On free subsets of E,.
By
R. L. Wilder (Ann Arbor, U. 8. A)

In an earlier paper ') I have given an affirmative answer, for
the cases n==2, 3, to the following question of Mr. K. Borsulk ?):
Is every free, locally contractible3), compact continuum which
cuts E, an (n—1)-dimensional manifold? More precisely, in I,
every free, locally connected compact continuum J/ which cuts K,
is a simple closed curve (1l-manifold), and in Z; every such con-
tinuum for which, moreover, the Betti number p*(M) == 0, is a closed
2-dimensional manifold. In the present paper these results are ex-
tended to higher dimensions, using the notion of generalized closed
n-manifold 4. In addition Theorem 7 of C. P. B. is extended in
a similar way, and one or two special types of transformations are
considered.

1) Concerning a problem of K. Borsuk, Fund. Math, 91 (1938), pp. 166—167
(to be referred to hereafter as C. P, B.).

1) Fund. Math, 20 (1933), p. 285, Prob. B4. Borsuk calls a subset M of Ly free
in this space if for every &> 0 there exists an e-transformation of M into a set M’
such that M- M’ =0; see K. Borsuk, Uber die Fundamentalgruppe..., Monatsh,
f. Math. u. Phys. 41 (1934), pp. 64—77.

?) plokal zusammenziehbar®,

%) As introduced in my paper Generalized closed manifolds in n-space, Annals
of Math. 35 (1934), pp. 876—-903 (hereafter referred to as G. C, M.), & generalizod
closed n-manifold (=g. c. #-m.) is a compact metric space M of dimension »
sach that 1) p*(M)=1 and for any proper closed subset F' of M, p,(F) == 0;
2) for 1<<4<_n—1, there exists 7 >0 such that if v/ is a cycle of M of dia-
meter <7, then Y/~ 0 in M; 8) if P is u point of M and 2 a positive number,
there exist ¢ and 2, &> 6> 4> 0, such that if MO=ismn—92) I8 o ayclo
of F(P,d), then y'~0 on S(P,s) — §(P, ;i wnod if y#~1 iy a cyele of (P, d),
then y*~1~0 on M— S(P, 7). In By, for n==2,3, the g. c. (== 1)-m. is the
ordinary (n — 1)-manifold. '
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Theorem 1. In B, (n>2), let C be a free, compact continuum
which cuts E,, is locally i~connected ) for 0 Si<n—3, and for
which p'(C) is finite. Then C is a g. c. (n—1)-m.

Proof As shown in Theorem 1 of C. P. B, C is a common
boundary of two domains D and H such that D4 H4+ C=E,.
Since C is connected, a continuous transformation of ¢ yields a con-
nected point set; consequently, if C’ is a transform of C such that
0. C'=0, then ¢’ must lie wholly in D or in H. As C is free, we can
agsume that for arbitrary £>>0, there is an e-transform of C in H.

Given £>0, let 6>0 be such that if P is a point of C,
then any i-eyele (1=¢=n—3) of C.S(P, §) bounds on C- S(P, ¢/2).
Consider a cyele 9 of D. S(P, §), considering P henceforth as a fixed
point. By the Lemma of C.P. B., there exists 7>0 such that if y*
links C in S(P, &) and C’ is any #-transform of C, then y* links C*
in S(P, 8¢/4). We suppose that o links C in S(2, €).

Let K**' be any (i 1)-chain bounded by 3 in S(P, ). There
is no loss of generality in supposing |y|6) connected, and it will
be convenient to do so. Let &, &,..., &,... be a monotonic de-
creasing sequence of positive numbers converging to zero, where
& < o(|y], 0), and let K™ be subdivided so that its cells are all
of diameter <& . The set of those closed (i 1)-cells on K™ that
do not meet C form a complex L,. The component of | L,| which
contains |y| forms the basis for a chain K/*—y'—i,.

We now make a subdivision of K of mesh < ¢, and <o(|KfH], 0)
The set of those closed (i-}-1)-cells of this subdivision that do not
meet C form a complex L, D) L,. The component of |L,| which
contains |y| forms the basis for a chain K/'—y'—i,. We have

K — K i) — .
Proceeding in this manner, we obtain for each positive integer k
a chain K{*! and a cycle 4, such that
K| DK, Bt =y — i,
K — K —>t—iy.
5) In the sense employed here (see P, Alexandroff, Annals of Math. 30,
p. 181, footnote), a metric space is locally i-connected at a point P if for arbi-
trary 22> 0 there exists J, > 0 such that any eyele y;(C S(P,d,) bounds on
S(P, ); the space is locally i-connected if it is locally i-connected at every point.

