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The determination of representative elements in
the residual classes of a Boolean algebra,

By

J. von Neumann (Princeton, U. 8. A))
and M. H, Stone (Cambridge, U. 8. A).

1. Introduction.

If 4 is any abstract ring and a is a left- and right-ideal in 4,
we may consider the problem of selecting a single representative
element from each of the residual classes (mod a)in such a manner
that sums and products of representative elements are themselves rep-
resentative elements. If such a selection is possible, the representa~
tive elements evidently constitute a subsystem of 4 which is iso-
morphic to the quotient-ring 4/a under the correspondence carrying
each residual class (mod q) into its representative element. In this
paper we shall confine our attention to rings in which every element
is idempotent — that is, in which the law aa==a obtains. These
rings will be seen to have the formal properties of certain algebras
of classes, and will therefore be termed Boolean rings. A particular
case of the representation problem for Boolean rings has previously
been discussed by one of us?). Here we shall examine the problem
on an abstract basis, giving sufficient conditions for the existence
of & solution, special cases in which no solution exists, and special
cases in which a solution exists if and only if X, = 2. The suf-
ficient conditions given here can be applied to the particular case
mentioned above,

1) J, von Neumann, Journal ftir Mathematik, 165 (1931), pp. 109—11b,
Fund ta Mathematicae, t. XXV. 23
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2. Boolean Rings?).

We shall review briefly some of the prinecipal algebraic proper-
ties of rings in which every element is idempotent, showing in
particular how they are related to algebras of classes. We first
establish the following result:

Theorem 1. A Boolean ring is necessarily commutative; obeys
the two equivalent laws a + a =0, a = — a; and necessarily contains
divisors of 0 unless conlains at most two elements. Lvery subring
of a Boolean ring is itself a Boolean ring. Every system with double
composition homomorphw to a Boolean ring A is a Boolean ring iso-
morphic to a quotient-ring Afa where a is an ideal in A. If ais an
ideal in o Boolean ring A, then the following assertions are equiva-
lent: o is a prime ideal, Ala is a ring of exactly bwo elements, a is
a divisorless ideal.

From the left- and rlght-dlstrxbutwe laws for multiplication and
the commutative and associative laws for addition, we see that in
a Boolean ring

Ca4b=(@+De+b)=(a+ba+(a+bb=>(a+ba)4
+ (@b +8) = (a + )+ (ba + ad)

and hence that ba -+ ab=0. If we put b =a, we find at once that
a-+a=0 or, equivalently, a = —a. Using this result, we conclude
that ba = — (ab) == ab. In a Boolean ring with more than two ele~
ments, we can choose elements a and b so that a==bd, a==0, b0,
If ab__O then @ and b. are both divisors of zero. On the other
hand, if ab=|=0 then ab and a - b are both divisors of zero: for,
a+b=0 would imply a = — b=, contrary to hypothesis; and
abla-b) _aba—}—abb“ab—vf—ab-—-o

~ Since the law aa ==a holds in every subsystem and in every
homomorph of a Boolean ring, the assertions of the theorem con-
cerning subrings and homomorphs follow directly from specializa-
tions of known propositions of abstract elgebra. If now o is a prime
: 1dea1 in a Boolean ring, then, by definition, 4/a has no divisors of

%) The results of this section have bheen announced previously by Stone,
Proceedmgs of the National Academy of Sciences, 20 (March 1934), pp, 197—202}
21 (Febr. 1985), pp. 103—105, A detailed exposition will appear elsewhere. The
algebraic background is given by van der W aerdexn, Moderne Algebrn, I (Ber-
lin. 1930), Chapter III .
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zero; hence, by the results above, A/a has exactly two elements,
If A/a has exactly two elements — that is, if the residual classes
(mod a) are two in number — then a is obviously divisorless. Finally,
it a is divisorless, it is known to be prime.

Theorem 2. A Boolean ring A can be imbedded in a Boolean
ring B in which there is a unit element; and even in such a way
that the elements of A constitute a prime ideal in B?).

We introduce first an abstract alement & different from those
of 4, and define

ee=g¢ eta=at=qa, €+0=04ce=¢g e£4e=0.

We then consider the class of ordered pairs (a, ) where a isin 4
and ¢ =0 or @ =& For such pairs we define addition and mul-
tiplication by the rules

@a) 40 =(+b a+p),
(@, @)(b, f) = (ab + ab + af, af).
It is easily verified that under these operations the class of pairs

(a, @) is an abstract ring in which every element is idempotent and
in which the element (0, &) is a unit in accordance with the relation

(0, &)(a, @) = (0a + ea 4 O, £a) =(a,a).

The class of pairs (@,0) is a ring isomorphic to A, us can ce seen
from the equations :

(@,0) 4 (6, 0) = (a4, 0), (a,0)(3,0) = (ab, 0).

It is also an ideal in the ring of all pairs (a, @), since we have

(a,0) (8, ) = (ab -4, 0),
(a7 0) —‘(b,()) = (a - b’ O)

Furthermore, it is a prime ideal a: for the elements (2, @) and (3, §)
are congruent (mod a) if and only if (a,e)— (b,8)=/(a, @) (b,8)==
=(a-+b, a4 B) is an element for which &4 f=0; and since
¢+ f=0 if and only if @¢=2_4, there are exactly two residual

3) The unit in B is necessarily upique. If 4 has no unit and is related to B
in- this particular way, then every Boolean ring C which has a unit and which
is an extension of A contains an isomorph of B.
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classes (mod q) and Theorem 1 is applicable. We are now permitted
to replace each psir (a,0) by the element a itself, so as to obtain
the Boolean ring B described in the theorem.

Theorem 3. If A is a Boolean ring with unit element e, the
introduction of a unary operation ' and a binary operation \/ through
the equations

1) d=a-te Q) eVb=a-b-4 ab
converts A into an algebraic system in which

3) aVb="b\a 4) aVOVe)==(a\VdVe
(5) @\VvYV@Vd) =a

the old operations being expressed in terms of the new through the
equations ‘

(6) at+b=abt'Va'b=(a'\V V'Y (@ VY

O - ab=(a"VbY

On the other hand, if B is an algebraic system with o wunary ope-
ration ' and a binary operation \/ obeying the rules (3), (4) and (B),
then the introduction of new operations through equations (6) and (7)
converts B into a Boolean ring with unit ¢, the old operations being
expressed in terms of the new through equations (1) and (2).

If A is a given Boolean ring with unit ¢, it is easily verified
with the help of the special rules set forth in Theorem 1 that the
relations (8)—(7) inclusive are algebraic identities in 4 in the pre-
gence of the defining equations (1) and (2). The caleulations are
simple enough that we shall not give details here. On the other
hand, if B is a given system with properties (3), (4) and (b), we
can similarly verify with the help of a recent paper of Hunting-
ton+) that the introduction of new operations through equations (6)
and (7) effects the conversion described. Since the algebraic pro-
perties of such a system B are not at first sight so familiar as those
of an abstract ring, the calculations involved in this verification are
not immediately obvious. Huntington’s discussion, however, shows
that the abstract system B has the formal properties of an algebra
of classes, in the sense that the operations ' and \/ behave like the

9) Huntington, Trams. Amer. Math, Soc, 86 (1986), pp. 274—3804 and
pp. 563—558,
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operations of forming the complement and union respectively. From
this point of view the necessary calculations become essentially
simple. As Huntington proves, the element ¢==0a\/a’ is inde-
pendent of @ and serves as the unit required by the statement of
the theorem. We may remark that, in establishing the existence of
a solution of the equation # --a ==5, one can avoid some compli-
cations by first proving the special rules ¢ +0=0a, a4 a=0
for 0 ==¢ and then calling upon the commutative and associative
laws for the operation -~ to verify that x=a-}b is a solution.

