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The second gives p+j=p'-+Jj or p—p'==J —j, and so the set
of possible residues j'—/ gives rise to a set of integers X for which
|L(x)|=v from (5). As before all the x's are not zero.

The third case gives p-+i=p -] or p—p'~c=j—i4c,
Hence the possible set p —p’ gives rise to a set of integers x such that

P L(x)-c |

now that the x's may all be zero when p=7p’, i=/.

This proves the theorem.

A sharper form of the theorem can be deduced by applying the
theorem with ps (5 arbitrary) replaced by s (1--¢)", 1 by pr/(14-¢),
rss,v by v/(1 -+7) and making &>>0, 1>0 tend to zero in such a
way that

. 1 o 1
<—;—p.—]—~;—v since | j4c| §~§—v, |t|'f>—§—p We note

(L) M () Ty = 41y

or
sl = (1~ (L)) 1l

= signs in (2), (3), (4) can be

We see then that if [Tp 50, all the
replaced by < signs except the ome corresponding to pe in (2) and

the corresponding ‘”;*[IL&"‘}"V.G) of (4).

On making the p—> 0, we see that if llv=A and the inequalities
[ L(x) | <v have no solutions in integers X except X=0, then there is"

for all ¢ a solution of IL[X]—-}—cigéﬂv, in integers x. There can-

not be two solutions unless for at least one s these make

L (x)—{—cs=,—|;~;~v,- respectively, for otherwise, their difference would

give a solution of | L(x)|<v. This is of course known in connection
with Minkowski's limiting case. '

(Received June 26, 1936,)

! * This is a known result, See Radd, Journal of the London Math, Soc, 10 (1935)
115 — 116; Perron, Ibid, 275 — 277,
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By
L. E. Dickson (Chicago).

1. Introduction and summary. A form F is called universal if
every positive integer is represented by F with integral values =0 of
all the variables. Write

3t=20g--r, 0<r<2% [=20d-qg—2,

THEOREM 1. Ff n>>6 and r =2"—q — 3, every positive infeger
is a sum of I n-th powers. Technically, g (n) = I.

The inequality holds when 4 =72 400. The theorem was recently
proved by the writer.!) For #>>8, it is a corollary to the new theorem
proved here:

THEOREM 2. Let d=1 or 2 according as q is odd or even. If
9 = n = 400, every positive infeger is a sum of 4n--2—d n- th powers

and the doubles of P = —12— (2"+9—4n-F-d)—2 n-th powers. Here 41+

+2—d4-2P=1

Expressed otherwise, in the ideal Waring Theorem 1, we may
take 2 P of the powers equal in pairs. While Theorem 1 states that
X"~ ... < %/ is universal, Theorem 2 yields a universal form (with

) Amer, Jour, Math,, vol, 58 (1936), pp. 521 — 35. In case the-inequality fails
ben g (n)=1I--f or I+ f—1, according as 27 = or<= fg-+f-+g, where f=[(4/3)2],
Announced Mareh 13 in Bull. Amer, Math. Soc., 1936, p. 341,

If the inequality fails for any n>- 400, the dicimal »/27 begins with fifty figures 9,
But 157 and 163 are the only values <400 of 1 for which it begins with two figures 9

) (neither with three figures 9).

2. Acla Arithmetica, II,
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coefficients 1 or 2) involving only [ — P variables. Except for small
n's, I — P is just >—;—L

We shall prove theorems yielding universal forms involving appro-
ximately //a variables, when & is not too large.

Let [#, @] denote a sum of f1~th powers and @ products of n-th
powers by a fixed positive integer & Its weight is v -}+aw.

THEOREM 3. I 16 =1==400, a=4n, every positive integer is
represenied by
[4n-+2an, {(I—4an)ja}—2—2n],
where { x} denotes the least integer == X.

Similar theorems hold when a >4, n>16.

THEOREM 4. Let a=23. If 11 =n =400, every positive inleger is

represented by [4n, {(I —4nja}t—2]. According as n==9 or 10, every
positive integer is represented by {104, 148] or [41, 346], each of weight I.

THEOREM 5. [f a==4, 11 = n = 400, every positive infeger is re-
presented by [4n, {(/—4n)ja} —2].

If a=b-}rc, every number represented by Y xf-a Xyt is evi-
dently represented by Ex/-4-b¥yr-+cz", but not conversely.
Hence each of our theorems yield universal forms obtained by partition-
ing one or more &'s into arbitrary positive integral parts, which may
differ for the various &'s.

