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Corollaire I. Si f est une transformation essentielle de 4 en Q,,
alors 4, = f~*(8,) contient un constituant K tel que f est une
transformation essentielle de K en S;, done f(K)== 5.

Lemme II. Soit [ une transformation essentielle de A en Q,,
JC @y une ligne stmple fermée, H celui des deur domaines déterminés
dans le plan par J, qui est contenu dans Q,. Alors f est unme trans-

formation essentielle de Uensemble f~(H) en H=H -+ J.

-Jomets la démonstration, qui ne présente aucune difficulté,
Les lemmes I, IT et le corollaire I entrafnent le

Corollaire IL. Si f est une transformation essentielle de 4 en Q,,
JC @, une ligne simple fermée, alors 4 contient un continu K tel
que f(K) =d.

Théoréme I. Soit f une transformation essentielle de A en Q, et
CC Qs un continu. Alors il existe un continy L (C A tel que f(L) == C.

1l existe une suite de lignes simples fermées J,( ¢, telle que
Lim J, = C*%). D’aprés le corollaire II, il existe un continu K,(C A

tel que f(K,)=4J,, n=1,2,... De la suite {K,} nous pouvons

extraire une suite convergente {K,}, s=1, 2,... Soit L == Lim K,.
§=300

On a LA, L est fermé et connexe, enfin en vertu de la conti-
nuité de f, on aura: f(L)=Lim f(K, )= Lim J, =Lim J,=0C,
$—>00 5§00 H—p0Q

e. q f d

Théoréme I1. Tout espace A métrique, compact et de dimension
=2 contient un continu indécomposable.

Il existe ¢) une transformation essentielle / de A en Q. Soit C,
un continu indécomposable contenu dans @;. D’aprés le théoréme I
A contient un continu Z, tel que f(L,) = C,. Or, L, contient alors

un continu indécomposable L, tel que f(L,)= C, 7). Le théoréme
est ainsi démontré,

f) Comp. p. ex. Fund. Math, XVI, p, 157 (mutatis mutandis).
) Alexandroff, Math, Aun, 108, p. 170—171.
") Knaster-Masurkiewicsz, Fund, Math, XXI, p. 87—88.
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On the absolute integrability of Fourier transforms.
By
Einar Hille (New Haven) and J. D. Tamarkin (Providence).

1. Introduction. In their important paper [1]?) Hardy and
Littlewood proved that if ¢ (6) belongs to a Lebesgue class L,
over (—m, m), p>1, and if {¢.}, m=..., —2,—1,0,1,2,..., is
the sequence of complex Fourier coefficients of ¢ (6) then

Dleal (ml+ 1720, [Ip(0r as,

1 ==—00 —7

where C, is a constant depending only on p. This constant tends
to oo a8 p— 1, and the result does not hold when p=1. It does
hold however in the special case where @ (6) ist the limit function

of a function
p(w)=3 a,uw"

n=0

analytic in the unit circle |w| <1, and such that

‘\/@]w('r %) d6

is bounded for 0 <~ <C 1. In this case the result of Hardy and
Littlewood can be stated in the form

Sl +0=6 [ Ip@)as

=0

1) The numbers in brackets refer to the list at the end of this paper,
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and the hypothesis can be replaced by an equivalent one, viz. that
both functions ¢ (6) and its conjugate G (¢) are integrable, where
#(0) is defined by

§(6) = — lim (27)™ f (9 (0 +2) — (6 —1)] cot : dv
(L1) ° ;
= (2n)”1‘ PV, f @ (7) eot — —'2—1 dr,

and P. V. stands for the Cauchy principal value of the integral
in question. As a corollary of this result it follows that if both
fanctions, () and its conjugate ¥ (0), are of bounded variation
over (—m, ), then their Fourier series converge absolutely, Almogt
simultaneously with Hardy and Littlewood, Fejér [1] showed
that the best possible value of the constant ¢, is 1/2. An extremely
simple proof of Fejér's result was given by Zygmund in his
recent book ([1], pp. 167—162). Fejér also gave the following
elegant geometric interpretation of the preceding results. Let

ww) =3 b,w
R nm=0 -
be 'anélytic in the unit cirele |w|<C 1, and let ¢ = (1)) moap con-
formally the unit circle into a bounded domain of the {-plane, not
necessarily simply covered, and bounded by a rectifiable curve of

length 7. Then ;
.
Jhi=4,

N0
the coefficient 1/2 being the best possible,

It is the purpose of the present note to investigate the analo-
gues of the preceding results in the case where Fourier series are
replaced by Fourier transforms and mapping of the unit cirele is
replaced by mapping of a half-plane. Hardy and Littlewood

(1], p. 203) state that if (@) e L, over (0,00), p>1, and if F(x)
is its cosine or sine Fourier transform then

| f [F@)P o de < ¢, J \f@)P da.
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This result in general is false when p=1 It holds true
however in a case which is entirely analogous to that mentioned
above in connection with functions analytic in the unit circle, viz.

when f(x) is the limit function of a function f(z) analytic in the
half-plane 2> 0 and such that

f | f(@4iy)|dz is bounded for y > 0,

The proof of this result and of various other analogues of results
of Hardy and Littlewood, and of Fejér, are found in the
last § 4 of the present note ®).