By combining Theorems 2 and 3 with the results of Hunting-
ton's paper, we can now make the following assertion:

Theorem 4. In a Boolean ring A, the operations of -addition
and multiplication behave formally like the operations of forming the
symmetric difference (that is, the class of objects belonging to one or
the other, but not to both, of two classes) and the tntersection of two
classes, respectively; and the operation \/ introducedt hrough the equation
a\Vb=a-b- ab behaves like the operation of forming the wnion
of two classes. Furthermore, if A contains a unit e, then the opera-
tion * introduced through the equation o = a - e behaves like the
operation of forming the complement of a class. '

We can, in fact, go so far as to construct an algebra of classes
which is isomorphic to a given Boolean ring A; but this construe-
tion is not essential to the considerations of this paper and there-
fore will not be discussed here. This result serves to show that
Boolean rings actually have all the formal properties of those algebras
of classes in which it is possible to form symmetric differences and
(finite) unions at pleasure. Of course, it is now an easy matter to
give concrete examples of Boolean rings, either with or without unit,
merely by constructing such algebras of classes. The Lebesgue-mea-
surable subsets of the plane, for instance, constitute a Boolean ring
with unit; while the Lebesgue-measurable subsets of the plane which
have finite measure constitute a Boolean ring without unit. Theorem 2
shows us that it is always possible to adjoin a unit to the latter
ring; indeed, it is easily seen that the adjunction consists essentially
in considering the complements (relative to the plane) of the sets
belonging to the ring along with the latter sets.

In the succeeding discussion, we shall often use the operations
\/ and ’ as defined in Theorems 3 and 4 in place of, or in con-
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junetion with, the operations of addition and multiplication given
in a Boolean ring. We shall therefore find it convenient to cha-
racterize ideals in terms of operations other than those given initially.
It will be sufficient to note the following result,

- Theorem 5. In order that a non-void subclass a of a Boolean
ring A be an ideal, it is mecessary and sufficient that the conditions

1) ab belongs to o whenever a belongs to a;
@) a -+ b belongs to a whenever a and b belong to a,v

be satisfied; and it is also necessary and mfﬁcient that the cond-
itions (1) and

(8) " a\/b belongs to o whenever a and b belong to q,

be satisfied. ‘

Since a4 b==0a— b by Theorem 1, conditions (1) and (2) are
essen.tially a trivial restatement of the conditions imposed in the usual
definition of an ideal. Thus we have merely to prove that (2) and (3)
are equivalent in the presence of (1). It is obvious that (3) follows
from an application of (1) and (2) to the relation a\Vb=a-4b-+ab

On the other hand, it is clear that (2) follows similarly from an
application of (1) and (8) to the relations
@VO)a+b)=(a+0b+ab)(a+b) = (a+b)+abla+b)=a-tb.
. A.s a consequence of Theorem b, it becomes especially simple
to give illustrations of ideals in Boolean rings. For instance, the class-
of all subsets of the plane which have measure zero is an ideal in
the B'oolean 'ring of all Lebesgue-measurable subsets of the plane,
- Finally, it will be convenient for us to.introduce on an abstract

footing the relation corresponding to that of ‘inclusion. This we may
do as follows: l ‘ o

o fll)eﬁn"l?tion‘ L. If a and b are elements of a Boolean ring, then b

is- said to include, or contain, a and a is said to be included by, or

contained in, b if any one of the equivalent conditions o
‘ab=a, a\/b:b,_ ab =10, a\/b=ce

i valid, the two last being significant only in case the giver) Boolean

ring has a wunit, -

'Fhe‘ equivalence of the various conditions and the usual pro-
perties of the relation of inclusion defined thereby hardly need be

icm

Residual classes of a Boolean Algebra 359

discussed in detail here. We shall make particular use of the ‘third
condition; and shall, in general. rely upon the entirely sound ana-
logy with the relation of class-inclusion rather than give formal
proofs of such simple facts as we need in this ‘connection.

3. Algebraic Aspects of the Représentation Pi'oi)iem.

We shall now investigate the algebraic side of the representation

problem stated in the intfoduction. First, let us deseribe the problem
in somewhat more formal language. '

Definition 2. If ais a left- and right-ideal in an arbitrary
ring A, then the (A, a) representation problem is the problem of con-
strucling a function f(a) defined over A and assuming values in A
with the following properties: C e

P1l. fl@=a (mod a);

P 2. a=b (mod ) implies f(a)=7r(®);

P 3. flatb) =7+ 70

P 4 _ f(ab) :_.—f(a)f(b)

‘We could also -state the problem in the following equivalent
form: to construct a funection g(%), defined over A/o {the elements
of which are the residual classes % (mod a) in' 4) and .dssuming
values in A, with the following properties: g(k) is an element-in
gk =40 =glky+ 9@), gk?)= g(k)g(}). For, if f(a) is a function
with the properties described in Definition 2, we can define a funetion
g(k) by putting g(k)= f(a) where a is in k; and, conversely, if
g(k) is a function with the properties set forth above, we can define
a suitable function f(a) by putting f(a) = g(k) when & is in &,

We begin by examining the status of the propertied P38 and P4
of Definition 2. ' T

Theorem 6. If f(a) is a function defined over a Boolean ring A
and assuming valucs in a Boolean ring B, then f(a) has the pro-
perties P3, P4 if and only if it has the properties

PO. f0)=0, P4, P5. flaVb)=S@)V Fb):

If we put a=25 in P3 and apply Theorem 1, W_we obtain PO,
and P38 and P4 obviously imply P5 in accordance with the relations

fa\/b) = f(a + b+ ab) =1(a) + /() + f(a) FB) = f(a) V F(D): -
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On the other hand, PO, P4 and P show that, in case cd =0
we have

fle+d)y=fVa =70V fd)=f(e) + f(d)+ F(9) f(d) =
= f(e) +7(d) + Fled) = f(c) + f(d).
Thus the relations (a - abd)(ab -+ b) =0, (a + ab)ab =0, and
(ab+0)ab=0 enable us to write

fa +8)=F((a + ab)+ (ab + 1) = F(a + ab) + F(ab 4 b) =
=[f(a+ ab) + f(ab + b)) - [f(ab) +- f(ab)] =
= [fla + ab)+ f(aB)] + /(b + ab) + f(ab)] =
= fla+ab+ ab)+ f(b + ab -+ ab) = f(a) + £)

for arbitrary elements @ and b. The theorem is thus established.

Theorem 7. If f(a) s a function defined over a Boolean ring 4
with unit and assuming values in o Boolean ring B with unit, then
(@) has the property P4 if and only if has the property

Ps. a'be=0 implies f'(a)f(b)f(c) =0.