Future investigations will relate to summands which are not r~th
powers, but are values of one or more polynomials. With this in mind,
Lemmas 1 — 16 are not restricted to the case of powers, but (without
lengthening the proofs or making them more difficult) are given for
summands chosen from any sequence P of integers po=10, Py, Pa,.-- of
integers arranged in ascending order of magnitude, A sum of # numbers
of p and @ numbers each the product of @ by a number of p is again
denoted by [¢, w]. Beginning with Lemwa 8 (which defines ¢), we
assume that p1=1. Now /=p,+¢—2. If AS R B S, we write
[4, B]= IR, S].

We write log for base e, Log for base 10.

2. Lemmas for ascent,

LEMMA 1, If 2=a and if all integers in the interval J = (E, E 4
2 ps) are represented by [A, Bl, then all in (E, E 4-(z-~a) ps) are repre-
sented by [4,B -+ 1].

Since p, =0, any integer in J is represented also by [4, B+ 1].
Hence proof is needed only for integers j satisfying

©
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Etzpp S E+(z+a)p:, E§E+(Z“a]pk<j~ap/<5—{—zp

‘ ‘ ' ‘ f = B
Since j—apy lies in J, it is represented by [4, B]
sented by [4, B-1]. T

Using Lemma 1 with 2 replaced b
. : Yy 21av
obtain, by induction from v to v - 1: + and B by B+, we

whence j is repre-

LEMMA 2. If z=a and i all inle i i
= gders in th
are represented by [A, B), then dll in (E, E -+ (zl?}— aez’]mferval (B E+zpy)
by [A, B+ 7]
Take a =1 where @ occurs explicitly i
but not in the symbol [4, B]; we get v in Lemma 1 and

LEMMA 3. /f 2=1 and if all in (E,E}+ 2
- AT 2= ' Pi) are represented b
[4, B], i.hen all in (E, E-~ (24 1) pi) are represented by [A —{—pl,slgite Y
'Usmg Lemma 3 with 2 replaced by z--w and A by A —I—.w
obtain, by induction from ® to w1, e

Pi) are represented

its proof,

LEMMA 4, ¥ 2=1 and all inte i
= gers in (E, E-zp:) are represen-
ted b{}:{i{ B), then all in (E, E + (z -+ w) P#) are represented by [A —}’—’w,(gl].
o MA 5. Let R; denote the least positive or zero residue modulo
Zeo = [ﬂjt/Pé—-% L[;‘; %]= [(Z*Rj]/a. Let all integers in (E, E--apn_y)
represented by [R,S]. Then all in (E b
T, Sreven all in (E E+pn) are represented by
Proof. Apply Lemma 2 with 2 =g, k=m
, = Wy A== —1, ’0=Qm>=>0. Th
all in (E, £+ (@ + @ Qm) Prn-1) are represented by [R, S+ Qu]. °
o But a=1+-Rn, aQn="=C0n—Rn. Adding we get a+aQn=1-
m > Pm/Pm—1. Hence our interval extends beyond E+pm. h

LEMMA 6. If m =3 and i all integers in (E, E 4~ ap,) are represented
by [A, Bl, then all in (E, E4+pn) are represented by [C, D], C=A-+
(m—3)a—1), D=B+Q+... + Qu.

Proof. By Lemma 5 with m==3, all in (E, E-}

a , \ p;) are represen-
’t.ed by [A,B +Q,]. This proves Lemma 6 when m=3q. Using induc-
tl?n on m, assume our lemma for a particular m =3, Then by Lemma 4
vgth =1, w=a—1, k=m, all in (E, E4apm) are represented by
[G+a—1,D]. Then by Lemma 5, with m replaced by m--1, all in
(ﬁ} E+-pmi1) are represented by [C-|-a—1, D+ Qm44], which is [C, D]
with m replaced by m--1.

LEMMA 7. Let {R, S} denote a sum of R numbers 0 or 1 and S
numbers O or a. Let B be a positive integer. Define b as the least resi-
due>(.) of B modulo a, whence 1 £b=a, Each of the integers 0, 1, ...,
B—'l is represented by {b—1,k} or {@a—1,k—1}, where k==(B—b)/a,
while the second form is to be suppressed if k=0, viz., B=a.
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For, those of our integers which are = B—b=Fka are sums of
ko and 0, 1,...,6—1 and hence are represented by {&—1, 4}, If
k=0, these exhaust our integers. Next, let 2= 1. The remaining in-
tegers are ka—ta+j (j=0,..., a—1; k=%¢=1) and are all repre-
sented by {@a—1, k—1} and hence by {a—1, k—1},

Henceforth, let p1=1. Then the numbers of {R, S} and their pro-
ducts by any p; are all represented by IR, S].