The following notation will be used throughout this paper. The
class of functions f(x) measurable over (— oo, co) and such that
Jir@ris <o, pzt,
will be designated by £,, the notation L, being reserved for the

analogous class of funetions ¢ () defined over (— =, 7).

Let f () & ,. The conjugate funetion f(x) is defined by

(12) flo)=—3 lim [1f@to—fa—osar=1 p.v. (704

J x— 1

Itis known that jN(w) exists for almost all # and, in caee p > 1,
F@)eg, (Seee. g Zygmund[1], Ch XII). Let f(z), z=a-tiy,
be analytic in the half-plane y > 0. If the limit

lim flz+i5) =102
exists for almost all x, f(x) will be called the limit function of f(2).

By $, we denote the class of functions f(2) analytic in the
half-plane >0 and such that the integral

o ,
T6. )= [ |fatigpde=ar,
where M is a positive constant which depends only on f and p.

1) One of these results was stated without proof in our mote [1]. = = -
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Let g(x) be measurable over (— oo, co). We set

1y 16 >-—2mfy<>t__z

w)”-{—-_imf‘q (£) K (¢ 2)

09 Pan=—1 foo =Dl fg(t)fft-

where

(16) Kt z)"":ﬁ(t__w)n.{.,yﬂ—“mni(tmz)’

1 1
1.7 R )= P (e ey %”i(t__z)-.

All these integrals converge absolutely whenever g(%) e Ly, p=1,
¥ 0. We shall call I(s;g) and P(e2; g) integrals of Cauchy type
and of Poisson type respectively, associated with the function g (£).
We observe that, on setting 2= 2 — iy,

1) Plig)= fg(

(18 Pleig) =g 00 [ 25—
while -
(19 21(2; 9) =P (23 9) + 5 B(z; g).

If g(#)=f(x) is the limit function of a funetion f(2) analytic
for ¥y >0, and such that

. f@=1I(f) or f(e) = P(2; f)

we shall say that f(2) is represented by its proper Cauchy inte-
gral I(z; f), or by its proper Poisson integral P(z; f), omitting the
adjective ,proper* if no confusion arises.

The linear transformation

1 _
m] dt=1I(z; 9) — Iz g),

14z l—w
1.10 =¥
(110) ST PT'TTw

waps the half-plane >0 into the interior of the unit circle [w| <1,
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the correspondence between the boundaries being given by -
(1.11) 2 = tan 6/2.

If @ (w) is analytic in |w| <<1, we define the limit function of
9 (w) by
@ (¢%) =lim @ (r &%),
r—1

whenever it exists for almost all 6. As usual®) H, will denote the

class of funetions @ (w) analytic in |w|<C 1 and such that

11
f“}"(r@”’)l” A= M?, w=re¢o,

b 12

We shall also use properties of integrals of Cauchy type,

e")
(1.12) L (w; y) = 2mf7(
and of Poisson type,
oL [ (1—rY)ds
Eefw; 7’)‘%f°’(’)1—2rcos(o—x)+rﬂ

(1.18) 1 1 1
=5 (%) [; w _7;

]dc L) — L%, ),
151=1

{=1¢" w*=1/w,

associated with the given function y(z), as well as those of the
proper Cauchy and Poisson integrals, I.(w; @), P.(w; ) associated
with the given function ¢ (w) analytic in [w << 1.

The fundamental notions of the theory of Fourier transforms
are of course indispensable for what follows. For these properties
we refer to Zygmund [1], Ch. XII. Let f(x) be integrable over
every finite range and let

fo (%) = @) f Flt) e dt.