We note that a’c =0 implies ac==c. Thus, when P4 is valid,
we have f'(a) f(¢) = /" (a) f(ac) = f'(a) (@) f(c) = 0. Tt is therefore
evident that in the presence of P4 the relation a'be= 0 implies
7'(@)f() f(e)=f"(a)f(be) = 0, On the other hand, if P6 is valid,
we first observe that the equation c=ab is equivalent to the simul-
taneous relations ¢ (ad)= 0, a'c=0, a’b=0 and thus conclide
that f(c) = f(ab) satisfies the relations

FOf@f0) =0, f'(@f(e)=0, F(a)f(t)=0
and hence also the relation f(ab) = J{a) £(b).
Similarly, we have

. Theorem 8. If f(a) is a Sunction defined over a Boolean ring A
with unit and assuming values in @ Boolean ring B with unit, then
f(a) has the property P5 if and only if it has the property

P1. a’b'e=0 implies f'(a)s"(b)F(c) =0
) We.ﬁrst note that a’¢ = 0 if and only if a\/¢=a. Thus, if Pb
is valid, a’c=0 implies f(a) V ()= f(a\/ ¢) = f(a), and hence
/(@) f(c) =0, Now, replacing o by a\/b and applying P5, we find

that (a\/8)'c=a'c =0 implies 7(a) () (0) = F(a) \/ F(B)) () =
=/(aVf()=0. On the other hand, if P7 is( validf Lre(czirst
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observe that the equation ¢ = a\/b is equivalent to the simultaneous
relations a’b'c=(a \/b)c=0, ¢’'a=0, ¢'b=0 and thus conclude
that f(¢c)=f(a\/ b) satisfies the relations

@ ®fe)=0, f'(c)f(@)=0, /'(©)f()=0
and hence also the relation f(a\/d) = f(a) \/ f(b).

Theorem 9. If f(a) and g(a) are functions defined over « Boolean
ring A with unit, assuming values in a Boolean ring B with unit,
and connected by the relation f(a') = g'(a), — then f(a) has the pro-
perty P5 if and only if g(a) has the property P4.

If f(a) has property P5, then :
g(ab)=F"(ab))=F"(@V¥)= (@) ) =F" @) (¥') = g(a) g (b);
and if g(a) has property P4, then
fla\Vb)=f((@'V'))=g'(a'b)=(9(a") g &) '=yg'(a’)V g (t')=F(@)\/ (D).

Theorem 10. If f(a) is a function defined over a Boolean
ring A and assuming values in a Boolean ring B, then the function

g(a) = f(a)+ f(0) has whatever of the properties P4 and P5 is valid
for f(a) and has also the property PO.

It is immediately evident that g(0) = /(0) 4 f(0) =0. We have

9(@)9(8) =[/(@) /(%) + (0)] + (@) £(0) + /() £ (0),
9@V g(b)=yg(a) - g(6)4-g(a) 9 (b) =[f(a) + () + f(a) /() + F(O)) +
f@)f(0) 4 F() 7(0) = [(/(@) V F®)) + f(O)] + f(a) F(0) + F(B)(O).
If f(a) has the property P4, then f(a)/(0) = f(a0)= £(0),
f(8)f(0) = f(0), and the expression for g(a)g(b) reduces to

9(a)g(8) = f(ad) +- f(0) = g (ad).
Similarly, if f(a) has the property P5, we find that
f(@)f(0) = faV 0)f(0) =f1a)f(0) V f(0) = F(0), f(8)£(0)=110),
and hence that the expression for g(a)\/g(b) reduces to
9@V g®)=/(aV.b)+ f(0)=g(aV b).

This completes the proof of the theorem.

Theorem 11. If f(a) is a function defined over a Boolean
ring A with unit and assuming values in a Boolean ring B with unit,
then f(a) has the properties P2, P8, P4 if and only if it has the
Dproperty
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L. Q... 0ubys. by =0 (mod a) implies
flay)... /(@) ' (b)... /' (b)) =0 for m=1 and n=0

where the same ideal a enters in P2 and P. In order that f(a) shall
have the additional property that f(e) =-¢, where ¢ denotes indiffe-
rently the umits in A and B, it is necessary and sufficient that the
property P be widened to the property

P, Opoeily by by=0 (mod a) implies
f@a)... fan) F'(y) ... /' (b) =0 for m+4n=1.

If f(a) has propetties P3, P4, then it also has property P5
by Theorem 6; hence we have, for m =1 and n =0,

fla)... fam) f'(B) e F' ) =Flag-.a) [0y V...V b,) =
=flag )+ fr. . @) fB V...V b)) =
=f . tuta.. ozl V... Vb)) =
“"_“f(al"'am (bl \/---\/ bn)l)=
=/(a...a,0...b,).

Consequently, if /(a) also has property P2, we see that

... 0,bi...0,=0 (mod q)

F(ay)--- flaw) £ (by) ... f/(b) =F(0)

for m =1, n=0. Since P3 implies #(0)=0 in accordance with
Theorem ‘6, we thus find that P2, P3, and P4 imply P.

If, on the other hand, f(a) has the property P it is at once
evident that 7(a) has properties P6 and P 7. Hence f(a) has pro-
perties P4 and P5 in accordance with Theorems 7 and 8 respec-
tively. It is also evident that P implies PO — in other words,
that a =0 yields f(a) = 0. Consequently, by virtue of Theorem 6,
we see that P implies P3 and P4. It remains to establish P9,
Since ¢ =b (mod a) implies a¥’==0 (mod a) and a’'b=0 (mod a),
we gonclude with the help of the property P that a = b {(mod a)
implies f(a) ' (b) =0, f'(a) #(b) = 0, and hence f(a) = 7(b).

. The property P* differs from the property P only by the ad-
junction of the requirement that b'==0 (mod;x) imply f’(b) ==0—
in other words, the requirement that b = ¢ (mod o) imply f(b)=e.

In view of the property P2, this requirement is satisfied if and
only if f(e) =e.

implies
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By a comparison of Definition 2 and Theorem 11, we at once
obtain the following fundamental theorem, on which we base our
subsequent study of the representation problem.

Theorem 12. If A is a Boolean ring with unit and a is an
ideal in A, then the (4, q) representation problem has a solution if
and only if there exists a function f(a), defined over A and assuming
values in A, which has properties Pl and P; if such a function f(a)
exists, it is a solution of the representation problem. In order that
this solution have the additional property that f(e)==e, where e is the
unit in A, it is necessary and sufficient that the property P be wi-
dened to the property P¥. ‘

Theorem 12 applies only to the case of a Boolean ring with -
upit. In order to discuss the general case, we combine Theorem 2,
according to which every Boolean ring has an extension with unit,
and the following result:

Theorem 13. If the Boolean ring A is imbedded tn a Boolean
ring B in such a manner as to be a prime ideal in B, then every
ideal a in A is also an ideal in B; and the (A, qa) representation
problem has a solution, if and only if the (B, a) ré;presentatz’on pro-
blem has a solution.

