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so gehdrt er mit jedem V gleichzeitig immer den durch Permutation
aus V hervorgehenden ‘Wahrheitshereichen an, er enthilt also mit »
zugleich die Disjunktion o* aller aus » durch Permutation hervor-
gehenden Sitze, und diese Disjunktion o* ist selbst ,kategorisch.
Sollte es auBer den so aus ¥V hervorgehenden Wahrheitsbereichen noch
weitere V,, V... geben, denen s angehdrt, so entsprechen auch
diesen weitere ,elementar-symmetrische oder ,kategorische® Sitze
v, 0§, o5 ,... und s ist dann und nur dann wahr, wenn einer dieser
Sutze wahr ist, d. h. s ist ,iquivalent® der Disjupktion aller dieser
kategorischen Sitze, w. z. b. W.

Die vorstehenden Ausfthrungen bilden erst den Amfang einer
noch nicht abgeschlossenen Untersuchung, welche die Begrindung
piner ,infinitistischen“ echt mathematischen Syllogistik und Beweis-
theorie zum Ziele hat. Einer ehrenvollen Einladung der Redaktion
folgend, habe ich hier meine vorliufigen Ergebnisse fiir diesen
Festhand zusammengestellt in der Hoffnung, in einer weiteren Mit-
teilung die erforderlichen Ergiinzungen nachholen zu konnen.
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The mathematical structure of Lewis’s theory of
‘ strict implication.
By
Edward V. Huntington (Cambridge, U. S. A.).

Introduction.

The development of any abstract mathematical theory may be
described, in the last analysis, as a process of writing down, oue
after another, a series of expressions — this process involving the
motor activity of some human agent. The human agent, in actually
working out the development of the theory, constantly passes judgment
upon a variety of expressions, deciding (on the basis of previously
agreed upon rules of procedure) which expressions are to be written
down as ,accepted“ expressions in the theory, and which are to be
rejected.

The term ,expression“ is here used in a general sense, to de-
note any sequence of a finite number of marks on paper, to be
read, say, from left to right. The marks which occur in existing
abstract mathematieal theories may be roughly described as of two
kinds: (1) letters, each of which may stand for an ,element“ or
jelass of elements* within the system; and (2) signs, each of which
may stand for an ,operation® or ,relation® among the elements.
In any particular mathematical theory the marks which are to appear
in the theory are (or should be) listed in advance, to indicate the
o universe of discourse“ within which the theory is to be developed.

In order to start such a theory going at all. one must have at
least one expression which is agreed upon as an ,accepted” expres-
sion. In any particular theory, the expressions which are accepted
as the starting point of that theory are (or should be) listed in ad-
vance and may be called a ,set of formal postulates“ for the system
in question.
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148 E. V. Huntington:

In order to develop the theory beyond this initial step, one must
have at least one ,rule of procedure“ which authorizes one to pro-
ceed from expressions already ,accepted” to new expressions. In
any particular theory, the rules of procedure which are agreed upon
as the rules to be followed in that theory should also be listed in
- advance as an integral part of the theory.

The purpose of the present note is to indicate how C. I. Lewis's
theory of ,strict implication, originally presented as a concrete
theory of logical propositions, would look if expressed in the form
of an abstract mathematical theory in the sense described above.
It will be found that a comparison between Liewig’s theory of
oStrict* implication and the earlier Whitehead-Russell theory
of ,material* implication is greatly facilitated by expressing both
theories in the abstract mathematical form,

Note. The theory of strict implication was first proposed in

Lewiss ,Survey of Symbolic- Logic* in 1918, and was developed.

in revised form in Lewis and Liangford’s , Symbolic Logic“ (The
Century Co., New York) in 1932. The explicit introduction of -the
nsubelass T“ was suggested by B. V. Huntington in 1933 (Trans.
Amer. Math. Soc., vol. 35, pp. 274—304, 557, 971; see also Bull.
Amer. Math. Soe., vol. 40, pp. 127—143, 1934). The concept of
peffective implication“ introduced in the present paper on the basis
of ,effective equality“, without reference to ,negation® or ,truth
values¥, is possibly new. In the preparation of the present paper,
I am indebted not only to Professor Lewis but also to Dr. W. V.
Quine and Dr. 8, MacLane for helpful suggestions.

