D, is a single point P; of C; by Lemma 3, D,4- P,
contains & node of M for every 7. But this means that M contains
infinitely many nodes. Hence, the order of a cyclic element of M
is always finite,

Suppose, contrary to the conclusion of the theorem, that M
contains infinitely many branch elements: C,, (3, Gy,... Let C,, = C;.
Since C, has only a finite number of complementary components,

W) G, T. Whyburn, Concerning the structure of a continuous cwrve, loc.
cit.,, Theorem 14.
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it can have points in common with only a finite number of the
branch elements of the above sequence; for, suppose two branch
elements C; and C, of the same complementary component of C,
contain the boundary point P of the component in common with C, ;
but this is impossible since P must cut M between C, and C,.
Consequently, infinitely many branch elements of M lie wholly in
some component of M — C, ; denote such a component by X,.
Let C, be the branch element of the above sequence of lowest
subseript lying in X;. By reasoning similar to the above, some
component of X, — C, must contain infinitely many branch elements
of the above sequence; denote this component by X;. Let C, be
the branch element of the above sequence of lowest subscript lying
in X,. In general, let C, be the branch element of the above
sequence of lowest subseript lying in X, ;. Some component of
X, 1 — C,, must contain infinitely many branch elements of the
above sequence; denote this component by X,. In this manner we
define an infinite subsequence of branch elements: C,, C,,...,
and an iofinite set of connected, open sets: X, X,,..., such that:

? L] 00
X,-’E] G, =0, X,D‘_ila,,“ and X,DIEZX, Since X, is open

in ‘X, and has only one boundary point in Xj, it follows that
X, — X,,4 is a connected set. Also M — X, is connected. Since

M—X,=(M—X)+ (X — %) + (X X;) + ...+ (Xos — X)),

it follows that M — X, hat at most ¢ components.

- Let us now proceed to define an infinite set of mutually exclu-
sive domains of M, such that the boundary of each domain is
& single point. Since C, is a branch element it has at least three
complementary components; denote by D; and D, the two compo-
nents not containing the connected set X;. Proceed to C, ; denote
by D, that component of M — C,, having no peints in common
with either of the connected sets M — X, or X;. If, after consider-
ing each of the branch elements C,, C,,..., G,, in order, we have
obtained k¥ domains Dy, Dy,..., D, of our sequence, and one of the
components of M —C, = contains no points of either of the sets
M—X; or X, then Hb,,_,_, shall be that component. If the set
M — X, is connected, it follows, since X.41 is connected and M— 01-4-1
has at least three components, that such a component must exist,
We have to consider the case where M — X, is not connected, and
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every component of M — 0"1+1 has' points in common with either
M— X, or X,,. Suppose M —X, has % components (1 <k=i).
The components of M_C"1+1 not containing X, are joined by
the connected set X,— X, in M — Xiy1. Each of these components
contains at least ome component of M— X, Therefore, at least two
components of M — X, are joined by the connected set X;(— X4y in
M—X,,. Since M— Xy, =(M—X)+ (X; — Xiyy), it follows
that M— X, has at least one less component than M — X, (i. e.
at most k—1 components). Again, if no component of M — G,
contains no point of either of the sets M —X,,, or X3, then the
components of M— X, number at most k — 2. Proceeding in this
fashion we shall either find a complementary component of some
branch element which, by definition, will be D,,,, or we shall
repch the branch element C,,, which will have a complementary
component not containing points of either of the sets X, or
M— X4y, for M— X,y will be connected, since it will have
at most £ —(k—1)=1 components. This component of M —C’,,m
is, by definition, D, ;.

* Thus, under the supposition that there exists an infinite set of
branch elements of M, we have proven the existence of an infinite
set of mutually exclusive domains each having but ome point for
a boundary. By Lemma 3, each of these domains plus its boundary
point contains a node of M. But this implies the existence of an
infinite set of distinet nodes of M, contrary to the hypothesis of
the theorem. The contradiction proves the theorem.

Corollary. If the continuous curve M is the sum of a finite

" number of arcs, then the branch clements of M are finite in number.

This follows from Theorem 12 in view of Theorem 7.