Let f(a) be a solution of the (B, a) representation problem.
Since o is contained in A4, it is evident that a =0 (mod a) implies
d=b (mod 4), whatever the elements a and b in B. In particular,
if o belongs to 4, we find that f(a) =0 (mod a), f(a)==a (mod 4),
and f(a)e A. Consequently, if we restrict a to be an element of 4,
the function f(a) has all the properties set forth in Definition -2
and is therefore a solution of the (4, a) representation problem. On
the other hand, let f(a) be a solution of the (4, a) representation
problem. We now have to extend f over B. To do so we put
fla+a)=f(a)+ @, where a is any element in A and either
¢=0 or a==e¢ (the unitin B). If ¢ +a =b-§ (mod a), we
have a —b =8 — & (mod a), a —b=f— e (mod 4); thus, if a
and b are in A, both ¢ —b and §— e are in A; and hence
B—a=0 a=p, a=b (mod a). We bave thus proved that
a+a=>b-+4f (mod a) implies f(a+ a)=Ff(a)+-a=f(b)+f=
= f(b + B). By putting @ =0, we see that the extended function
coincides with f(a) over A. It remains for ws to show that the
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extended function is defined for every element in B. If b is any
element in B but not in 4, we know from the characterization
of prime ideals given in Theorem 1 that b=¢ (mod 4). Hence
b'==0 (mod A) and b=a-+} @ where a=1"0" is in 4 and a=ec.
Thus £ () is defined. To summarize, we may say that f(a) is defined
over B, assumes values in B, and has property P 2. To show that
f(a) is a solution of the (B, a) representation problem, we have
only to observe the further relations

flate)=f(a)+a=0a+a (mod q),
flata)+7fb+8)=[F)+ f(®)] + e+ )=
=fla-+b)+ (@4 8) = f((a+ o)+ (6 + f),
flata)fo+f=F(@) fC)+af)+/(@)f+af=
= flab)+ flab)+ f(Ba)+ ap =
—flab+ab+pa)+ap=
=f((a-+a) ¢+ B)

In establishing the third property, we have made use of the fact that
f(0)=10 by Theorem 6 and of the fact that =0 or ¢ =¢ in
order to write «f(b) = f(ab) and, similarly, g/(a) =/(8a). We
note that f(¢)=f(0 - ¢) =f(0) + e=¢ in accordance with our
definition of the extended funetion.

Finally, we shall show that, in considering the (4,s) represen-
tation problem where 4 is a Boolean ring with unit, we may impose
the condition that the solution f(a) have the property f(e) = e. To
show this, we combine Theorem 18 with the fact that it is always
possible, when a does not coincide with 4, to construct a prime
ideal p containing a: for the existence of a solution of the (4,a)
representation problem implies the existence of a solution of the (p, a)
representation problem; and this in turn leads to the existence of
a solution of the (4,q) representation problem with f(¢) =e¢, by
the construction given in Theorem 13. We shall first prove the
existence of a prime ideal p containing a, by a suitable application
of Theorem 11%), The argument employed will reappear, with varia-
tions, in establishing the sufficient conditions of the following section
and should therefore be carefully noted.

5? Other proofs are known, See Stone, Procesdings of the National Academy
of Bciences, 20 (1934), pp. 197—202,

icm

Residual classes of a Boolean Algebra 365

Theorem 14, If A is a Boolean ring with unit and o is any
ideal in A which is a proper subclass of A, then there exists a function
a(a) defined over A, ussuming only the two values O and e in A, and
possessing property P, The class p of all elements a such that o (a)==10
is a prime ideal containing a. Conversely, if p is any prime ideal
containing a, then the function o (a) which is equal to 0 or to e accor-
ding as a is in P or not, has the property P*; amy such fumction
has also the properties PV, P2, P3, P4, and a(e)=-e.

We shall give an inductive construction based upon the pro-
perty P¥* and a suitable well-ordering of the residual classes (mod a).
We choose an ordinal number w so that the residual classes (mod a)
can be put in one-to-one correspondence with the class of ordinals y
such that y < w. We have to use the Zermelo hypothesis at this
point, of course. We may suppose (though we do not need to do
so in the present instance) that w is the first ordinal number avail-
able for this purpose. Under this supposition the ordinals y such
that y < 6 < @ constitute a class with cardinal number /less than
that of the quotient algebra A/a (that is, the class of all residual
classes (moda)). We may further suppose that the class a is put
in correspondence with the ordinal number 1. Having assigned an
ordinal number y,y < o, to each residual class (mod a) in this
manner, we may interpret the resulting correspondence as an assign-
ment of ordinal numbers to the elements of 4. Accordingly, we
shall speak hereafter of elements with the ordinal y (in this corres-
pondence).

We initiate our inductive construction by putting a (a) =0 for
all @ in a. If we denote by P} the property obtained from P* by
restricting the elements @,,..., dp, b;,..., b, Which it involves to be
elements with the ordinal less than 2 — that is, to be elements
in @ — it is obvious that this property is valid for the function
@(a). Now let us suppose that the construction has been carried to
the point that a(a) is defined for all elements with ordinals 7,
where y < 6 < @, assumes only the values O and ¢ in A4, and has
the property Pj obtained by restricting the elements a,..., @,
b,..., b, involved in P¥ to be elements with ordinals preceding d.
On this assumption we have to define @ (x), where « is an arbitrary
element with ordinal d, so that a(z) =0 or e(z)=¢ and so that
the property P¥ is valid. If we agree to determine the value o (x)
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so that @, =, (mod a) implies « (%)= (x;) — that is, so that
@ (z) depends only on the residual class (mod a) with ordinal 4 —
we see that the restrictions imposed upon our choice of a(x) by
those conditions involved in P, but not in F¥ reduce to

(1) @ity by bz =0 (mod a) implies
a(a)... a(a,) &' (by)...a'(b) ¢ (@) =0 for m4n=1,

@) oeiCydy.. dyx’ =0 (mod a) implies
a(e))... a(e,) &' (dy)... &'(d,) o' (z) =0 for pg=1,

where all elements other than 2 have ordinals preceding 6, In order
to eliminate eonditions involving more than one element with ordinal 4,
we have made use of the fact that #, = @, (mod q) implies 2, 2, = z,
(mod a), za; =2 (mod ), x2;=0 (mod a) and also of the
requirement that x; =2, (mod a) shall imply @(2,) =« (z,) and hence
a(@) a(z)=qa(®), &'(z) o (v)=a'(x), a(®) o' (@)=0. In
order to eliminate conditions in which mn=0 or p 4 ¢ =0,
we write them in the form: 0’z = 0 (mod g) implies a'(x)e(0) =0
0'2'=0 (mod a) implies &'(0) a’(2) =0, by virtue of the fact that
0'=¢, @(0)=0. Now let us consider the class & of all elements
a()... a(a,) @(b)... a'(b,) involved under (1); and the class D
of all elements a'(c)... () a'(dy)... @’(d,) involved under (2). It
is evident that € and D are both mon-void classes, containing the
element O but no elements other than 0 and e. Now the product
of any element in £ and any element in D is equal to O: for we have

(@1 anbie b)) (o oy d) =
= (g..r Guby... bY) (c1... e dy) (x4 2) =
= (01 A bi... ) (¢... ¢, d;... ay) -+
+ (a0, b b)) (o... c,df... dia’) =0 (mod a).

and can therefore appeal to the property P§ to conclude that
a(ay)... a(a,) a'(b)... a'(b,) aley)... a(c,) a'(dy)... @'(d,) =0.