—a

3 We refer to the papers by F. Riesz [1], Fichtenholz [1], and
S8mirnoff [1], concerning various properties of classes H, and of integrals of
Caunchy type and Poisson type which will be used in the sequel.
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If §,(x) converges in £, 1 = ¢ = oo, to a function {(#), so that
as @ —» oo,

[l = i@t ds >0,

or
fa (@) = f() vniformly over (— oo, o),

according as oo > ¢ or ¢==oo, then we write

f(@) = T(; f),

and call f(x) the Fourier transform of f(x) in £,. It is well known
that whenever f(x) e £,, 1 =p =2, it has a Fourier transform ()
in &, p'=p/(p-—1). |

An important tool in investigating various classes of functions
analytic in the unit ecircle is furnished by the classical ,factor-
ization theorem* of F. Riesz-Ostrowski, according to which
a function @(w) of a given class can be represented as a product
of the ,Blaschke function“ b, (w), associated with @(w), and of
a function of the same class, which does not vanish in the wunit
circle. Such is for instance the case of functions of the class H,.
An analogous factorization theorem for functions analytie in the
half-plane is indispensable for our discussion. A theorem of this
kind is proved inthe next § 2 for the functions of class §,, p=1,
together with some other properties of this important class of fanct-
ions. Such factorization theorems are obtainable for much more
general classes of functions analytic in a half-plane (Gabriel [1, 2]).
This problem is of considerable importance in itself. We intend to
return to this question in another papei, restricting our investigation
at present to the class $,, p=1, which will be sufficient for our
immediate purposes. In this case the simplest procedure consists
merely in showing that, under the transformation (1.10) the eclass H»
is transformed into a sub-class of H,, which is readily done b;r
using an elegant method introduced by Gabriel. OQur proof in § 4

aPpeals also to some properties of conjugate functions which are
discussed in § 3.

2. Punctions of class £,. In (his paragraph we ghall discuss
some general properties of functions of class §5,, which are import-
ant for the theory of Fourier transforms and also are interesting
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in themselves. The discnssion will be based on a few preliminary
lemmas, Unless explicitly stated to the contrary, it will be understood
that 1 = p < oo,

Lemma 2.1. If Uw) is =0 and subharmonic in the interior
of a circle I', and is continuous in the closed area (I') bounded by I,

)

then for any cirele C in (I')

. / U(w) |dwi§2ﬁ[ U(w) |dw-

The proof is found in Gabriel [3]

Lemma 2.2. Let g(t) e, over (— oo, c0) and let

y(@) =g(t)=yg (tan %)

be its transform on the wnit circle. The integrals of Cauchy type
and of Poisson type associated with g(t) are transformed under the
transformation

.
according to the Sformulas ’

(2.3) I 9)=TLw; N+ G Co=1—19),
(24) P(2;9) = Py(w; y).

The constant C, vamishes when I(z; g) is the proper Cauchy integral
of a function of class ,.

Lemma 2.3. If f(2) is analytic in the half-plane y >0 and
has a limit function f(x)eR, then whenever f(2) is represented by
its proper Cauchy integral, it is also represented by its proper Poisson
integrol and vice versa.

The proof of these lemmas is found in Hille and Tamarkin [2].

Lemma 2.4. A functim f(2)eD, tends uniformly to zero when
2 tends to infinity in any closed half-plane y =& >0, where & is
arbitrarily small but fixed.

The proof is based on the representation of f(?) by means
of its Cauchy and Poisson integrals related to the half-plane
y=4,>0. Such a representation was proved by Bochner [1] in
the case p =1 and by Paley and Wiener [1] in the case p=2.
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In our proof we follow the lme of argument used by Paley and
Wiener.
On applying Cauchy’s formula to the rectangle with vertices at

the points (& T'—iyp), (+ T~4Y) we have
f(t +iY)

2nif(z)=ftf_§fj;:_”_")z s+
f<T+mz> i 7+in)
+ Ttin—z / 1’—|—m-—~z

=11(739o)—11(ﬂy)+1 —L(—=T7), 0<yp<y<Y
Choose X such that 2|x| < X Then

/(£ Tin)|
f'l” T DlT= 5 f”f}i T+;;;‘”:_;z|

§§fﬂ/WiﬂHWM§

Jo

) 4 2Xx
= s fonxv] [t 74 inpaz] s auxe- (r—y
Yo

where
[17e+igpar=ar,

and, in case p =1, p’ = oo, the factor X ¥ is to be replaced by 1.
‘On keeping ¥, and Y fixod and allowing X — oo we get

2mif(s) = lim < f (R(Z, ) — L(, ) d

Smee the limits

(00, yo) = hm I (T Yo) "“f ﬂ%ﬂidtwh(%)’

f Jt+iY)

tFiY—2

exist as absolutely convergent mtegmls it is seen that
27if (o) = I, (yo) — I,(Y).

L(c0, ¥) =lim 1,(7, ¥) = - dt=1,(Y)

{2.5) f(&) = (2mi)™

(2.6) 0=(2m4)"
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Now let ¥ —oco. In case p=1 we have
FlfGE+iY
won) s fLEED gy < yir— s oqy),

‘while, in case p > 1,

1
= 0( “’“).