Expressions in Lewis’s System.

The expressions which occur in Lewis’s theory are constructed
chiefly out of five kinds of marks, which may be described as follows.

1a) a, b, ¢ etc., denote unspecified objects, which may - be spoken
of as ,elements“ belonging to some unspecified class K.

1b) a=="> denotes an unspecified relation between the elements
a and b, which may be spoken of as the relation of ,effective
equality with respect to some unspecified property.

2) a X b, or simply ab (read: a times b) denotes an object de-
termined by the ‘elements a and b in accordance with some uns-
pecified binary rule of operation.
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8) a’ (read: a prime) denotes an object determined by the ele-
ment a in accordance with some unspecified unary rule of operation.

4) a in T denotes an unspecified property of the element a, which
may be spoken of as membership in some unspecified subeclass 7.

5) a<b (read: a hook b) denotes an object determined by the
elements @ and b in accordance with some unspecified binary rule
of operation. .

Parentheses are also used, with obvious meaning; and abbrevia-
tions are introduced ,by definition* in the usual manuer.

The notation (K, X, ’, T, <) serves to symbolize the ,universe
of discourse“ with which the theory is concerned.

_Informal postulates, or rnles of procedure, in Lewis’s system.

The following rules of procedure in L e wis's system are of the
nature of instructions addressed to a human agent as to how he is
to proceed in developing the theory, and are therefore expressed
primarily in ordinary language. For brevity, each rule is re-stated
in a semi-symbolic form; but the arrow ,—“ used in these re-
statements is to be understood as a merely verbal abbreviation,
and is not to be classed among the formal ,marks“ employed in
the symbolic expressions of the system.

Thus, the notation X—Y is to be read: ,If we find X esta-
blished, we are thereupon authorized to write down Y'“%; or simply
»X leads to Y“. Obviously, whenever X— ¥, and ¥— Z then X—Z,
(At any particular point in the development, the question whether X
really does lead to ¥ is to be determined, of course, solely on the
basis of the postulates of the system).

The rules of procedure which appear, explicitly or implicitly,
in Lewig's theory may be classified as follows.

Rules of eclass-closure.

A. If a is an element of K, then we are to regard a’ also as an
element of K: Briefly:

(@ in K)— (a’ in K).

B. If a and b are elements of K, then we are to regard a X b
elso as an element of K: Briefly:

[(a in K) and (b in K)]—>(ab in K).
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O. If a and b are elements of K, then we are to regard a <5
also as an element of K: Briefly:

[(@ in K) and (b in K)— (e <<b in K).
D If a is an element of T, then we are to regard o as also an
element of K: Briefly:

(@ in T)—>(a in K).

Rule of adjunction.

E. Whenever, for any particular elements a and b, we find in one
place that ,a in 7 has been established as an accepted ex-
pression and in another place that ,b in 7 has been estab-
lished as an accepted expression, we may thereupon write down
the expression ,ab in T“ as an accepted expression. Briefly:

[(@ in T) and (b in 7)] —>(ad in 7).

Rule of inference.

F. Whenever, for any particular elements @ and b, we find in
one place that ,a in T“ has been established as an accepted
expression and in another place that ,a<b in T“ has been
established as an accepted expression, we may thereupon write
down the expression ,b in 7“ as an accepted expression. Briefly:

[(@in T) and (@b in T)]— (b in 7).

Rule of equivalence.

@. Whenever, for any particular elements a and b, we find in oné
place that ,a <<% in T“ has been established as an accepted
expression and in another place that ,b <a in T“ has been
established as an accepted expression, we are thereupon author-
ized to write down the expression a==0> as an accepted ex-
pression. Briefly:

(ea<bin T)and (b <a in T)]— (a= D)
Rule of replacement of equals.

H. Whenever, for any particular elements a and b, we find that
2@ ="0% has been established as an accepted expression, we
are thereupon authorized to replace a by b (or b by a) at any
point in any expression of the system. Briefly:

(¢ =b) —>(ya and b are interchangeable®).
And conversely: (,a and b interchangeable“) — (a = b).
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Rule of existence.