LEMMA 8. Let py=qpy—+r, 0=r<ps Let f, g, d be the least
residues >0 modulo a of po—1, 1y 4, respectively, Then every integer
in the interval (9 s, (@-+1) Py) is represented by one of

(1) [(i+g"‘—1, V]. [d-{—a——1, V- 1]1 [fv W]v [av W 1]1

where V=(r—g-+q—djja. W=p,—r—f)ja, while the second form
(1) is fo be suppressed if r==a (whence g==r), and the fourth if
p—r=a '

By Lemma 7, 0, 1, ... , r—1 are represented by [g—1, (r—g)/a]
if ¥=a, but by it or [a—1, r—g)Ja—1] if r™>a. To these we add
[d, (g — d)/a], which represents

@

and get the first two forms (1).
one) in our interval are the sums of gp,~+r=p, and 0, 1, ..
To these we apply Lemma 7.

Finally, ®) (9--1) p, is represented by [d--1, (9—d}/a] in view
of (2). Hence it is represented by the first form (1) if g==2, and by
the second form (1) if r—g=a. Let both of these inequalities fail.
Then 0= r— g<(&, and the multiple r —g of a iszero, Thus r=g==1.
The same is true when the second form (1) had to be suppressed.
When pj==j", it is known that r>1.

LEMMA 9. Every integer in (¢ P, (9-+a)p.) is represented by one
of the forms obtained by adding a— 1 to the first eniries of the forms (1).
As an improvement on the first two resulting forms we may take

latg—2, V], 2a—2 V—1], [g-+d—2, V-|-1],
[a—{"d'—azv V]v

gpy=dp,-+-(g-—d)a ap,,

The further integers (except the final
vy Pyt —1,

where the second and fourth forms are to be suppressed if r == a.

Proof. The first statement follows from Lemmas 3, 8.

?) In our applications, we may exclude this end term of the interval,
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For the improvement, consider the sums of (9--2)p, and O, ...,
r—1, where z=a-1. First, let z==a—d—1. By (2), each (9+2)p,
is represented by [@ —1, (9—d)/a). When this is added to the two
forms above (2), we get the first two forms in Lemma 9. Second, let
z=a—d, whence z=a—d+4w (w=0, ..., d—1). Then

[q+z)27;=10273+(4~d+a1/a‘ﬂ%

are all represented by [d—1, (9—d)/a-+1]. When this is added to
the two forms above (2), we get the last two forms in Lemma 9.

3. Representation of integers = gp, — 1.

LEMMA 10. Let a<p,. Let ¢ and d be the least residues >0
modulo @ of py and g, respectively. If a<(q define G to be the greater
and L the smaller of ¢ and d (with G=L=c if c=d). Bui i az=q,
define G=d, L==c, Then every infeger = qp,—1 is represented by one
of the three forms

[, QL [, Q—11. 25, Q—2],

uy=0+L—2 wm=a4+G—2 w=2a—2 Q='(p,+9—G—1L)a,
with the third form suppressed when a=gq,

The integers in question are xp, + ¥, 0= X =g—1,0=y=p,— 1.
By Lemma 7, the y's are represented by [c—1, (1, —c)/a] or [a—1,
(v, —¢)/a—1]. The x's (and hence their products by p,) are represen-
ted by [d— 1, (9 —d)/a] or [a—1, (9§ —d)|a— 1], with the latter suppres-
sed if g=a.

Adding each of the latter to each of the former forms, we see
that all xp, -}y are represented by one of

[e4+d—2,Qlla+c—2 Q—1],[a+d—2 Q—1],[2a—2, Q—2],

where the second and fourth are to be suppressed if g=a. In the lat-
ter case, Lemma 10 is proved, Next. let ¢ >>a, Then the second and
third forms are [¢-+CG—2, Q—1] and [a+L—2, Q—1] in some order,
The latter may by discarded since every integer represented by it is
represented also by the former (with 0 as the value of G—L of the
single p’s.

The asymptotic theory (§ 7) employs a number s which is 47 in
general, For the present, let @< 14 5/2. Define {2} to be the least
integer = 2., If z is an integer =0, we replace each of 2z terms ap. by
P+ ...~} ps (with @ summands) and see that every integer represented
by [z, @] is represented by [z-}az, w—z]. When [# 7] is one of the
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forms in Lemma 10, we desire the least integer 2; for which u;4-az>=5,
Since ;i =2a—2=5, we have =0 and z,= {(s — w)/a}.