For 4= 0, this notion coincides with the local connectedness of point set theory.
“) If L denotes either a chain or a complex, we denote the set of points on L by |L|.
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For each k, there can be assigned a positive number =, such
that all vertices (0-cells) of Kj}— K are within a distance 7,
of C and such that lim#, ==07). Consequently the cycles 4, and

chains Kl — K+ :r:;;r be considered as ‘forming ,infinitesimal
alterations¥ 8) of cycles and chains on C; in particular, then, the
eycles 4, form infinitesimal alterations of the elements of a convergent
Vietoris eyele I = (¢, 6gyeny Gyerr) O C+ S(P, d). By hypothesis,
I'* bounds a chain @+ on C+ S(P, ¢/2).

Let o (C, C')=0, where O’ is an #-transform of C as defined
previously. Denoting the elements of Q*** by ¢,, where g,—>¢;, we
choose an integer m such that the cells of both ¢, and ¢, are of
diameter <C 6/3, the distance from any vertex of 4, to its corres-
pond in ¢, is < 6/3, and the cells of g, form a 0/3-complex. Let g,
dengte the complex consisting of the cells on ¢,, with, however,
the vertices of ¢, replaced by their corresponds in 4,. Based on
a geometrical realization of the complex §,, we obtain a chain
Ftt—i,. No cell of F** meets C’, and |[F**|(C 8(P, 3¢/4). From
the relations

K >yt —,
g,

in S(P, 8e/4)— ¢,
in S(P,Be/d)— C’,

Kt 4 Firt — ot in S(P,3¢/4)— C".
But  was chosen so that ¢ links ¢’ in S(P, 3¢/4). Thus the sup-
position that 9* links C in S(P, ¢) leads to a contradiction, and it
follows that D is uniformly locally i-connected, for 1 Si=<n — 8.
By Theorem 2 of C. P. B,, both domains D and H are uniformly
locally O-connected. Since p'(C) is finite, we know from well-known
duality relations that p*~?(E,—C) is finite, That C is therefore
a g ¢ (n—1)-m follows at once from Theorem 15 of G, C. M.

we get

Remarks. As we shall note presently (see the Lemma below),
when we are dealing with chains and cycles mod m = 2, the assum-
ption in Theorem 1 that p!(C) is finite becomes unnecessary in
case n =4, since in this case the finiteness of p!(C) is a conse-
quence of the local 1-connectedness of C. However, it is clear from
the above proof that we can replace the assumption comcerning

") This follows easily, for instance, from the fuct that the set of points on
any complex is loeally O-connected.
8) Bes P. Alexandroff, Annals of Math, 80, p, 181,
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p'(C) by the assumption that C is loeally (17— 2)-connected, in
which case the conclusion of the theorem follows from Principal
Theorem C of G. O. M. Since a locally contractible continuum is
locally é-connected for all dimensions i9) we have the

Corollary. A free, locally contractible continuum which cuts E,
8 ag. c (n—1)-manifold.

Since every absolute neighborhood retract is loeally contractible 1¢),
a similar corollary may be stated for the class of such sets.

If we assume, in the hypothesis of Theorem 1, that p™2(C) is
finite, and delete the condition that p*(C) be finite, we shall then
have as a consequence that p!(Z, —C) and hence p!(H) is finite.
This fact, together with the other local connectedness properties
of D and H proved above, are sufficient to make C a g. c. (n—1)-m, 11),
Thus we can state

TheoremIa. The result of Theorem1 remains true if the condition
that p'(C) be finite is replaced by the condition that p*=*(C) be finite.

For the case where n==4, and only chains modm =2 are
employed, we may obtain a much stronger theorem that Theorem 1.
In order to establish this, we need the following Lemma which I
have established in another (as yet unpublished) paper:

Lemma. Let M be a locally compact metric space which, in terms
of chains mod m =2, is locally i-connected for 0 =ik (where k
is a non-negative integer). Then, if F is a self-compact subset of M
and U is an open subset of M containing F, af most a finite number
of i-cycles of F are independent with respect to homologies in U ).

Theorem 2. In E, (n>>2), let C be a free, compact continuum
which cuts B, and which, in terms of chains modm =2, is locally
i-connected for 0 i = (n—1)/2. Then M is a g. ¢. (n— 1)-m.