J.  There exists at least one pair of elements in K such that the
expression ,[(a <b) (¢ <b')'}in T* is an accepted expression,
Briefly: ' i

(ga, b in K): [(a <b) (@a<¥)] in T0:

Formal postulates in Le wis’s system.

In the following formal postulates, it is understood that each
postulate is an ,accepted expression in the theory. It is also un-
derstood that each postulate remains an accepted expression no
matter what element is put for @, no matter what element is put
for b, ete. In other words, in these expressions, the letters a, b, ¢,
ete. are variables, each of which may stand for any element of K.

[The numbering of the postulates has been arranged to corres-
pond with Lewis's list BI—B9 on page 493 of ,Symbolic Logic“.
But Postulate 5 has recently been shown to be redundant (J, C. C.
Mc¢Kinsey, Bull. Amer. Math. Soc., vol. 40, p. 425—427, 1934),
and Postulate 9 appears to belong among the informal rules rather
than among the formal postulates. Also, Postulate 8 may be replaced
by the simpler form 8a: [(a<2a) < (@ <]b)] in T]

1. (@b<]ba)in T.

(ab<a)in T.

(@a<<aa) in T.

[(ad)e <a(bc)] in T

[0 =2 (@] in .

(@25 (=<09=<@<0]in T
[a(@<<b)<Lb]in T.
(a<by<(@=a)]in T
Same as the ,rule of ewistence“ above.
10a. {(a<b)<L[(ad) L2 (ad)]in T
10b. {[(a¥) 2 (aby] < @<} in T.

On the basis of these postulates, and introducing the mark o*
through the following abbreviative definition:

11. Def. a* [read: a star] = (a < a),

© WSO 2N

we can easily establish the following theorem:
12. (e < b)=(ab’)*
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If now we compare the abstract mathematical syslem defined by

the foregoing rules and postulates with Lewis’s system of striet:
implication as set forth in Lewis and Langford’s ,Symbolic

Logict (1932), we find that the element »@ star“ corresponds exactly

to Lewis’s pcurl dismond a%; the expression ,a <<b in 7™ cor-

responds to the assertion ,a strictly implies 6%; the formulas 11
and 12 show how each of the operators < and * may be defined
in terms of the other; and the postulates 1—9 (omitting the symbol

Jin 7%) correspond exactly to Liewis’s postulates B1—B9. Hence-

the structural identity of the abstract system here presented and
Lewisg's system of strict implication is seen to be established.
In view of 11 and 12, as we have already noted, the system:

may be expressed either in terms of the base (K, X, ’, 7} <),

with * treated as a derived concept, or in terms of the base
(K, X,y T, *), with < treated as a derived concept. The latter-
plan is, in effect, the one presented by Lewis in ,Symbolic Logict;
but in view of the importance of the symbol <2 in the usual inter-
pretation of the system, the plan adopted above would appear to-
be the more direct.

Further definitions and theorems,

Just as the initial postulates of the theory are of two kindsr
(1) the -informal postulates or rules of procedure; and (2) the Jormal
postulates or symbolic expressions of the form ,(...) in 7%; so the
turther development of the theory leads to theorems of two kinds:
(1) informal theorems, which are to be added to our list of rules
of procedure; and (2) formal theoress, which are to be added to-
our list of accepted symbolic expressions. h

For brevity and convenience, the thyeory makes use also of the
following ,abbreviative definitions¥, which define the marks g + b,
a Db a=1b, and a="b as elements of the class K.

13. Def. (a4 ) =,(_a’ by | [Read: a plus ).

14. Def. (@ Db)=(ab'y. [Read: a horseshoe 5).
15, Def. (a=b)=[@Db) 6D a)l. [Read: a triple b].

16. Def. a=0)=[a<5) (b <a)] [Read: a quad b].

(The symbol ,=* is here used in place of one of the symbols

»=" which appear ambiguously in Lewiss definition 11-03)
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The following theorems (not explicitly mentioned in ,Symbolic
Logic*) may be noted. '

17, ad =5bd"
18. (aa’in T)— (b in T'), no matter what element is put for .
19, (a=bin T)—> (a=1"b).