Hence I,(Y)—0 in either case, and
oqf(t +i%o)
W;dt’ 0<yo<y.

-00

The same argument shows that

f(i + ’yo)

tdiy, — » A=adiy, <y,

Let £ > 0 be given. In formulas (2.6) and (2.8) put

& ,
yo=_2..’ z’:x—*—'&(:zyo—y), ¥Y>Y

and subtract (2.6) from (2.5). Thus we obtain the desired repre-
sentation :

1 [ f(t 4 igo) (y —
(t—z) 4 (y — z/

To prove our lemma assume y =e=—2y, and first consider the
case p==1. A positive d being given choose 7, so large that

@) f(z)-——~

) gt — f S (i) K(t; 2—iyy) dt.

J 1retimact f176isga<s

Since K(t;2 — y,) = (y — ¢o) ™ << %> the contribution of the cor-
responding range of integration in (2.7) will not exceed d/y,. After
Fundamenta Mathematicae T. XXV. 22
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ibuti f the remaining range
T has been so fixed, the contribution o
‘ (—o— T: T,) is obviously O(l/2) uniformly in the half-plane y =&
If p> 1 then, by the convexity property,

@8 @S [ 16+l Ko — it

and the preceding argument can be applied without modifications
to the integral of the right-hand member of (2.8).

Lemuna 2.5. Under the transformation (2.2) the class O, is
transformed into o sub-class of H,.

Consider any half-plane y > & > 0. Its boundary y =¢ iﬂ'mftpped
by (2.2) into a cirele I', in the w-plane, tangonti fron% the inside to
the circle |w|==1 at w=— 1. The half-plane 1.taelf s trunsforme.d
into the interior of I',. Let f(2)ef),. The funct'mﬁ ¢p(w)‘ s ]f(z) is
analytic in |w| <1, hence | ()|’ is subharmonie in the interior of
I', and by Lemma 24, is continuous in the clo.sed area (I',). Let'O
be any given circle |w|=r < 1. If ¢ is sufficiently small, C will

be in (I',). Then, by Lemma 2.1,

r

f|m<refe>1ﬂd0=lﬁw<w>|p|dw§§- [pt)f [dw| =

2 o 2dt 4.
=2 f F+ial T s < M

which shows that @(w)e H,.
We now pass on to the main theorems of this paragraph.

Theorem 2.1. (1) A function f(2)e$, for almost all x has
a limit function f(2)e8, towhich it tends along any nontangential path.

(ii) dny f(2)e9, is represented by its proper Cauchy and Poisson
integrals. In terms of the real part of the limit function f(x) we
also have

fO=; [Rf0 25 =216 07) =
29) L ca
=P Rf)+ i Ble; 1),
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(iil) dny f(2)eD, tends to its limit function S (#) in the mean
of order p,

S1fetin—f@pic—>0 as y-so

Moreover, as y |, 0,

763 1)= [ 1f@+)Pdn 70:f) = [ |w)p da

(v) If f(x)e8, and
S@) = P(zf)
is analytic for y > 0, then f(2)e D, and therefore is represented by

its proper Poisson and Cauchy integrals P(e;f), I(e; ) respectively,
as well as by (2.9).

We observe that the analogous properties of functions of class
H, are well known. Let now f(z)e$, and let @(w) be the trans-
form of f(2) under the transformation (2.2). By Lemma 2.5, p(w)eH,,
hence ¢(w) has a limit function ®(¢®)e L, to which it tends along
any non-tangential path. Thus the limit funetion f(x) of S (2) exists

almost everywhere along any nontangential path. Moreover, by Fatou’s,
theorem

J f@pae stin [ if@tippies u

so that f(2)e8,. This proves statement (i) of our theorem. To prove
statement (ii) construct the integral P(z; f). By Lemma 2.2 we have
Ple; f) = P.(w; p) = p(10) =1(2)
since @(w)eH, is represented by its proper Poisson integral.
Thus f(2) is represented by its Poisson and by Lemma 2.3 by
its Cauchy integral. To complete the proof of (ii) we observe that
JS(&)=P(e; f) implies in view of (1.6)
Rf(@) = Ple; Rf) = R{2I(=; R ).
Since f(2) and 2 I(z; Rf) are analytic for y > 0, and tend to zero
when y — oo, (2.9) follows. To prove statement (iii) we observe

that, by (ii),
&) —f@= [ 1 — N 9 a

22¢
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whence, by the convexity property,

|f(z 4 i) —f@)P = f () — f(@) K (b 2) dt =

= [fe+9—f@

— fapdr= f K@iy [ 1f@+ ) — f@)Pda.