LEMMA 11, /f a<(p, and a=1+5[2, z;={(s —)|a}, then 2= 0
and every infeger < qp,— 1 is represented by one of the forms

Fi=[u~+az,Q—i—z] (f==0,1,2),

with F. suppressed if a=q.
The weights of F,, F1, F, are I,/ — L, [— L — G, respectively,

LEMMA 12. When a=2,s=21,t>=1, and p, is even, every inte-
ger =qp,—1 is represented by Fy=[2{+2—d,Q—¢—1-d],Q=

1
S (pa--g—2—d).
2(;74&1 2—d)

For, if ¢>2,G=c¢=2,L=d, u,=d uy==1,=2, whence every
integer represented by F, is represented by Fi, Also

zu=t_d—.’—1'zl=t—1,F1=[2t1 Q'—'t]'

If d=1 we obtain Fi from F, by using 0 as one of the single powers,
and if d=2 by using O as one of the double powers.

But if g=2, F, is to be suppressed, while L=2, G=d, uy=u,=d,
21 =2,, and Fy is derived from F, by subtracting 1 from its second
entry, whence we may drop also Fy,

To treat the general case a =2, write

s=aZ-tpu=alU-+7v,05p<a 05 0,<a,
di=0ifv,=p, di=1ifv,<p.
I U=Z-+1,u>>s, whereas ;=s. Thus U< Z-+ 1,
4+ Z—U—@—u)a=d+(v,—p)la=0 and <1,

Hence z;=d;+Z—U;. Deline max ([Ri, Si]) to be [max R, max S;].

Case a=4,5=417,222,p2==0(mod 4), 4<p,,4< g, Thus Z=1{,
p==0, all =0, G=c=4, L=d, uy=1Uy=6. Since U =1, v;==2,
Zy=t—1, Fy=[4£+42,Q—1{. We may drop F, which is obtained
from Fi by reducing its second entry by 1. Next, #,=2-}d, If d=1,
Uy="1y==3, Uy==0, 2, ="{, Fo=1[41-3,Q—1£] and we may drop Fi.
But if d=2, Uy=11v,=d—2,2,=t—1, Ffo=[4f-}-d~2, Q—{-}1]
and we may drop Fionly when d has its maximum value 4.

LEMMA 13, If a=4, s=4/, all integers < qp,— 1 are represen-
ted by F, alone when d=1 or 4. But if d=1 or 3, some are represen-
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ted by F, and the others by Fi. All are represenied by their maximum
[4t + 2, Q — ¢ - 1], whose weight is I+4—d=1I+ 2 or I+ 1.
For general @ and s,a<{p,, @< g, we separate cases as follows,
find Ui, v:. z; by inspection, and get
Fy=laldy-+Z+4+1)—2,Q—dy—Z—1}
(=2 A= +2)+G—2Q—di—Z]
G=1'Flz[d[dx—i—z—{—l]—].,Q—d1—Z'—1];
GAL—2=a Fo=[ald+Z—1N+G+L—2 Q—dy—Z+1];
G+L—2<a Fy=lad+2)+GCG+L—2,Q—d,— 2]
We seek F==max (F,, F1, F,). Since v, =a—2, p<a, we get

dy=1if p=a—1,d=0ilp=a—2.
I. Case G=1. Then L=1,G+ L—2=0<a Hence
F=[aZ+A Q—dy—Z], A=max (a(ds 1) —2,a(di 4 1) — 1, ady).

Iym=0, dy=0, A=a—1, L:p=a—1, dy=1, A=2a—2,
L:0<p=a—2 (vacuous if a=2), dy=1, A=a.
II. Case G=2,G-}+L—2<a Hence

F=[aZ—2+4 B, Q— Z—min (d,, di)],
B=max (a(dy+ 1), adi+ G, ad, G+ L)

I: p<=G—2,B=max(a 0+41). I G—2]p<0G+L—2
B=a- G

I,: p=G+L—2=a—1,B=2a I: p=04L—2<a—1,
B=a+4G. .

I: p>G+L—2,p=a—1,B=2a I:p>C+L—2p=
a—2,B=a+G-+L Al di=0 for Il dy=0,di=1 for I, —IL,;
dy=dy=1 for II;, Il;.