Consequently, we see that & and D eannot both contain the element e.
In case & contains ¢, therefore, we must put o (x)=0; and upon
doing 80, we see ‘that conditions (L) and (2) are both satisfied. In
case D contains ¢, we must similarly put of () == 0, a(iv) = ¢; and,
upon doing so, we see that conditions (1) and (2) are both satisfied!

icm

Residual classes of a Boolean Algebra 367

In case neither € nor D contains ¢, we may put.c(z)=0 or
a(x) = e; and, whichever we choose to do, we see that conditions
(1) and (2) are both satisfied. Thus we can so define & (z) for all z
with the ordinal 6 that the conditions P}, are verified. The prin-
ciple- of transfinite induction therefore establishes the existence of
the desired function a(a), defined over A and having the property P*,

The class p of all elements a for which @(a)=0 is an ideal:
for, with the help of Theorem 11, we see that a(a)==0 implies
a(ab)=a(a)a(b)=0; and that & (a) = (b) = 0 implies & (a-|-b)==
= ¢(a) -+ a(b) = 0. The ideal p contains a, since we have so deter-
mined a(a) that @(a)=0 for all 4 in 0. By Theorem 11, we know
that o (¢) =¢; and if a and b are elements of A not in , we have
a@—b=cala+b)=ca(@)tal)=ct+e=0, a=1b (mod p).
Hence there are exactly two residual classes (mod p), and p is
& prime ideal.

On the other hand, if p is a prime ideal containing a, it is
easily verified that the function @(a) equal to O or to ¢, according
88 @ is in p or not, must have all the properties P2, P38, P4,
and P¥, The property P2 is valid because the residual classes (mod a)
are contained in the residual classes (mod p). The two-element
Boolean ring A/p is evidently isomorphic to the subring of 4
consisting of the elements 0 and ¢ alone; and hence the function a(a)
defines a homomorphism from 4 to this subring, thereby automatically
possessing the properties P3 and P4. Finally Theorem 11 shows
that o(a) must also have the property P¥

Theorem 15. If A is a Boolean ring with unit e and if a
is an ideal which is a proper subclass of A, the existence of a solution f(a)
of the (4,aq) representation problem implies the existence of & solution
g(a) for which g(e)==e; the solution g(a) can be obtained from f(a)
through the equation g(a) = f(a)\/a(a) f (&), where a(a) is any func-
tion with the properties described in Theorem 14.

The argument leading to this result has already been sketched
in the remarks preceding Theorem 14. In order to establish the
explicit formula for g(a), we note that it is identical with that
obtained by restricting f(a) to the prime ideal p for which e (a)="0
and then extending this function to 4 by the construction given
in- the proof of Theorem 18. In fact, we see, that, if a is in p,
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then g(a) =/(a); and that, if & is mot in p, then a(a)=.
a—_-_—a’+a(a) and

g@)=fla)V f'(@) = f(@) + (e + (@) + (&) ¢+ f(a) =
=f(@)+ ¢+ 1) flo) =[(a') + a(a) + flaa’) = /(&) + a(a)

where o' is in p. This completes the proof. We may remark that
the excluded case where a =4 is one in which the representation
problem obviously has one and only one solution, namely that given
by putting f(a) =0 for all a in A.

4. Sufficient Conditions.

We shall now give three sets of sufficient conditions for the
existence of a solution of the (4, a) representation problem. One of
these is a comparatively trivial set of purely algebraic nature. In
the other two cases, we apply processes of construction akin to that
used in the proof of Theorem 14. Ii is necessary for us, at each
advanced stage of the construction, to effect infinitely many changes
in certain chosen elements; and hence it is also necessary for us
to provide a process for combining these changes in a single alge-
bratc operation, Accordingly, we impose conditions upon the ideal a
which, expressed in intuitive language, empower us to form the union
of infinitely many elements in a. It seems clear that an inductive
construetion could not be carried through in the absence of conditions
of this character; and hence that the distinction between those cases
where the representation problem has a solution and those where
it does not, cannot in general be based upon criteria of an unquestion-
ably algebraic nature.

Our first criterion is the following:

Theorem 16. If o is a principal ideal in a Boolean ring A,
then the (4, a) represéntation problem has a solution.

The principal ideal generated by an element a is easily seen to

- be the class a of all products ab, where b is in 4: for the element
a=gaa is in q, and o is obvicusly the smallest ideal containing a.

If a is a principal ideal in A and A is imbedded as a prime ideal

in a Boolean ring B with unit, it is clear that a remains a principal

ideal in B. Hence, by virtue of Theorem 13, we may confine our

attention to the case where 4 has a unit. Here the function
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Fb)y=a'b, where o is the generating element of q, is evidently
a solution of the (4, a) representation problem: In the first place,
we note that ¢’==e¢ (mod a) and hence that f(3)=") (mod a).. In
the second place, we observe that b==¢ (mod 1) implies b —c=ad,
@'b—a’ ¢=0, and f () =f(c). Finally, wé remark that /(b ¢)=
= f(b) + 1 (c) f(be)=F(b) f(c). Of course we do not have f(¢)=-e
unless a = 0; but by an application of Theorem 15, we can replace
J(0) by a solution which does have the latter property.

- Theorem 1%. If a is an ideal in a Boolean ring A and if o

has the property

(1) whenever B is a non-void subclass of o with cardinal number
less than that of the quotient-ring AJo, there exists an element b,
in a such that . '

() if b is in b, then bb,=1b;

() if be=">b for every b in B, then byc=10,;
then the (4,a) representation problem has a solution.

The condition (1) means that every class § of the kind described
has a ,union® by, — that is, determines a ,least element. in 4
containing all the elements in b; and that this ,union is itself an
element in a. The latter part of the condition is idependent of the
first. If we imbed the Boolean ring 4 as a prime ideal in a Boo-
lean ring B with unit, the quotient ring B/a has cardinal number
twice that of A/a. Hence, if A/a is infinite, B/a has the same car-
dinal number as A4/a; and the condition (1) remains valid when a
is considered in B. If A/a is finite, then so is Bf/a; and the con-
dition (1) is automatically satisfied by the ideal g, whether it be-
considered in 4 or in B. These remarks, taken in combination with
Theorem 13, permit us to confine our attention to the case where A
has a unit. In this case we can replace (i) and (i) by the equi-
valent statements (i) if b is in b, then 65 =0, (ii) if b¢’ =0 for
every b.in b, then Bbyc'=0. We shall refer to these statements
alone in the sequel.