P K (¢ i) dt,

and

f |f(@ iy
éince the function .
£ = [ /o + ) — /@) de

is continuous at £==0, statement (iii) becomes a consequence of the
classical property of the Poisson integral for

f F() E(t iy)dt— FO)=0 as y—>0.

The fact that T(y; /) increases when y decreases is well known
and is readily derived from (2.8). The same applies to statement (iv).

Theorem 2.2. A function f(2)e9, can be represented as a product
(210) ' AOELZOLION
where
b= I 2=

e 3,7 i
)

is the Blaschke function associated with f(2) and h(e)e$,, but does
not vanish in the half-plane y > 0. Here {2,} is the sequence of zeros
- of f(2) in the half-plane y > 0 and the condition

@11) D424y <oo
)

must be satisfied. If f(2) does mot vamish for y > 0, by()=1,
h(z) = f(2). Otherwise

(@) <1, >0, |b(x)|=1 almost everywhere.
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The limit function h(x) of h(2) satisfies the condittion

(2.12) |h(z)| = | f(®)| almost everywhere
so that

@18)  fl@ris< fIiwrie= [if@) de < i

The analogous theorem for functions of class H,, is well known.
Now, if f(2)e9, and @ (w)=f(2), then by Lemma 25, ¢(w)eH,.
Hence we have the representation

p(w) = bgo(u’) 7(w),
where ,(w) is the Blaschke function relative to the unit circle
associated with @(w), and #(w)e H, but does not vanish in |w|<C 1.
We set b(2) == b,,(w), h(2)==1n(w). The properties of b(z) stated
in the theorem are readily derived from the knuown properties of
by(w). As to h(z), we have by Lemma 2.2,

P(z; h) = Po(w; ) = 1(w) = h(2)
and the properties of %(2) now are proved by using Theorem 2.1.
Finally, condition (2.11) is derived from the corresponding condition

for the roots {w,} of @(w), viz. that the infinite product IT|w
must converge ¢) @

ol

3. Conjugate functions. The properties of conjugate functions
which we discuss in the present paragraph are partially known,
at least under more restrictive assumptions. For the reader’s con-
venience we state explicitly, in form of lemmas, those properties
we ‘need. It will be understood again that 1 < p << oo.

Lemma 3.1. Let g(x)eQ, and let its conjugate function

g(t)dt
d(x) = P V. P

*) The results stated in Theorem 2.2 are not esgentially new. An analogous
theorem was proved by Hardy, lngham and Pélya [1], Theorem 1, under
conditions which are not equivalent to ours. Formula (2. 10) could also be derived
from a theorem by G abriel [1, 2]. It is not at all obvious, however, that the fanc-
tions of class 'bp satisfy the conditions required by G abriel; that they actaally
do so follows from our Lemma 2.4. The proof and application of this lemma is

therefore the only essentnal novelty of our discussion, Our method obviously breaks
down if p < 1,
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exist for a given value of x, this being the case for almost all values
of @ Then (see (1.5), (1.7))

6l Beg= f g Rt 2)di—>F@) as y—>0.

There is no loss of generality in assuming @ =0. Then

o ~ 1 tdi
Plz;9) = P(iy;9) = — — f [9(t) — 9(— D) 575
™, RN
But
¢ 1 9
gy fal prwp L

exists. Hence

Bliyi ) =7(0) + lim - f =D s =50 + T

We consider 7'(y) as an improper integral and write

T(y)=f7+f5 Ti(y)+ La(y),
0 ]

where # will be chosen sufficiently small but fixed. In the integral
Ty(y) the integrand is dominated by a fixed integrable function
|lg(#) — g(— )}/¢| and almost everywhere tends to 0 as y— 0. Hence

Ty(y) >0 as y—>0.
As to Ty (y), on introducing the improper integral

6)= [l —g(— o) 2

and integrating by parts, we have

z
1) = 60) i — [ 604, 52—
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Sinee G (7)—>0 as >0, the integrated term here is o(1) as 4— 0,
and the second term is

7
y?® . .
0 (—- f d, Fw) =0(1), uniformly in .
0

This proves lemma 3.1. We observe that the relation
(32) Pl g)—>g(@) as y—0
for almost all 2 is well known,
Theorem 3.1. Let g(x) and §(®) e &,°). The function
(88) f&)=2I(z9) = P(e; g) +1i Ple; )

is analytic in the half-plane y >0 and is representable by its proper
Cauchy and Poisson integrals. Furthermore its limit fumction f(x) is
such that