Further, the following fundamental theorem has recently been
established by the present writer (Bull Amer. Math, Soec., vol. 40,
p. 7129—1385, 1934):

20. (a<2b)=(a=ab); that is, (a2b)=[(a<abd) (adb< a).
From this it is easy to deduce the following rules of procedure:

2. @<bin 7)-> (a=abd)
22. (a=ab)—>(a<<bin T)

Effective implication vs. striet implieation.

In order to make clear the significance of this last result, it-will
be convenient to introduce a new term, ,a effectively implies b%,
symbolized by ,a<<}“ to indicate that the element a and the ele-
ment ab are ,effectively equal® in the sense explained above. Thus:

23. Def. (a <b) Z (a=ab).

Here the notation a <<b may be read: a effectively implies &;
or simply: ¢ within b; the ,mutual arrow“ notation X 2 ¥ means
that whenever we find X established, we may thereupon write downY,
and whenever we find Y established, we may thereupon write downX;;
and the ,effective equality* notation ==y means that the elements =
and y may be interchanged at any point in any expression in the
system. v

On the basis of this definition of ,effective implication¥, we may
establish the following theorem in Lewis's system: k

24. Whenever in the course of the development of the theory

- we find, for any given elements @ and b, that ,a<<bin 7%
has been established as an accepted expression, we may
therenpon write down the memorandum a<Cb, meaning
thereby that a =« b; and conversely, if we find that a <b
has been established, we may thereupon write down ,a<b
in 7% as an accepted expression. Briefly:

(a <bin T) 2 (a<Cbh).
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Concrete interpretations of Lewis’s abstract system,

Any system (K, X, ', T\ <) which satisfies the set of postula,tes
above (including the rules of procedure 4 —J as well as the formal
postulates 1-—10) may be called a Lie wis system. In other words,
the given set of postulates provides a means of classifying any system
(K, X, ', T, <) which may be presented, and deciding whether
it shall or shall not be called a Lewis system — this purely clags-
sifying function being, in fact, the characteristic function performed
by any mathematical set of postulates. :

Example 1.

The example of a Lewis system (K, X, ’, T, <) in which
Lewis himself was primarily interested is the following.

K = the class of propositions, p, g, r,... (the relation p==¢ meaning
that p and ¢ are equal in the ,,eﬁ'eets which they produce).
pg == the proposition ,p and g%
p == the proposition ,not p*
= the class of propositions which are ,asserted“.

P < g == the proposition ,p strictly implying ¢% (in the intuitive
sense envisaged by Lewis).

In this case the derived concepts are to be interpreted, according
to their definitions, as follows:

p* = the proposition -, p impossible®.

p + ¢ = the proposition ,p or ¢“.

p ) g = the proposition ,p materially implying g*.

p == ¢ = the proposition ,p materially equivalent to ¢*
p== g = the proposition ,p strictly equivalent to g*.

Example 2.

A second, loss familiar example of a Lewis system (X, X, ’, T, <)
is the following (so-called ,dual“) interpretation.

K = the class of propositions, p, ¢, 7,..., as above.

p g = the proposition ,p or g“.

p’ == the proposition ,not p“.

T = the class of propositions which are ,denied,

P < ¢ = the proposition ,, p not being strictly implied by g“.
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In this case the derived concepts are to be interpreted as follows:

p* = the proposition ,p not necessarily true“.

p -+ g = the proposition ,p and g“.

p D) g = the proposition ,p not being materially implied by g“.

p = g = the proposition ,p not being materially equivalent to g“.
p==gq = the proposition ,p not being strictly equivalent to g“.

A finite example of a Le wis system.

An example of a Lewis system, which brings out explicitly the
distinctions between the various operations considered in the theory,
is the following finite system (K, X, ’, 7} <), containing only four
elements. (This example is an elaboration of the first example men-
tioned on page 493 of Symbolw Logic“).