Proof. By virtue of Principal Theorem € of G. 0. M., we need
only ‘show that if P is a point of C and & a positive number, there

%) See K. Borsuk, Zur kombinatorischen Eigenschaften der Retrakte, Fund.
Math, 21 (1933), pp. 91—98, Hilfssatz,

1) K, Borsuk, Uber eine Klasse von lokal cusammenhdngenden Rdumen,
Fund. Math. 19 (1932), pp. 220—242, § 27.

11) See Bull. Amer, Math. Soc, 40 (1934), p. 80b, abstract no, 3b4.

12) When F'= M, the finiteness of the numbers p!(M) follows, a fact that
wo referred to in connection with p1(C) in the above Remarks,
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exists > 0 such that any ¢ in D.S(F, d) bounds in D . S(F ¢),
where 0 <<i <<n—2 and D is as defined in the proof of Theorem 1.
That such a 0 exists for values of ¢ such that 0 =575 (n—1)/2
follows from the proof of Theorem 1. Hence in what follows we
consider a fixed value of ¢ such that (n —1)/2 <<i=n - 2.

Let # be any positive number <& and let n,, 7y, ;,... be
a sequence of positive numbers such that ¢> g, > 7, > 9 > >0
Let >0 be such that any (n—4— 1)-cyecle of C-8§(P, 20) bounds
on C-S(P,n). Let &, < 0. Suppose that no matter what d > 0 is
selected, there isin D+ S(P, d) a ' that fails to bound in D . S(F, g).
Then there exists such a 9 in D S(P, d,) that we shall denote by »-.
As 9 links C in S(P, &), there exists B >0 and a f;-transfor-
mation 7} such that 73 (C)C H, and o} links 7} (C) in S(F, n).
Let 6, be a positive number such that 7(C)- S(P dy) ==0. In
D.S(P, 6,) there is a y4 that links ¢ in S(I ). Then 9 and y} are
independent with respect to homologies in S(F,#,) — C+ S(P, n,).
For suppose we had

Kt ai+arn i S(En)—CSEn.

If Kit' is the maximal portion of K{+ forming a chain of H, then
clearly Kjt'— 0. Then

1) K" = K — K 0,9+ oy 9
in D-8(P,q)C S(P, ) — Ty (0)- S(E, my).

However, there exists a chain L' such that
2) Loyt in S(P, d3) C S(F, ny) — T4 (C) - S(P, ny).
From relations 1) and 2) we get

K —L* > 9t in S(P ) — 1,(0)- 8(P, my),

which contradicts the fact that y{ links 7,(C) in S(P, 7).

Having determined, by the process just indicated, cycles yi,..., ys
that are linearly independent with respect to hornologies in D« S(P, 1),
we observe that since there are only a finite number of possible
linear combinations of the 9’s (mod m), there is a 8:>0 such that
if 7,(C) is a Bi-transformation of C into a subset of H, every such
linear combination links 73(C) in S(P, 7). Let 0a >0 be such
that 7,,(C)- S(P, 6,y5) ==0, and in D . S(P, Opta) lot 4., be a eycle
lickking C in S(P, &). Then ¢,..., ¥4, yky, aro linearly independent
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with respect to homologies in S(P, 7,) — C-S(P, ). For if not
we would have by reasoning as above, a chain K** such that

8) K*'— e pi+4...4-ewvit-ceraVia in S(P, 7)—T.(C)-S(P,ny).
However, we have
4) LI+1""> 0k+1 ’yi—}-l in S(P, 6k+]) CS(P, 171,) —_— Tk (G) . S (P, ’f?k),
and from relations 3) and 4) we get
KR —IM >api+...+av in SP g —T(C) S(P,mn).

contradicting the fact that every linear combination of the cycles
Viree-s Vi links T3(C) in S(P, ny). :

We thus show the existence of an infinite set of such cyecles ¥}
every linear combination of which links C is S(P, ). As the 's
are therefore linearly independent with respect to homologies in
E,—[C-8(P, n) 4+ F(P, 7)), they are uniquely linked with a set
of eycles 2= of C+.S(P,n) -+ F(2, ).

As a Vietoris cycle, let &/~ = (2,1, #43,---) Zams-.), Where
%, 18 an g,-cycle, lime, =0. Let h,, denote the portion of 2,

m—>o00

whose abstract (n-—i—1)-cells lie wholly in S(P, 6). Then K,
where kb, ,—> K, ,, may, without loss of generality, be assumed to
lie on C: F'(P, 6)13), and since the sequence K, ;, Kiay ...y Kpmy. ..
containg a convergent subsequence forming a Vietoris eyele I’f~*2
of C.F(P, ), we can assume for the sake of brevity, that I'y—*
is the former sequence itself 14).