(34) f@)=g@)+ig (w)

Conversely if f(2) is representable by its proper Cauchy or Poisson
integral with the limit function f(x)e8,, then

(3.5) S f @) =Rf@)

Let f(2) be given by (3.3). By Lemma 3.1 its limit funetion
JS(@® =g (@) +i7(x). On the other hand f(2) is represented by an
integral of Cauchy type; by Lemma 2.2. (2.3), its transform g (w)
in the sw-plane is represented also by an integral of Cauchy type;
since, however, the limit function ¢ (¢¢)eL,, ¢(w) is also repre-
sented by its proper Cauchy or Poisson integrals; again by
Lemma 2.2, (24), it follows that f(2) is represented by its proper
Poisson integral, and, by Lemma 2.3, by its proper Cauchy integral.

To prove the converse let

f@=1E/)=PEf) f@el,.
On the other hand by Theorem 2.1, (iv), we also have
f(&) = P Rf) + i Ple; ).

HIEp>1and g)el py then also g(m)eg In this case the results stated
in Lemma 3.2 were obtained by M. Riesz [1].
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Since % fe,, Lemma 3.1 shows that for almost all z,
PR > Rf @), Pl f)~> R @)

Consequently for almost

f@=Rf@)+i3f () =Rf (@) + iRf (@),
and (3.5) follows.

Corollary. If g(x) and §(x) both eL,, p=1, then —g(z)
is the conjugate of §(x) and the reciprocity relations
. N q ] oo, ‘
68 flo)=_r.V. [~ UL —— .._.:v A AV

x— 1 x—1
—0 00

hold, ).
Indeed, we have
JR=21(; 9)=1I( 9)+il(z; §) =2il(2 ),
g0 that
29 +iPeig)=iPe i) — P )
and we have only to apply Lemma 3.1. If p>1 it is sufficient

to assume only that either g(x) or §(x) e Q,.

Theorem 3.2. Assume that the functions g(x) and g'(x) both

€8, and that they both are of bounded variation over (— 00, 00).
Under these assumptions we have

(i) g(x) and §(x) are absolutely continuous so that the derivatives
9 (x) and §"(x) both €.

(i) The function §'(x) is the conjugate of ¢ ().

(i) If
fe) =21 9)=1(;g+i§) =1¢if), f@)=g(@)+iF@),

then the' derivative f'(2) e D, and thus is represented by its Cauchy
and Poisson integrals. The limit function of f/(2) is

S @) =g (@) +i§"(®).

' By Theorem 3.1 f(2) is representable by its Oauchy and Poisson
Integrals and has the limit fanction f(z) = (@) + i g(x). By assump-

‘) In case p>1 a proof was given by M. Riesz (1
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tion this function is of bounded variation over (— oo, co). Hence
its transform @ (¢% on the unit eircle |w| =1, which is the limit
function of the transform ¢(w)==f(2), is also of bounded variation
over (—m, m). It is well known that under these conditions ¢ (¢'9)
is absolutely continuous in #, hence f(z) is absolutely continuous
in @. Thus statement (i) is proved.

To -prove statement (iil) we write

fO=Pe =[O KA

(o) = §§§2= f ) o Kt ) dt

= [ Kt a=[ruoKesa

The operations of differentiation under integral sign and at inte-
grating by parts are obviously permissible; the integrated terms
vanish since K (4;2) vanishes for £ — -4 oo, while f(f) is bounded.
It follows that f”(x) is the limit function of f’(2) and, by Theo-
rem 2.1, iv, f'(2)e D;. Thus statement (iii) is proved. The proof
of (ii) is now obtained by an easy application of Theorem 3.1.

4. Applications to the theory of Fourier transforms. We
shall need some additional lemmas whose analegues in the theory
of power series are quite trivial.

Lemma 4£.1. Let f(z)e8,, 1=p<<oo. If f(x) has a Fou-
rier transform §(x) in some L, 1= g = oo, then in order that f(x)
be the limit function of a function f(2)eD, (or, which is the same,
of a function analytic in the half-plane y >0 and representable by
its Cauchy or Poisson integrals) it is necessary and sufficient that
f@) =0 for z<<0. '
 Lemma 4.2. If f(x)el,} 1=p=co and has a Fourier
transform f(z) in £, 1=gq= oo, then the Poisson integral asso-
ciated with f(x) can be written in the form

(1) Pg=— f ) _m(t_”w‘ff_}_yz:(zn)—m f o5t (1) dt, y>0.