I, Case G=2,G-+L—2=a, Hence L=2 and

Fe=laZ—24C Q—dy—Z+1],
C = max (a(dy 1), a dy G, a(dy— 1)+ G+ L).
My G—2+L—az=p alldi=0C=a
I,: G—2<p=a—1,d=1C=2a M;: G—2]p=a—2
dy=1, C=a-G.
I,: G—24L—a<p=C—2dy=1,d=d=0,C= G+ L.
The weights of I, ... I, are I+a—1,1+a—211—G—L+
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max(a, G4 LI +a— L I+a—1, I4+a—LI+a—G—L LI--G
— L-+2a, same, [+a—L, I, The weight of F is evidently / if and
only if F=F,.

LEMMA 14, If a<lp,,0<q.2=a=1-5/2, all infegers = qp,—1

are represented by F given by I, —IIl,, whose weights range from 1 to

I+a—1,

LEMMA 15. Let a =3, 8 > 4,p, be >3 and prime fo 3, q >3, All

integers = qp, — 1 are represented by F (followed by its weight), where if
G=L=1,

p=0F=[3Z2+42,Q~—Z]=e¢,1--2;
p=1F=[3243,Q—Z—1]1;

p=2,F=[3Z4+4Q—Z—1]=h 141,

=3 L=1p=0 1, F=e Lp=2F=[3Z-4,Q—Z]=
G=3L=2p=0F=[3Z+1Q—Z+1]14+1;
p=1,F=[3Z+43,Q—Zl=g Lp=2F=fT-]1.

G=L=2,p=0,F=¢ ip=1F=g I+ Lip=2F=f[-+}20G=2
L=1,p=0,F=[B3Z4+1,Q—2Z)p=1F=g1-2ip=2F=h I

LEMMA 16. Let j be the least integer for which ;3. Then u; >3
tor i=j and we define z;==0(=j). Bul for i <, define 2, and all the
F's as in Lemma 11, Thus w,+az=s(=0,1,2). If j=0,F=[2a--2,
Q] for a< g, F=[uy, Q] for a=q.

4, Formula for ¢ ascents at one step. Henceforth take p.=x",
where 7 is an integer =4,

LEMMA 17.
such that?).

—f, [+ 2.

If §=0,5= g+ a, there exists a posilive infeger i

(3) g=s—al
This implies

<g + 7 [a Srz—i)l/n‘

LEMMA 18, Let g be an integer =30, L an integer " a,

) S = a1 (Ljnyr} -,

It S= g} L and if all integers between g and g -~ L inclusive are represen-
ted by a form F, then every integer s between g and S inclusive is repre-
sented by F-ax" '

%) Dickson, American Jeurpal Mathematics, Vol. 49 (1927), p. 242,
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For, by hypothesis, all between g and g a inclusive are repre-
sented by F and hence by F—-a x". Henceforth, let s=g-a, Then
(3) holds for a positive integer i. For an § in Lemma 18, s =S, whence
the final number in (3) is

§g+”(aSn~—1 lzz_g+L
by (4). By hypothesis, s — @ i* (being between g and g+ L) is repre-
sented by F, and hence § by F4 ax™
Write Ly=g -+ L, v=(1—g/L)/n, Li =S. Then Lemma 18 will
be proved equivalent to the more symetrical
LEMMA 19, Let g be an integer =0,L, =g} a,
) Ly = {a=" (Lo o)),

It Ly =L, and if all integers between g and L, inclusive are represented
by F, then all between g and L. inclusive are represented by F-ax,
For, the conditions in Lemma 18 become L=a, Li=L,, and (4)
with S replaced by L;. Eliminate L=1L,—g. Then LZ=a becomes
Ly =g + a, while the new (4) becomes (5).
By Lemma 19, all integers between g and L,= {a='(L
are represented by F - ax"-4 ay” since

Ly/Ly = (LyJLyn0 =1, L, = L.

.-0]/1}1/‘("—1)

Likewise, all between g and
{6) Lipr=
are represented by F - a (%" ... X"

{a—l [Ll ru)n}ll'[ll—l)

Then

0 Log Li= ( ) (Log Ly -+ @) — @, = nLog v — Log 4,

n-—
follows by induction on ¢ from (6}, and is evident if £=0. The condi-
tion Ly == L, is equivalent to L,v" = a. This proves

LEMMA 20, Let%) g be an integer =0,

(8) v=01—gll)n Ly=zg+a L, v" = a

Compute L, by (7). If all integers between g and L, inclusive are repre-
sented by a form F, then all between g and Lt inclusive are represented

by F4a(x® ...+ x").