Since there are infinitely many cycles Iy~ there exists, by
virtue of the above Lemma, a relation

Brity o T2 0, IEF1 i C-[S(P,26)— S(E, 6],

1

where the elements of the chain B**! are b,, by,..., b,,... and
bn—=>6 Kym—+...4¢ K, . We assume that from the sequence of
eycles ¢, by m—+ ... 4 ¢, A5, n— b, there has been chosen a convergent

1) If 237" lay wholly in S(P, 6), it would bound on C- S(P,7).
1) Actually, we should choose the convergent subsequence
== (Kg,nyy Khynar+ s Koy oo oy)y 804 henceforth replace 22— by the homologous

=3
k

cycle formed by the sequence (2k,ms Z4,myy- -+ 24,ny++). And when other convergent

soquences are selected hereafter, it will usually mean that the cycles just treated
will have to be replaced again by subsequences to harmonize with the new cycles,
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subsequence forming a Vietoris cycle +"~*~' and that the subscripts
here and in preceding sequences have been reassigned to aceord
with our notation. Similarly, if 2, — 4 .=@4n, We obtain a Vie-
toris cycle w" ! from the sequence ¢, g+ ... ¢, Gs,m —+ by With
the necessary resssignments of subseripts as befure.

Since ,
o 2:‘—1—1 + . + ¢ z:r—i—-l = il + wu—l—l m)’

and since every linear combination of the 2’s is linked with a linear
combination of the y's, it follows that v*~1 - "1 must be linked
with a linear combination of the ¢'s. But [o*~~(C 8(L, 26), and
therefore »*1~0 on C-8(F, 7). Thus w*~*' must be linked with
a linear combination of the 9’s. However, [w'~"|(C K, — S(P, &,),
whereas the y's all lie in S(P,d,); consequently w*' cannot be
linked with a linear combination of the 9s. This contradiction
completes the proof,

We turn now to the case where the set C under consideration
is what we might call free in the stromg sense; i. e, the case where
for every &> 0 there exists an e-transformation of ¢ into a set ¢
that is homeomorphic with C and such that C.C’=0. Concerning
such sets we prove the following theorem, reserving until after the
proof such remarks as we wish to make concerning relationships
with preceding theorems.

Theorem 3. In E, (n>2), let C be a compact continuum which
cuts E,, is free in the strong sense, and is locally i-connected Sor
Isi=j, where j=(n—3)/2 or (n—2)/2 according as n is odd
or even. Then if p™'(C) is finite, C is a g.c. (n — 1)-m,

Proof. Asin the proof of Theorem 1. we have C a common
boundary of uniformly locally 0-connected domains D and H where
for every >0 there exists an e-transformation of C into a subset
of H that we can now assume is a homeomorph of C. That D is
uniformily locally i-connected for 1 <Si<<j is proved as in The-
orem 1. We can prove that H is uniformly locally i-connected for
the same values of ¢ by proceeding as follows: Given an arbitrary
£€>0, let 6>0 be such that an i~cycle of C of diameter << 6
bounds a chain of ¢ of diameter < ¢/2. There exists n>>0 such
that if C' is a homeomorph of ¢ (in H) which is the result of

%) By definition, the general element of the cyele in the lefi=hand member
of this relation is ¢ Zgm ...} ¢, @s,m.
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an 7-transformation of C, then any i-cyele of O’ of diameter < ¢
bounds a chain of ¢’ of diameter < e (by elementary continuity
considerations). Now let / be a point of Cand y' a cyele of H.S(P, d).
Without loss of generality we may assume that || is a connected point
set, and it is easily shown 1%) that there exists a positive number 4

such that a @-transformation of C into a subset of H yields a set

which separates [y'| from C; let €’ denote the result of such
a transformation. By methods similar to those used in the proof of
Theorem 1, we may show the existence of chains KA, F (with,
however, the roles of C and ' reversed) such that K414~ FH1 >y,
in §(P,e)— C-8(P, &), for m great enough. Accordingly, H is uni-
formly loeally i-connected as stated above, and with the assumption
that p*+(C) is finite the theorem follows 1),

Remarks. On comparing Theorems 2 and 3 we note that in an
even-dimensional k,, Theorem 2, except for its restriction un the
type of chains, is the stronger theorem, since Theorem 2 in this
case requires the local é-connectedness of ¢ only for 0=0isS(n—2)/2,

whereas Theorem 3 requires the finiteness of pE(C’) as well as the
stronger type of transformation. However, aside from its freedom
from restriction on the type of chains employed, Theorem 3 yields
additional information in the case of an odd-dimensional E,, since
it assurnes the local i-connectedness of C only for 0=Si<(n—38)/2,
whereas Theorem 2 requires local i-connectedness of C for i=(n—1)/2
ag well.