-—0Q
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If f(w) is the limit function of a function f(2) e §,, 1 =S p<<oo, then

42) Pl f)=(@a)" / eI d, g0,

0
Lemma 4.3. If f(x) and g(x) ¥, and f(z), g(x) are their
Fourier transforms in &y, then

43) f dy f e [§()] at f e [g(s)] ds =

=4 f @ da fwlmw)l”dw]m-

Indeed the left-hand member of (4.8) is equal to

[ [ s+ deas

[

and by Hilberts inequality (Hardy, Ingham and P61 va [1])
does not exceed ‘ '

n[ f !f('t)fﬁ dt /Tq(s)]“ds]]’2§n[— ﬁf(t)[zdt m[g(s)!"ds]m:—_
= [_ fwlf ()2 dﬂiﬁg(x) o dx}m.

In passing to our main results we first give a new proof of
a theorem due to M. Riesz (1]

Theorem 4.1. If f(2) € 9, | = p < oo, then for each z,

(44 Sifetinpa=3 [iropas

") The proof of these lemmas is found in Hille and Tamarkin [2]. The
discussion given there was concerned with Fourier transforms in a certain gener-
alized sense, but is valid without any modifications in the case of Fourier
transforms in 8‘,.

) £) This is an analogue of & classical theorem by Fejér and I'. Riesz aceord-
ing to which if @ (w)e Hy and D is any diameter of the unit circle T , then

Slotrjaw égl/iw(w)t”ldw

icm

Integrability of Fourier lransforms 347

We start with the case p = 2. Then f(z) has a Fourier trans-
form §(x) e & which vanishes for #<C0, so that

) f o) do = f () des

By Lemma 4.2 we have

o0

f(&) = P(e; f) = (2 my 5 / dxt eIt dt,  y>0,

whence, by Lemma 4.3,

fmlf(fiv—l-i?/)l2 dy = (2”)“fdy Lf;—ﬂ{f(m dz]“

Thus (4.4) is proved in the case p=2. In the general case, if f(2)
has no zeros in the half-plane ¥ >0, we apply the preceding result
to the function [f(2)]"2 € §,. Finally, if f(2) has zerosin y >0, we
use Theorem 2.2 with the result

[fetiprays [retipray =g [ el a=

]

=5 [If@pra

On the basis of the preceding results we now can prove our main. -

Theorem 4.2. If both g(x) and its conjugate §(x)e%y, and
if §(x) is the Fourier transform (in &) of the function

f(@) =g @) +i7®)

then
o0 e oo
(45) [iiopa=(3)" [ife)d,
0 -
, 7T 12 .
the constant (§) being the best possible.
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We first observe that, by Theorem 3.1, f(z) is the limit function
of & funetion f(2) ¢ ,. Hence by Lemma 4.1, f(2x) =10 for »<0
If now f(«) is real-valued and =0, the proof of Theorem 4.2 is
almost trivial. Indeed under this assumption we bave in view of
Lemma 4.2 and Theorem 4.1,

(5]

(4.6) f f)tdt= f dy f eV (t)de = (2n)" | fliy)dy =

=(3)" f |f(@)| da:

In general, however, this argument is not valid, and we have
to use a device analogous to that used by Zygmund in the case
of the power series ([1], pp. 168 —169). If f(2) has zeros in the
half-plane 3> 0, we use Theorem 2.2 to write

f(2) = b(2) (=),
hz)3=0 in >0, hi2)eH,, |h(x)=|f(#)| almost everywhere,

|be(2)| <1 for y>0.
We set

fE=hHEAE), fi()=0b0)RE1", filz)=[rE
g0 that £, (2) e §y, k=1, 2, while

f]f,,(w)]Mw::j]h(x)]dw::flf(xﬂdx, k=1, 2.

If f(2) has no zeros in y>0 the situation is even simpler, but
for the uniformity of notation we shall put

h@=7@), h@E)=/fE ="

Now introduce the Fourier transforms fo (@) (in &)
Now of f ().
Again, since f,(z) =0 for x < 0, we have ’ 2 +e)

f’fk(x)lsdwr-_flfk(m)lzdm =j°]]‘;(x)|’ da :f[fl_m)ldw.
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The Fourier transform f(x) of f(x)==f; (%) /s (x) can be expressed

in terms of f,(#) by means of the well known ,Faltung® rule
(e. g. Wiener [1], pp. T0-T1),

0

@ §6)=@a)" [ fi(w) ft—v) du=Q2a)]7" | §i(W)]s (¢ —u) du.

—0Q 0

f it i = f g el ar=
é(?n)‘”‘bfdyfe“"dt tﬁl(u)] ot — u)| du =
= nrmf dy 3/ ™l f S
=()"[ fora fiera] - 5 frenes

which is the desired result.