K —a class of four numbers, 1, 2, 3, 4, — ,effective equahty
between two elements in this case being simply equality in
numerical value.

T — the subclass comprising the two elements 1 and 2.

pg, p’, and p < g = the elements indicated in the following tables.

(In the double-entry tables, p is on the left, and ¢ along the top).

K=1,234 pg|1234 plp p<q[1234
T'=1,2. 1]1234 114 112444
212244 2|3 22244
3‘3434 3|2 3/2424
414444 4|1 4/2222

Recalling the definitions of the elements p¥ p—l—q, P g, p=q,
and p== ¢, namely:

pr=p<3r); +d=09¢); D9=(2);
(p=0q =I(pD9) (gD and (p=g)=[(r<9) (g<p)]; We have

|p* p4g|1234 pHg|l234 p=q¢|1284 p=¢|1234
4 111111 111234 111284 12444
4 211212 211133 2(2143 24244
4
2

3(1133 311212 313412 314424
414321 44442

B> Lo b

41234 41111
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In the following ,relation tables, a dot in row p and column ¢
indicates that p stands to ¢ in the relation described in the heading

of the table.

E. V. Huntington:

"~ Assertion of

Assertion of

Assertion of

»Effective®

"~ While the element p%g cannot be defined in terms of the
, these tables show that the relation
2P <¢qin T% is identical Wlth the Boolean relation ,p ==pg“ (at
least in this example); and Theorem 24 shows that this will hold

»Boolean¥ symbols K, X, ==

true in every example of a Lewis system.

Similarly, the relation ,p=g¢ in 7% is seen to be identical
w1t11 the relation ,p=¢%; and Theorem 19 shows that this will
be- true not-only in this example but in every example of a Lewm

system.

i

February, 1935, Harvard University.

pStriet impli- | ,S8trict equi- | ,Strict impos- JEffective®
cation® with | valence* with | eibility* with | implication, equality.
respect to 7' | respect to 7. | respect to Z. (p=pq) (p = q)
(p<qin T)|(p=qin T)| (" in T)

[1234 11234 | [1234 /1234
1 1]. 1] 1. 1
21. 2 2 2].,. 2
3 3 3 3, 3
4|.... 4 4 4i... 4 .
Assertion of Asgertion of Assertion of

nMaterial pMaterial pMaterial
implication¥ equivalence® negation®
with respect with respect with respect

to 7. to 7. to T
(#D¢ 1 T) | (p=gin T) | (¢ ia 7)

[1234 |1234 |
1 1. 1
2 21. 2
3 3 3.
4 .| 4 . 4.
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Sur lexistence des plans tangents aux surfaces
applicables sur le plan.

Par
Henri Lebesgue (Paris).

Considérons une surface rectifiable (v, v), y(u, v), (4, v); cest-
-b-dire un systéme de trois fonetions continues telles que, lorsque
le point de coordonnées rectangulaires w, v déerit une courbe de
longueur finie ou infinie /, le point dont les coordonnées rectangu-
laires spatiales sont les valeurs des fonetions z, y, 2 décrive umne
courbe de longueur au plus égale 4 K, K étant un nombre fixe,
indépendant de la courbe considérée. Si l'on passe des variables «
et v aux variables u, = Ku et v, = Kv, la courbe décrite par le
point x, y, ¢ sera de longueur au plus égale & celle déerite par le
point u,, v,. Je suppose ce changement effectud, c'est-h-dire K ra-
mené & l'unité.

Alors on a, pour tout systéme d’accroissements du et dv,

[x(u-du, v 0v) —z(w, v)]2 | [y(u-+ 04, v} 69)—y(u, v)]
duf -4 ov? + ou® 4 dv? +
+[z(u+ du, v+ 0v) — 2 (u, v)]? <1

dul - do?
Posons
(g + 008 @, % + ¢ sin @) — @(th, )
b)
Q

et définissons de fagon analogue les fonctions % (u,, vy, @, 0),
£ (4, v, @, 0). Il résulte de l'inégalité préeédente que ces trois
fonctions sont, en valeur absolue, au plus égales & 1.

& (ug, %y @, 0) =


GUEST