1) A convenient form of (8;) is that the last factor in (10) be =
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When L, is sufficiently large, Lemma 20 permits us to make ¢
ascents at one step.

LEMMA 21. Starting with L; and A in place of L, and a, T further
ascents leads to an L such that

no\ T AT

©  LogLur=(—""] " (Log Lo+ w)+(;l~:1») (W —w) — W,
where W=nLog V-—Log A, V==1[(1—g/L)|n.

We have eliminated L; between (7) and the like formula in capital
letters with L; and L, replaced by Ls.r and L; respectively.

We shall use Lemma 21 for A==1, and L/ so large that 1/2 is
a sufficiently close approximation to V, whence W= —nLog n But
v <1/n, whence W — w >>Log a. Since the last two terms of (9) are
positive,

n T
(10) Log Lepr> (;—:—1«) (Log Ly -+ nLog @ — Log a).

5. Theory of prime numbers. For a positive real x, define ¥ (x}
to be the sum of the natural logarithms of the prime numbers =x
(and = 2), Thus ¥ (x)=0 if 0=x<2.

LEMMA 22, It nis any integer = 4,
(11) 32n+1)—9 (n-+1)<nlog 4 — log 3.

This is readily verified if 4=n=X11. Let #=12 and employ the
binomial coefficients

RS(ZII:—I )’S=(2ﬂ+1)' T=(2’Z+1>,U=(2n+l )’

n—1 n—2 n—3

V=(2”+1).

n—4
Then
s= R p_  Rn(r—1) — Rn(n—1)(n—2)
n+2'

(n+2) (a4+3) " (1+2) (1 3) (2 4)
— Rnn—1)(n—2) (n—3)
(n+2) (n+-3) (n+4) (n 4 5)

Thus (1-1)"H>2R+25+2T+2U-+2V will exceed 6R if S+
T+U~+V>2R. The latter is equivalent to
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n'—6n*—43n%—132n—120>0,

which holds if #=12. Hence 2**1>>6 R, For any prime p satisfying
n-+2=p=2n-1, p divides the numerator, but not the denominator,
of R=02n-1)12n) ... (n}2)/n! Hence

UP<R<';‘*22" (n+1<p=2n+1).

Taking logarithms, we get (11).
Replace # by n—1 in Lemma 22 and use ¥ (2n) =9 (2n—1).

LEMMA 23, If n is any integer == 5,

(12) Y2n)—3(m)<(r—1)log 4 —log 3.

Lemmas 22 and 23 imply
LEMMA 24, If nis any inleger =5,

s — 8y l n»lOg 4'—10g3 if ﬂ"l—l or 2/1+1 is cnmposite'
Yen+1) (n)<] log(n-1)-rnlog 4—1log3 if n-+1 is prime.

LEMMA 25‘. For any real y = 1,
D=2y -2y <cy, c=142

First, let y=n-f, O:<:f<~~;w, 7 an integer = 5. By Lemma 23,

D () has the value (12), which is < ¢n, since log 4<c. Also ¥(2n)—
¥(n)<cn for n=1, 2, 3, 4.

Second, let y=n—|~~;~+f. 0‘§f<%. n an integer =5. Then

D (y) has the value in Lemma 24. Thus D{y)<cn<lcy if either n-1
or 2421 is compositive. This holds also when 7=3 or 4. Next, let
both 71 and 2#-|-1 be primes. Then will

D ()< log (1 --1)+nlog 4— log 3 <c(lz—}-»%—) <cy
if log (n-]- 1) < n (¢ —log 4) |- ; ¢ --log 3 ==n (,03370564) -~ 1,80861229,

This holds if 7=76 and hence if /23276, There remain only the cases
n==1, 2, 6, 18, 30, 36. For these, we find that

D@ 1)—9 (1) < 1.42 ( n4 %) .
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LEMMA 26. For any real x=1, ¥{x)<1.42 (x—1).
In Lemma 25, take x==2y, Hence if ¥=2,
B (x) =¥ (x2)<Ax, A=c[2.