Theorem 13. In order that the continuous curve M should be
the sum of a finite number of arcs, it is necessary and sufficient
that (1) the end points of M should be finite in number, (2) each
true cyclic element should he the sum of a finite number of arcs, in
every case numbering nol more than a fixed integer n. and for all
but a finite number of the true cyclic elements these arcs should begin
and end at cut points of M

In Theorems 7 and 8 we have shown the conditions to be ne-
cessary.
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The conditions are sufficient: According to the cyclic element
theory 1), a continuous curve is the sum of its end points, its cut
points, and its true eyclic elemwents. We shall show that each of
these sets in turn is a subset of a finite number of ares lying in M.

The end points of M are a subset of a finite number of ares
of M. It is sufficient to choose some end point of M- and join it
by arcs of M to each of the other end points.

The cut points of M are a subset of a finite number of arcs
of M. Let Py, P,,..., P, be the end points of /. Since a node
has at most one cut point, it is evident, if condition 2 ig to be
satisfied, that the nodes of M must be finite in number. Let the
nodes of M that are true cyclic elements be N, N;,..., N,. Let

Py;: be a non-cut point of M in Ny; let Py, be a non-cut point

of M in Ny; ete. The case where }/ contains no cut point is tri-
vial. Assuming, then, that M contains a cut point, we have from
Lemma 3 that M contains at least two nodes. Consequently, the
set Py, P,,..., Py, contains at least two points. Let P be some
point of this set. Join P by a finite number of ares of M to each
of the other points of this set. Let @ be any cut point of M. Then
M — Q=D,+D,+ D;-... where the D’s are components and D,
contains P. By Lemma 3, D, 4 Q contains at least one node of M;
hence, D, contains at least one point other than P of the set
Py, B,,..., Py, The are of the above set joining P to this point
must necessarily contain . Thus, the cut points of M are a subset
of a finite nomber of arcs of M.

The true cyclic elements of M are a subset of a finite number
of arcs of M. If the true eyclic elements are finite in number the
proposition is immediate. Suppose M contains an infinity of true
cyclie elements. As pointed out above, the nodes of M* are finite
in number. By Theorem 12, we have immediately that the branch
elements of M are finite in number, If C is a true cyclic element
such that the arcs of which .C' is the sum do not all begin and
end at cut points of M. then condition 2 states that the class of
all true cyclic elements such as C forms a finite set. These finite
cases may obviously be disregarded, since they are the sum of
a finite number of arcs of M. There only remains for consideration
an infinity of true cyclic elements C,, C,.... of M such that, for
every 4, C; has exactly two complementary components, and con-
tains exactly two points P, and ¢, which cut M, and C, is the
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sum of » or less arcs all of which join P, to Q:. Let t,, f,..., ¢
be the finite set of ares of M of which the cut points are a subset,
Associate with 7, every true cyclic element of the above sequence
for which #, contains P, or @, or both. Of those that remain, asso-
ciate with ¢, those for which #, contains P, and @, or both; ete. Thus,
every true cyclic element of the above sequence is associated with
one and only one of the arcs #,. If ¢ has only a finite number of
true cyclic elements associated with it,” they are all, obviously, the
sum of a finite number of ares of M. Suppose ¢ has infinitely many
true cyclic elements associated with it. Now the end points of ¢ are
either end points of M or non-cut points "of certain nodes of M.
So, if # contains a non-cut point, of some true cyelic element C,
t, will have to contain both P, and @,. Furthermore, in only a finite
number of cases can #, contain, for some C;, P, or ¢, and not the
other. For, suppose #, contains infinitely many of the points P, and
not one of the corresponding points ;. For every j, let D, be the
component of M — P; containing C;— P,. Let us show the domains
3 D; to be mutually exclusive. Since #, does not contain ¢, and
contains a point P, exterior to that component of M — C, having @,
for a boundary, it follows that ¢, has no point in common with
that component. Now D; is the sum of C;— F, and the component
of M—C; having ), as its boundary. Consequently, since #;+(C;—E)==0,
we have #,- D;=0. Suppose two domains D, and D, have points
in common, Since (D, D;)=0, and since ¢,°) P, P,, it follows
that neither D, nor D, contains the boundary point of the other.
But this implies both D, DD, and D, D, which implies the
identity of the true cyeclic elements Cy and C,. Thus, the domains
3 D, are mutually exclusive. By Lemma 3, D, P; contains a node
of M; this would mean that M contains infinitely many nodes,
which is impossible. Thus, in only a finite number of cases does #,
contain P, or ¢, and fail to contain the other. Neglecting those
true cyclic elements associated with ¢ for which this occurs, We
have left a countable collection of true cyclic elements Cf, Ci,...
associated with #, such that ¢, contains, for every j, both P; and ;.
Assign an order to the n or less arcs of which Cj is the sum.'Evi-
dently #, has the arc P! ¢} in common with Cj. For every j, re-
place the arc P:@ of # by the are of C} numbered 1. Let £} be
the set constructed in thiz manner. Since the replacement arcs are
non-overlapping, and since their diameters converge to zero, it fol-
Fundamenta Matbematicae T. XXIH. 4