We assign ordinal numbers 9, y <<, to the elements of A
in the manner described in the proof of Theorem 14, and we start
the induective construction of a solution f(a) by putting f(a)=0 for
all @ in a It is then evident that f(a) = a (mod ) and that the
property P* holds for all elements with the ordinal number 1 — that
is, all elements in 0. Now let us suppose that the construetion has

Fundamenta Mathamaticae, T. XXV, P2
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been carried to the point that f(a) is defined for all elements with
ordinals 7, where y <CJ << w, in such a manner that f(a) == a (mod a)
and that the property P} (obtained by restricting the elements.
yy.eey Gy Byy.eey b, involved in P* to have ordinals preceding d)
is valid. On this assumption we have to define f{«) for all elements a
with the ordinal 6 so that f(z) = 2 (mod q) and so that the property
P#,, is valid. If we agree to determine f(x) so that @, = w, (mod a)
implies f(2,) = f(w,) — that is, so that f(x) depends only on the
residual class (mod a) with the ordinal d — we see that the restrie-
tions imposed upon our choice of f(x) by those conditions involved
in P}, but not P§ reduce, as in the case considered in Theorem 14, to

eh) Oy eon @y by, by 2=0 (mod q) implies
fay)... flag) F'y) oo /' (ba) fl@)==0 for m +n=1,
(2) 6o Cpy...dyx’ =0 (mod a) implies

fle). . fle) F(d)... f/(d) ['(@) =0 for p-4g=1,

where all elements other than 2 have ordinals preceding 6. We now
select a fixed element x, with the ordinal ¢ and inquire what modifi-
cations we must make in z, on account of the conditions (1) and (2)
if we attempt to convert x, into f(@) = f(z,). In order to do g0 we con-
sider the class £ of all elements f(a,)... f(a,) f/(by)... F'(b,) %, arising
from (1); and the class D of all elements f(c,)... /(c,) F/(dr)... F(d,) s
arising from (2). We must, so to speak, suppress all elements of &
from x, and adjoin all elements of D to x, in passing from =, to
f(xo)- One sees immediately that hoth € and D have cardinal
numbers which are finite if that of the class of ordinals y where
y<<0<w is finite; and at most equal to that of the class of or-
-dinals y where y < d<Cw, if this is infinite, The assignment of
ordinal numbers to the elements of A has been made in such
a manner that we can therefore state: The cardinal numbers of &
and D are either both finife, or both less than that of A/q. Further-
more, & and D are subclasses of a by virtue of the fact that

£(8)... flam) £ (by)... /(b)) = ... Gy bye. b= 0 (mod a),
F@) e Fep) Fdy). .. F@) = ¢y ¢, ... dy=0 (mod a).
If the cardinal numbers of &, D are less than that of 4A/a, then our

hypothesis concerning the ideal o shows that there exist in a ele-
ments ¢, and d, which are the ,unions* of all the elements in &
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and in D respectively. If they are finite, then the ¢, and d, can be
constructed directly: If €=(af’... a®) and D = (3{"..., }*)) then put

co==a®\/ ...V a? dy=>bD\/ ..\ b
Now, just as in the proof of Theorem 14, we can show that
flay). .. £(am) F'(by) .. 1/(80) Fler) - £lep) F/(dn) ... F/(d) = 0

for all elements with ordinals preceding ¢ which are involved in (1)
and (2). Since this equation holds after multiplication by #, or by ;,
we see that the ,unions“ ¢, and d, have the properties

fle) - 7o) F(dy).. f(dy) e = O,
flan)-.. F(an) ' (B)... F'(b;) dy = 0

for the elements in question. These two properties show that, if we
define f(x)=way ¢, \/ dy for all 2 with the ordinal 4, then pro-
perties (1) and (2) hold. For we have

F(@)... f(@n) ' (by) .. £ (Bs) @) =
= (flay).+. (@) ['(by)... F'(ba) 20) ¢ V
V A@)... (@) f'(by).. ' (bs) do =0,

[l . fle)) F(dy)... [/(dy) f' () =

= (fler)--- Fley) 17 (@y)... [/ (dy) az5) dy

V (e Flep) F(@dy)-.. F'(dy) o) dp = O,
by virtue of these properties and the definition of ¢, and d,. Now,
since 2 ==z, (mod a), cy=¢ (mod a), dy =0 (mod a), it is evident that
f(#)=2 (mod q). Thus the indicated definition for f(z) satisfies
the requirements we have laid down. The principle of transfinite
induction therefore establishes the existence of a function f(a),
defined over A, which has the propérty f(a) =a (mod a) and the
property FP¥ According to Theorem 12, this funetion is a solution
of the (4, a) representation problem.

As an illustration of the manner in which this theorem can be
applied, let us consider the case where 4 is the class of all Le-
besgue-measurable subsets of the plane and a is the ideal of all
sets of measure zero. It is a familiar fact that every Lebesgue-
measurable set is congruent (mod a) to some Borel set and hence
that A/a has the cardinal number of the continuum. If we assume
that the cardinal number of the continuum is 8,, then we see that a

24
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satisfies the hypothesis of .Theorem 17, the union of a countable
class of sets of measure zero being itself a set of measure zero;
and we conclude that the (4, a) representation problem has a solu-
tion. We shall see at the end of this §, that the continuum hypo-
thesis is not really needed in this problem.

The following theorem is an abstract formulation of the scheme
previously used by one of us to treat the exemple of the preceding
paragraph €),

Theorem 18. Let A be a Boolean ring with wnit in which
there exisls a function F(a) assuming values in A and having the
properties P1, P2 and one, but not necessarily both, of' the proper-
ties P4 and Pb. Let o be an ideal with the property: if' & and D

are non-void subclasses of o with cardinal numbers less than that of

A/a such that ¢'d=0 for all ¢ in & and all d in D, then there
exists an element ay in A such that ¢ ay=a,d =0 jfor all ¢ in &
and all d inD. Then the (4, n) representation problem has a solution,

We first show that we can confine our attention to the case
where the given function F(a) has not only properties P1, P2,
and P5 but also the properties F(0)=0, F(¢)=-e. If F(a) has
property P4, we can replace it by F’(a') in accordance with Theo-
rem 9 so as to obtain a function with the property P5, if we note
that #"(a’) has properties P1 and P2 together with F(a). If F(a)
has properties P1, P2 and PB but not the property #(0)=0, we
can replace it by F(a)—|—F(0) in accordance with Theorem 10, if
we note that F(0) =0 (mod ), F(a) 4 F(0)=oa (mod q). Finally,
if F(a) has the properties P1, P2, PH and PO but not the pro-
perty F(e)==e, we can replace it by F(a)\/ a(a) " (e), where a(a)
is a function of the type constructed in Theorem 14. To justify
this replacement, we need only remark the relations

F' (=0 (mod a), F(a)\/a(a)F'()=a (mod a),
FaV bV a@Vb)F'(e) = (Fa)\/ a(a) F'(e) \/ (F()V a@)F'(9),
FO)V a(0)F'(e) =0, F(e)\ a(e)F'(e)=F(e) \/ F(e) =-e.
Hence we can always replace #(a) by a function which has the

various properties desired.

%) Bee J. von Neumann, Journal fiir Mathematik, 165 (1931), pp. 109—115,
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" The element «, described in the condition imposed upon the
ideal q is evidently a kind of Dedekind eut ,between® the classes @
and D: for every element in ¥ contains every element in D, while a,
contains every element in £ and is, in tarn, contained in -every
element in . Furthermore, it is clear that 4, is not only an element
in A but also an element in a: for, taking ¢ as an arbitrary element
in &, we have ¢=0 (mod q), a4, = a,¢' =0 (mod a). We have not
required that a, be uniquely determined by the classes & and D.