Write g(x)=19(x)—2Ax. Then
g )< g(xf2) g (x[4) < ... < g(x/24),
where k is the greatest integer for which x/2¢°1=. 2, Then ¥/2#<2,
9(x/24) =0, 2 A (x/28) = A(x/2t) =24, g(x/2") < —2 4,

Hence g{x)<—24, $#{(x)<24x—2A.
LEMMA 27. f Gi==[i*/ (i —1)"], m=:6, n=:9, then

1
; Gi< X, X=GCy+5G;+m—n—9+4nlog (m—1)/4— ( ’21) e

Call the final term 7z Comparing the area under the curve y=
(14 1/x)" with the (smaller) sum of inscribed rectangles, we get

(&) +Hma) < SINIERARE
{x+lllogx—~( ) () vvvvvvv _(Z)glxz L_

m—1 n\ 1 1
M —5 -1 log ————- — t - ]
<m—5-nlog ™ +(2)4+( o
But
ot 1 1 t 1 2 1 3
2.4 42 2,4® 3,4 4% 3,4 4,44

z.-———(”) 2142 F(Z)_{%‘ﬁ_l_(’sz e
et e

1 [(5/4)1 > (5/4)", ( _])

Next,

4-|-4 Gy,

6. The singular series S. For any prime p, let p" be the high-
est power of p dividing n Write g=ha+1 if p>2, g=Fk-|-2
if p=2,

e ©
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pE—1 [ n
19 =P (S r 1) e e,

It is well known that, if s=4un,
3
p=1lip=rz, Q»H(l —p 2),
rs=b p>b
Since Q >>like product over all primes,
1 &

< 3/2-— 1 - —3/2 (] i ==
Q \\ - }‘j X dXxX==3,

(14) — log P'———}_‘rglogp.

pzb

First, let >>2 and p be not a divisor of 7. Then £h=0, g=1,
r==(n, p—1)Z=n The corresponding part of (14) is=<n ¥ log p <
nd ()< 1.42n(b—1), by Lemma 26.

Second, let p >>2, p a divisor of #. Then g=#h--1,

pos ?‘7’1“*:1 L n ( 1 ) _hp
p

= e Sl

p—1 " p-vlp p

since /l_\_’p, Hence g—- /z 1 is :double the fractlon Hence the cor-
responding part of (14) is

) o -1
< 2n log IZZI, Z:LT—]—_—_—
summed for the prime divisors » =3 of # The fraction is = 3/2.
Hence Z: 3 m, where m is the number of distinct prime factors p; of 7.
But n==1pe == 112 == 2" Hence the part of (14) is
<3 n (log n)*log 2,

Third, let p==2, Then r==2M?2—1=4n—1. As above, 7=

log n/log 2. This fraction is 72 when 73 4. The present term of (14) is
<4nh--2)log2:.4n(2log n/log 2)log2 =8 nlogn
LEMMA 28, Ifn=:4,s8>4n, S>b,, where
—log b, == log 3-]-1.42 1 (b — 1) -}~ 3 n log? nflog 2 - 8 nlog 1.
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7. Results from the asymptotic theory. In the writer's paper?)
on sums of #-th powers multiplied by constants A;, a,, we take ki =k,

f=—;—‘/, where v=1/n, and

(15) A=1, Aj=1(j=1,...,8—3), ar=1; all remaining a;==a.

Take s=4n, Then 47 of the coefficients of the n-t4 powers are 1
and the others are a, Also,

(16) m=3"" C==ga"1(3/2)""1, y==a, %==0aln 1)1,
The condition on % below (67) is here
h"=4n—3-43-2"-a201,
Since 2"-1=4n—3 if n =6, this holds if
h=1/3, a=2qg—17, n=6.

Although the a; are now not all 1, there is no change in the proof
of (120) — (128;). We may suppress the first term of log ¢15 in (120).
We discard 4, pp. 310 —3, and employ a discussion® which avoids
the divisor function, We obtain

LEMMA. 29. Define r, b, C by (13) and (16). Write

Aet\h ()t e 32/ o
C1=wF,w-:12(8na )22 n? o, Fe=gq /C,

c=v(1/3)"b,, z =v3/24,
R=n*(6n— 1)/(n—1 —21%2), ky > Log R/(Log n — Log (n—1)),

=2k, Gzn(i~v)", 21=c(3—~-—1~v)+z——~~1‘-(v-—vz)'
2 2
P=7>> Cife, N=(3 P),

Use the least integer ky. Then if a 529, n=9, every inleger = N is
represented by [4n, 3k —2],

In fact, the further conditions in the analytic theory are then
satisfied. First,

f) Annals of Math, vol, 37 (1936), pp. 293—316, cited as A.
%) Amer. Jour, Math., vol. 58 (1936), pp. 521 —535, cited as J,

e ©
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(17 1—}—logC+~;—[1—v] log P= P~
Second, in A, (85) with C=10b,, and (87) with ¢ =c, (b, 8¢, P,

1

(18) ¢, P~1jb, and ¢, P */c, are insignificant.
The above %k, is somewhat less than the value by Vinogradow:
(19) R ==[2nlog n- 1 log 6].