Yakuza


50 N. E. Steenrod:

lows that # is an are. Comstruct the arc # in a like manner by
replacing, for every j, the arc Pj @ of ¢ by the arc of Cj num-
bered 2. In general, construct the are #f by replacing, for every j,
the arc P! Q; of # by the arc of C; numbered k. In case no such
are of C/ exists the replacement is not made. At most n distinct
arcs f #,..., #7 can be constructed in this manner. It is obvious
that the true cyclic elements associated with ¢, are, except for
a finite number of them, a subset of this set of » ares. Thus, we
have shown that all but a finite number of the true cyclic elements

. h n
of M are a subset of the finite set of arcs 2 X4} This completes
fem] kel

the proof of the theorem.

Since an acyclic curve contains no true cyclic elements, we
have immediately:

Corollary. For the acyclic continuous curve M to be the sum
of a finite number of arcs, it is necessary and sufficient that the end
points of M be finite in number.

It may very well occur that the true cyclic element C of the
continuous curve M, while being the sum of a finite number of
ares, is not the sum of any finite number of arcs whose end points
are cut points of M. The following example illustrates the point.
Let the set @ consist of the following arcs in the cartegian plane:
the arc made up of the point (0,0) and all points of the curve
y==zsinl/z (0 <<zx=1/n); the arc y=2 (0 =2 =1/n); the
are y=—=z (0=2=1/n); and the arc 2=1/n (— 1/n =<y =< 1/n).
Let P, A and B be the points (0, 0), (1/m, 1/m) and (1/m, —1/m),
respectively. Now Q is the sum of three arcs from P to 4, or
from P to B; but it is not the sum of any finite. number of arcs
from 4 to B. For, any arc of ¢ with an end point at A which
contains a complete oscillation of the «sin1/z curve finds its other
end point separated hy itself from B. It is a simple matter to
construct a continuous curve M containing an infinity of true cyclic
elements, all similar to the set ¢, but whose diameters converge
to zero, and such that the only cut points of M contained in each
true cyclic element are the points corresponding to the points 4
and B of . Such a continuous curve would satisfy all but the
latter part of condition 2 of Theorem 13; this example establishes
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the independence of the condition. It is to be observed that the
set Q is not the sum of any finite number of simple closed curves.
This fact suggests the following series of theorems. We proceed
to establish that the property of a cyclicly connected continuous
curve of being the sum of a finite number of arcs from P to Q.
for every, pair of distinet points P and ¢, and the property of

being the sum of a finite number of .simple closed curves are
equivalent.

Theorem 14. If the cyclicly connected comtipuous curve M is
the sum of a finite number of simple closed curves, then, if R and Q
are any pair of distinct points of M, M is the sum of o finite
number of arcs whose end points are P and (.

Let J be a simple closed curve of M. Select the points P
and @ We shall show that J is a subset of two arcs of M whose
end points are P and Q. If P and @ are points of J it is obvious
that this is true. Suppose @ is on J and P is not. Let P’ be a
point of J distinet from @. According to a theorem of Ayres ),
M contains an arc PP'Q. Let P” be the first point of this arc

-on J. Evidently P"” == Q. Then the subarc PP (of PP’ Q) together

with the two ares of J from P” to @ evidently form two ares of
M from P to @ whose sum contains .J.