We call attention also to the fact that in the case of Z,
Theorem 1 is a stronger theorem than Theorem 2, being in this
case the same as Theorem 3 of C. P. B.

In connection with the distinetion between ,free* and ,free in
the strong sense“, it would be interesting to know under what
conditions the first implies the second. A related . question is the
following: If C is a compact, closed subset of Z,, and C'= f(C)
the result of a continuous transformation f, under what conditions

~ean f be e-extended, for arbitrary £>>0, into a homeomorphism

of C? For instance, when will there exists a J > 0 such that if f
is a d-transformation of C, then f can be s-extended, for arbitrary
&> 0, into a homeomorphism of C?

1) Ior instance, see the first seven lines of the proof of theorem 1, C, P, B.,
with P as a point of |4| instead of C.
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As we have already noted in Theorem 1 of C.P. B, a compact
continuum which cuts Z, is the common boundary of two domains .D
and H. If for every & > 0 there exist s-transformations of C into
subsets of both D and H that do not meet ), we shall say, for

brevity, that C is two-way free. Concerning such continua we

may state:

Theorem 4a., In E, where n is odd and > 1, let C be
a compact continuum which cuts ,, is two-way free, and is locally
i~conmected for 0 i < (n—3)/2 (=j). Then if p™*(C) is finite,
Cisagoec (n—1)»m

Theorem 4b, In K, where n is even and >2, lt C be
a compact continuum which cuts ,, is two-way free, and is locally
i-connected for 0 =i (n— 2)/2. Then C is a g.c. (n— 1)-m.

Theorems 4a and 4b are proved by proceeding, as in the proof
of Theorem 1, to obtain local connectedness properties of both the
complementary domains, and by applying the results stated in the
reference given in footnote **).

In O. B. P. it was shown 17) that for » =2, 8, a compact conti-
nuum which cuts Z, and is continuously deformable without meeting
*itself is a closed (» — 1)-manifold. This result is contained in the
following theorem :

Theorem 5. In E,, a compact continuum which cuts £, and is
continuously deformable without meeting itself is a g.c. (n— 1)}-m.

Proof. Denoting the continuum by C, and the complementary
domains of which it is the common boundary (Theorem 1, C. P. B.)
by D and H, we may suppose the deformation of C to take place
in H If D is not uniformly locally i-connected for an ¢ such that
0=i=n—2, there exist an >0, a point 4 of C, and a sequence
of i-cycles y; of D whose diameters converge to zero and have the
point 4 as topological limit, and each of which links C in S(4, &).
By practically the same argument as given for the case i==0 in
the fourth and fifth paragraphs of the proof of Theorem b in C. P. B,,
we may show a contradiction, The theorem then follows from
Principal Theorem C of G. C. M,

11y P, 165, Corollary, and Theorem 7.
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On differentiation of Lebesgue double integrals;
By
A. S. Besicovitch (Cambridge, England).

The theorem proved in this note gives an answer to a problem
put forward by S. Saks*).

Denote by »(u, v) a rectangle (and its area) with sides parallel
to the coordinate axes and containing the point (4, v). Given a fune-
tion f(#, ) summable in a domain D denote by D,,, ff f(z,y)de dy,
. the upper limit, the lower limit and the limit
(if it exists) of the ratio

- 4'”.‘ f/f (w,y)dudy, as dr(u, )
)

r(u,v)
where dr(u, v) is the diameter of r(u, v). ‘
It is well known that for a bounded function f(x, y)

Dy, f f Fw, y) dw dy

exists and is equal to f(u,v) at almost all points of the domain,
In the case of an unbounded function this is true only with an
additional cendition that the ratio of the larger side of r (4, v) to
the smaller side remains bounded. If this restriction is not 1mposed
then the inequality

D,,,fff @, ¥) dmdy>l),,_ fffx,y dmdy

may hold on a set of positive measure. Saks' problem’ is: May both
terms of this inequality be /i’mte on a set of positive measure?

1) 8. Saks. Remark on the difer d”ilabihtj o/' tha Labasyue mdaﬂmta mtagral
Fund, Math, T, XXII, pp. 267261,

Fundaments Mathematicne. T, XXV, 14
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