We now proceed to a construction similar to that effected in
the preceding theorem. We assign ordinal numbers to the residual
classes (mod a) just as in Theorems 14 and 17. Here, however, we
propose to determine the function f{a) so that it has the property

f(@) = a (mod a) and the property P*¥*

P¥®, f(ay) ... (@) I (D)en S (Br) I"(oa1 by b)) =0, m-+n=

for all elements in A4, By virtue of the properties of F(a) we
see that P** implies P* for if a;...a,b[...0,=0 (mod a),
then Flay...a,b,...b))=F(0)=0; and P** therefore yields
fla)...f(an) f(by) ... f(bs) =0, m 4n=1. Thus the function f(a),
if it can be constructed, will be a solution of the (4, a) representation
problem in accordance with Theorem 12, We start the construction
by putting f(a)_O for all elements o in a — that is, for all ele-
ments a with the ordinal number 1. The conditions imposed by P*#*
when all the elements concerned are in a are now seen to reduce
to the single condition F’(¢)= 0, which is satisfied in accordance
with our initial remarks concerning the function F(a) Now let us
suppose that the construction has been ;carried to the point that
f(a) is defined for all elements with ordinals y, where y <6 < o
in such a manner that f(a)=~a (mod a) and that the property Pj*
(obtained by restricting the elements involved in  P** to have
ordinals preceding J) is valid. On this assumption we have to define

f(x) for all elements 2 with the ordinal J so that f(x)=x (mod a)
and so that the property P¥% is valid. If we agree to determine

f() so that z, ==, (mod a) implies f(»,) = f(«,) and if we make
use of the fact that F'(a) has the property P2, we see that the
restrictions imposed upon our choice of f(x) by those conditions
involved in P¥X but not P#F* reduce to

(1) (@) (@) £ (by) o ' (b) F(@) F' (@ o 1 30, 22)==0, 1n—|-—n§1;
@ F(0) 60 () F @) F (@) F (0 oty iy ) =0, pg=1.
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The reduction is similar to those indicated in the proofs of Theorems 14
and 17. It should be noted that the conditions where m - # =0
P+ ¢ =0, which should apparently be explicitly included here,
are actually obtained by putting m =0, n=1, b, =0 and p;—_O’
g=1, d, =0, respectively. The conditions in these special case;
are merely f(«) F'(x)=0, f'(x) #'(x')=0. Thus we must so choose
() that it contains F”(2) and is contained in F(z). Our problem
is therefore that of finding an element @ contained in F(x) F(z') so

that it is possible to set f(x)== F’(#') \/ a. To this end we consider
the class & of all elements

[(81) - 1(@n) ' (B) - f (B F" @y - b5 ... b)) Fle) B (),
and the class D of all elements
[F(e) - F ) F(d) oo [ (@) B (& ey o )| F () (2",

where the argument elements are those involved in. (1) and (2)
respectively. Since F(x)F(x) = za’ =0 (mod a), it is evident
that £ and D are subclasses of a. It is also evident that € and D
are non-void classes either both finite, or both with eardinal num-
ber.fz less than that of A/a, in accordance with out assignment of
ordinals to the residual classes (mod a). In order to appTy our hy-
pothesis concerning the ideal a to the classes £ and D, it is necez-
sary for us to show that every element in contains, every ele-

ment in . For this purpose, it is evidently sufficient to show that
every element

f(cl)...f(c,,)f'(dl)...f'(dq) Fieyicody. .dyz’)
is contained in every element

(@) F(@n) ' (By)...F (b F'(ay....a B Ba))'s

in other words, to show that

(F(@r)..-Fan) ') .. F' (B F(ay ... a1 bi---b;x)).-
(- ) (@) P @) B ey o0y d ') = O,

Since the element

flay)... fla) fle,) . FE)FG) . B F(dy).. T (dy)
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is contained in the element F(a;...4,0;...¢,0;...0,d;...d,) in accor-
dance with the property P#*, it is even sufficient to prove that
- F(@y ..ty Cpbi.. bydy...dg) F(ay...0nb;... bo)-
cF(ey...cpdy...dy’)=0.
This result follows at once if we can show that
F(ab) F*(ax) F' (ba') =0

for all a, b,  in A. Sinee (ab)(az) b’y = (ab)(a’Vz b’V 2)=
— aba/(b'\/ ) =0, we can make use of Theorem 8 to obtain the
desired result as a new form of the property P7. We are thus in
a position to apply our hypothesis concerning the ideal a if the
cardinal numbers of € D are less than that of A/a. If they are
finite, we can form the ,union® of all the elements of D directly,
as in the proof of Theorem 17. In both cases we obtain a ,cut”
between the classes € and . We take a, as such a ,cut“ between
the classes € and D, and put flz)= F'(2')\/ a,. It is evident that
f(@) = F'(z') =« (mod a), since a, is in a and F(x) has the pro-
perty P1; and also that #; =2, (mod a) implies f(a,) == f(zy), since
F(a) has the property P2. To verify that f(x) satisfies the con-
ditions (1) and (2) is all that remains. Condition (1) becomes

flay) ... F(@n) £/ (b)) /(00 F (@) F' @y ... 8 b ... 5, 2) \/
V18- F@n) ' (8y) ... ' (Ba) F' (a1 .-G by ... B @) 4y = 0.
By Pj¥*, the first term here is contained in
F(ay...a,b;...00) F' (&) F'(ay...anb;... b)

which is equal to O as a special case of (3) above. The second term
is contained in the element

1f(ay)..-[(@) F By) .- () F (ay ... 0 by... b, 2) VF' (2) V F(z)]ag=
= ([f(ay) - F@m) " (0r) - (b)) F(@s . @ by . .. b)} F() F (') o
which is equal to O by virtue of the definition of the element a,.
‘Thus the condition (1) is satisfied. Similarly, condition (2) becomes
fler)...f(e) F (). F @) F (@) g F (¢ ... Cpdi...dga) = 0.
Sinee F(z)\/ F'(x) =¢, we can write this condition in the form
[Fley) .- Fe) F (@) ... F (@) F'(er...cpdi... dgar’) F () F(&)] a\/
\ Fle) o Fe) FP(dy) .. (@) B (@) F'(er - Cp i - dg @) 0g=0.
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The first term here is equal to O by the definition of the element a,.
By Pj*, the second term is contained in the element

Fley...cpdy...dp) F"(2) F'(cy ..oy dy ')

which is equal to 0 as a special case of (3) above. Hence condition:
(2) is satisfied. The principle of transfinite induction now brings.
the discussion to a close. :

This theorem can be applied to the problem discussed in illu-
stration of the preceding theorem; it lead_s to the same result without.
making use of the continuum hypothesis. If a is the ideal of all sets
of measure zero in the Boolean ‘ring’ of all Lebesgue-measurable
subsets of the plane, then it evidently has the property demanded
in the theorem: for the union of the sets in the class ® is a cut
of the type desired and, being contained in those sets of measure
zero which belong to £, is itself a set of measure zero, belonging
accordingly to a. In addition, it is possible to construct a funetion
F(a), defined for all Lebesgue-measurable sets, assuming Lebesgue-
measurable sets (even Borel sets) as values, and possessing proper-
ties P1, P2 and P5: for this purpose, one defines ['(a) as that
set of points at which the Lebesgue-measurable set ¢ has inferior
density 17).