Suppose, then, that neither P nor @ is on J. Let X be a point
of J. As above, M contains an arc PX(Q. Let P’ and ¢’ be the
first and last points respectively of J on the arc PX Q. If P'<=¢’,
then the subarc PP’ (of PX(Q) plus the subarc @'Q (of PXQ)
plus the two ares of J from P’ to ¢ evidently form two ares
of M from P to @ whose sum contains J. Consider the ecase
P'= @'= X. Let X’ be a point of J distinct from X. As above, ¥
contains an arc PX’¢Q. If, as we may assume, X’ is the only point
J has in common with PX’Q, let Y be the last point of the subarc
PX (of PX'Q) onthe arc PX(Q. Suppose Y is on the open interval
XQ of PXQ; then the subarc Y@ (of PXQ) plus the subarc Y X’
{of PX’ Q) forms an are @X' having no point in common with the
arc PX (of PX Q). Suppose, next, that ¥ is on the interval PX
of PXQ; then the subarc PY (of PX¢) plus the subare YX’

1) W. L. Ayres, Continuous curves which are eyclicly connected, Balletin
de 1'Académie Polonaise des Sciences et. des Lettres, (1928), pp. 127—142.
: "
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(of PX"Q) forms an arc PX' having no point in common with the

arc XQ (of PXQ). In any case M contains two mutually exclusive
arce from P to J and from @ to J. These two ares plus the two
ares of J from X to X' evidently form two ares from P to @
whose sum contains J. Thus, J is a subset of the sum of two arcs
from P to @ for every pair of distinet points .2 and Q. And, if i
is the sum of » simple closed curves, M is the sum of 2n arcs
whose end points are P and .

Before proceeding to the converse, we must, first, prove a lemma,

Lemma 4. If X is an interior point of an arc t of the
eyclicly connected continuous curve M, then X i3 contained in an
open interval I, of t such that there exists a simple closed curve J,
of M containing I..

Let 4 and B be the end points of # Since M — X is connected,
M—X contains an arc ¢ from A4 to B. The two ares ¢ and #
evidently contain a simple closed curve J, containing X; and
obviously J, contains an open interval I, of ¢ containing X

Theorem 15. If t is an arc of the cyclicly conmected continu-
ous curve M, ithen t is a subset of a countable number of simple
closed curves of M,

"Let A and B be the end points of £. The open interval { — A4 — B
can be covered by a countable number of the intervals I, of
Lemma 4; since 4 and B lie together on a simple closed eurve
of M, we have immediately that ¢ is a subset of a countable
number of simple closed curves of M.

Corollary. If the cyclicly connected continuous curve M is the
sum of a finite or countable mumber of arcs, then M is the sum of
a countable number of simple closed curves.

Theorem 16. If ihe cyclicly connected continuous curve M has
the property that, for every ~pair of distinct points P and @ of M.
M is the sum of afinite nmumber of arcs whose end points are P
and Q, then M is the sum of a finile number of simple closed curves.

Let X be a point of M. Choose P and Q to be any pair of
distinet points of M other than X. Then M is the sum of n arcs
by tyye.uy t, whose enq ‘points are P and . Let ¢ ) b, be

o Faren
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. the ares of this set containing X. By Lemma 4, for every arc by,

there exists an open interval I, of {, containing X, and a simple

closed curve J, of Af containing I,. We have then: E'J,ID Ek L.
e

le=l

Let S, be a neighborhood of X (relative to J) containing no point
k

of the closed set M — = 7,. We must then have: S, (C E’IJ:,' Cover
fml : i=1

every point X of i by the corresponding region S, of M. Applying
the Borel theorem, we find that M is covered by a finite number
of the regions X §,. And since each region S, is covered by a finite
number of simple closed curves of M, we have that M is the sum
of a finite number of simple closed curves.

Theorem 17 In order that the continuous curve M should be
the sum of a finite number of arcs, il is sufficient that (1) the nodes
of M be finite in number, (2) each true cyclic element be the sum of
a finite number of simple closed curves, numbering in every case not
more than a fived integer n.

Condition 1 of Theorem 13 is satisfied. Let C be a true cyclic
element of M. By Theorem 14, C is the sum of 2n arcs whose
end points are P and Q where P and ( are any pair of distinet
points of M. Whenever possible select P and @ so that they may
be cut points of M; this may be done in every case where C is
not a node. Evidently condition 2 of Theorem 13 is satisfied.

Theorem 18. For the boundary M of a bounded, simply con-
nected domain in the plane to be the sum of a finite number of arcs,
it is necessary and sufficient that the nodes of M be finite in number.

The necessity follows from Theorem 7, the sufficiency from
Theorem 17 and the fact that the true cyclic elements of such a
boundary are themselves simple closed curves 1%).

13) 8ee R. L. Wilder, Coficerning continuous curves, Fund. Math,, vol. 7
(1926), pp. 340—377, Theorem 4.
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