This yields

12

It remains only to show that the coefficient (—y—;) in the right-
hand member of (4.5) is the best possible. By considering the con-
formal mapping of an appropriate ellipse into the unit circle it is
easy to construet a function ¥ (w), analytic in the closed unit circle
[w] = 1, real valued for real values of w, and such that

f;(w) a0 > (5 —¢) [1w@l1awl %

1w ==

where e can be taken arbitrarily small but fixed. Using the trans-
formation
142 p—i 1—w

T 1—i2

w

consider the function
, dw 2

f@)=—ivpw) == vm) T

9 Cf. Fejér [1], p. 118, footnote.
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Since o (w) is bounded in |w| =1, /(2) ¢, and

flw(w)l |dwo] ==jctf(m>; da.

|w]=1

Now the segment (0, 1) of the w-plane is mapped into the segment (0, %)
of the y-axis in the z-plane and a simple computation shows that

fw(w)dw=f/<iy> iy > (%—8)_f|f(m)| i,

0

Thus in view of (4.2) we have for this particular function f(2)

[iouwai= fay [erlio)azeap (1260l do =
= e [Py iy =2 f > {(2)"— ) 170

where 6 =¢(2n)"% Since d can be made as small as we please
the proof of Theorem 4.2 is completed.

The following theorem appears as in immediate corollary of
Theorem 4.2.

Theorem 4.3. Assume that g(x) and its conjugate §(x) are
both of bounded variation over (— oo, oo), and in addition €&,
1=p<<oo. Then f(x)=g @)t ig(») is absolutely continuous and
the Fourier transform f(x) of f(x), defined by

(48) f(0) = @ P lim [ £)et

exists for all z=F0 and is continuous for x == 0.

Furthermore §(®)=0 for <0 and is absolutely integrable
over (0, oo). More precisely

f|f \dt<() flf’w)[dw

12
the constant (7) betng the best possible.
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By Theorem 3.2 f(x) is absolutely continuous and is the limit
fanction of a funetion f(2) analytic in the half-plane y>0 and
such that /*(2) e §y, with the limit fanetion 7’ (z). By Theorem 4:2 then

f!fa t)l/tdt<( ) f{/’ ()] da,

where f, (x) is the Fourier transform (in £,) of f'(zx). On the other
band since under our assumptions /(x) >0 as x — =+ oo, we have

(2 f £ 4 dt = (2mn(* ~-f()J = [ 0 eiet aif

—‘)Z,'Efi (‘T)a

whence
F (@) = z_iwfl @, @0

It should be observed that whenever f(z) has a Fourier trans-
form in some £,, this Fourier transform will coincide with f(x)
defined by (4.8). This remains true even when f(z) has a Fourier
transform in the sense of various more general definitions,

We may finally state the following geometric interpretation of
Theorem 4.2.

Theorem 4.4. Let [==F(z) map the half-plane y > 0 into
a domain D (not necessamly simply covered) of the {-plane, in such
o way that the lengths L, of the images of the lines y =1y, are
bounded. Then the boundary of D is a rectifiable curve, of length
L--hm Lyn, the function F'(2)==f(2)e Dy, its limit function f(x)e$,

and the Fourier transform §(z) of f(x) vanishes for x < 0 and is

such that
o 112
[lopa=(3) L
0

The proof of this theorem does not offer any difficulties and
may be left to the reader.
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The determination of representative elements in
the residual classes of a Boolean algebra,

By

J. von Neumann (Princeton, U. 8. A))
and M. H, Stone (Cambridge, U. 8. A).

1. Introduction.

If 4 is any abstract ring and a is a left- and right-ideal in 4,
we may consider the problem of selecting a single representative
element from each of the residual classes (mod a)in such a manner
that sums and products of representative elements are themselves rep-
resentative elements. If such a selection is possible, the representa~
tive elements evidently constitute a subsystem of 4 which is iso-
morphic to the quotient-ring 4/a under the correspondence carrying
each residual class (mod q) into its representative element. In this
paper we shall confine our attention to rings in which every element
is idempotent — that is, in which the law aa==a obtains. These
rings will be seen to have the formal properties of certain algebras
of classes, and will therefore be termed Boolean rings. A particular
case of the representation problem for Boolean rings has previously
been discussed by one of us?). Here we shall examine the problem
on an abstract basis, giving sufficient conditions for the existence
of & solution, special cases in which no solution exists, and special
cases in which a solution exists if and only if X, = 2. The suf-
ficient conditions given here can be applied to the particular case
mentioned above,

1) J, von Neumann, Journal ftir Mathematik, 165 (1931), pp. 109—11b,
Fund ta Mathematicae, t. XXV. 23
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