5. Some Special Cases.

Here we shall give cases in which the representation problem
has no solution or in which it has a solution if and only if 81 == 2%,
It will be convenient to consider Boolean rings with classes as
elements.

Theorem 19. Let certain subclasses a, b, ¢,... of a fixed class e
constitute a Boolean ring A with cardinal number Ra; i particular
let the class e and every subclass of e with cardinal number, less than Ny,

where Rp s an infinite cardinal number, belong to A. Then the -

class o of all subclasses of ¢ with cardial number less than Rp s
an ideal in A. The (4, a) representation problem has a solution if
R =Ry, provided that a cardinal number Rpr, tmamediately preceding Mg,
exists; it has mo solution if & <Ry, provided that the following

") See J: von Neumanu, Journal fiir Mathematik, 166 (1981), pp, 109115
Saks, Théorie de Vintégrale (Monogr. Matom., 2, Warsaw 1938), pp. 53- 55,
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additional conditions are fulfilled: There exist two subclasses 82 and,
% of e with the properties ‘

(1) &8 has ecardinal number not less than Np;

(2) I has cardinal number N4;

(8) if ®, and w, are elements in 88, then x, ==y or &+ 2,=0;
- (4) if y, and y, are elements in 3, then yy=yy or Y,y =0;

(6) if x is an element in SO and y is an element in I, then xy
is a class with. cardinal number 1.

It is obvious that a is an ideal. ~

If 85==N,, the ideal o has the property postulated in Theorem 17;
for if € is any subelass of o with cardinal number less than that
of 4/a, then the cardinal number of & is a fortiori less than of 4,
which is 84. Thus it is <N, and therefore = ;.. Similarly every
element of & has cardinal number <Cx,, and therefore << Mj.. The
union of all elements of & has therefore cardinal number =2 ¥, - 8y =
= Ng < 8p, and thus belongs to a. Hence we see that the (4, a)
representation problem has a solution, by Theorem. 17. :

If 85 < 84 and the subclasses & and 2 of 4 with the pro-
perties (1)—(b) exist, we assume the existence of a solution f{a)
of the representation problem (or merely of a function f(a) with
properties P1, P2, P4) and infer a contradiction, Let &% be the
class of all elements 2y, where 2 is in &8,y isin &, and zy f(x)=0;
and let 9/* be the class of all elements xy, where zy/f(y)=0.
In view of () we must have either 2y f(x)=0 or 2yfiz)=2y,
either 2y f(y)=0 or ay f(y)=2y; and we must also have f(xy)=0
since zy is in a. Now we see that we cannot have zy==zy f(x)=
=zyf(y) sivce f(x)f(y)=Ff(wy)==0, and we conclude that xy
must belong to at least one of the classes &8* and 9% By (1),
& contains a subclass &8 with cardinal number ;. Let 9, be
the class of all those elements y in 9/ such that zy is in &°* for
some element x in &%. Since zy ea%* implies xy f(2) =0, we see
that 2y is contained in f'(z)z=a'2=0 (mod a). By virtue of
this fact and (4) above, we conclude that those elements y such
that 2y £80* for any fixed x constitute a class with cardinal number
less than or equal to x,. Hence the class 9/, has cardinal number
at most Np- Nz = Nz. By (2) there exists an element y, in %/ but
not in 24. Since xy, is not in &* for any x in &9, zy, must
belong to 9/* for every x in &8. By (3), the elements xy,, where

x is in &G, constitute a class with cardinal number &, On the
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other hand, since zy,/(y,) =0, we see that every element Zy, is
contained in the element f'(yy)y, = yoy, =0 (mod a) and hence
that the class of all elements &y, has cardinal number less than Np.
This is the contradiction sought.

An interesting application of this theorem obtains as follows:

If, in particular, we take ¥z = Ry Bp==R,11, 8 == 2% then we
have Nz <Ny, therefore Mz << 84, and so we obtain a case in which
the (4,a) representation problem has a solution if and only if
8= N4, that is

Ry = 2%

(The generalized continuum hypothesis). It is, of course, necessary
to show how to form a Boolean ring A which fulfills the auxiliary
conditions set forth in the second statement of the theorem.

Let ¢ be a set of cardinal nunber Mg = 2%, Woe define a as in
the statement of the theorem: it is the set of all subsets of e of car-
dinal number less than x, = N4, that is, less than or equal to 8, =y .
Therefore a has the cardinal number wjr= 20 — 9% — » ¥

As 8, is infinite, 8} = 2% — 2% — R4, 80 there exists a one-
to-one mapping of all ordered pairs (¢,8), @, B elements in e, on
all elements y of ¢:

(@B Zy=9p(p).

Define now z, as the set of all P(a, f), B in ¢ and & as the set
of all z,, @ in ¢ and similarly Yp s the set of all p(a,8), @ in e,
and % as the set of all Yg» B in e. It is evident that the classes &
and % have the properties (1)—(5) of the theorem, and that both
have cardinal number Ry

We can now take 4 as the smallest Boolean ring containing e and
the elements of &, & and q, this ring being obtained by forming
all polynomials in terms of the indicated elements. Obviously the
cardinal number of A is not less than ¥4 and not more than
xo(l—[—x,,-}—si—{—...):xo(l+3A+NA+...) == N4j 80 it is equal to K,.

Further interesting examples are the following. Let ¢ be the
plane, &€ and 9/two distinet pencils of parallel lines. If 4 is the class
of all Borel sets, a the class of all finite sets, we have N, = 2w
Rz =28,. The (A, a) representation problem has no solution. If 4 i;
again the class of all Borel sets, a the class of all countable sets,
we have Ry = 2, 85=N,, Rg/=1,. The (4, a) representation problem
has a solution if and only if %, = 2% (the continuum hypothesis).

_—
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Généralisations du théoreme des probabilités
totales.

Par
Maurice Fréchet (Paris).

I. La formule de M. Charles Jordan,

Considérons des événements fortuits H,,..., H, de probabilités
respectives p,..., p, et soit P la probabilité pour que I'un au moing
des événements H; se réalise.

D’aprés le théoréme des probabilités totales, on a

P=p ... pa

quand les événements H; sont incompatibles.

Poincaré a donné & la page 60 de son traité de ,Calcul des
Probabilités* une formule permettant de caleuler P dans le cas gé-
néral, quand, en outre des p;, on connait les probabilités py,..., Pu..sy:.-
ol, en général, p, , est la probabilité du concours de H;, H,,..., H,
4 savoir

1 P=ZI’1“‘2 Py +2Pijk_ et (=1 prane
4 i ik
" M. Charles Jordan a établi, entre autres, dans un récent
mémoire ¥), une formule généralisant la formule (1) de Poinecaré.
Nous voulons montrer que la formule de M. Jordan, démontrée
par lui directement, peut aussi &tre considérée comme une consé-
quence immédiate de la méme formule (1) de Poincarsé,

1) Le théordme de probabiliid de Poincard géndralisé au cas de plusieurs
variables dépendantes, Acta Scientiarum Mathematicaram Szeged, t, VII, 1934,
Nous visons ici la formule (11), page 108 de cet article,
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