8. General method to prove universality. Take p.=x" and
E=2"q in Lemma 6 and the first part of Lemma 9. Thus all integers
in the interval J==(2¢, 2" ¢ - m"} are represented by [K. D], where

K=A-(m—2)(a—1), D=.B+i§3Q,-.

while [A4, B] was initially one of the forms (1), but may be replaced by
one of

(20) [d+a—1, (r—g+g—d)a, la, (2" —r—f)a].

Apply Lemmas 20, 21, with g ==3" L,=m", both in J. The condi-
tion L, v"=a will later be seen to hold after restrictions are placed
on n, m, a; for example, if m==2n, n=9, a =2""". Let Z be the least
integral value of - T for which the second member of (10) exceeds
Log N, where N is the constant in Lemma 29.

For ¢ =2, we desire that

@) [7~+K.t+D]g[4n+z—d.—;—tz"+q—4n+d)~z].

where the latter is F, of Lemma 12 for f==2n.
For a>>2 we seek a form // with minimum entries such that
H<F ==max (F,, Fi, F,). First, let a51-+2n In Lemma 11, each

wtaz,z=s=4n Also Z=I[4n]a], For either F, below Lemma 13

(22) H==1[4n, {(2" g —2-—4an)a}-—2

Second, let a>>1--2n. The preceding holds by Lemma 16 it j=>0.
But if j=0, and a<(¢q, F=[2a—2,Q] and H<F. To H we add
[a ¥V, — Y], where Y is chosen later.,We desire that

@3) [T+K t+DIs[4n+ay {@*+q—2—4nal—2—7]


GUEST


192 L. E, Dickson,

where y =Y if 2 >2, When a =2, (23) is identical with (21) if
(24) ye=1—d2, ¥V =—1—d2.

By Lemma 5, a Q= G; — R;, where G; =[/"/(j — 1)"].
Consider the first case (20). Then (23) holds if

(25) T=4n+ay—(@—1)(m—1)—d,
(26) r=—att+gt+d—3G+2R+2"—2—4n—~—2a—aV,

where the sums are for i=3,...,m, To the last add 0==0af -}

aT—aZ and the product of (25) by a. We get
2N r=—aZ+42"—XG+ER—aY+a*(y—m-1)-}-4an
+am—3)—4n—2-4g-+d(1— ).

Give to y the least integral value (certainly ==m) for which {25}
is =0. Then f=Z — Twill be seen to define an integer ~>0, Thus,
conversely, (27) implies (26) and hence (23).

For the second case (20), (23) holds if

(28) T=4n-+ay—a—(m—2)(a—1),
r::‘:al‘—i-ilG,——fRy +aY--4n--2-+2a—7.

As in the first case, the latter is equivalent to rZ= E-]- 1 —f (which
holds if 7= E), where

(29) E:aZ—l—}Gi—)s.lRi—l—aY—}—a(4—nz—4n]

+at(m—1—3)44n-41.
Then (27) becomes

(30) r=2'—G—E+ta-tg—1—d(a—1),
Decrease g to 1 and —d to —a. Hence (30) holds i
(31) r=2t—0G, — E-}2a— o,

Hence every positive integer will be represented by the form in
the second member of (23) if the decimal part r/2" of (3/2)* satisfies
3 n

)  Lzow L=1— m«) — G ) — (@ — 2a)2", G (1) = EJ2",
. on . on \ 4
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where £ is given by (29), in which XG, may be replaced by X of
Lemma 27,

9. First 5 decimals in decimal part d(n) of (3/2).

11| .49755 20| 25673 29 | .03948 | 38| .92041
12 | 74633 211 ,88509 30 1.05923 | 39| ,88062
13| 61950 | 22| 82764 311 .58884 | 40| .32094
14 | .92926 23 | 74146 321 .88327 | 41 .48141
15| .89389 241 .11219 331 .82491 | 42 .72211
16 | .84083 251 .16829 34 |.73736 | 43| .58317
17 | .26125 26 | 75244 35| .60604 | 44 .87475
18 | .89188 27| .12866 36 | .40907 | 45| .31213
19 | .83782 281 .69299 37| .61361 | 46| .96820

d(n) >.98 when 7 =400 only for

d (105) = .98559, d {140) =.98041, d (157) = 99274,

d (163) = .99550, d(360)==.98774, 4 (361) = .98161.

d (1) < 03 only for n==195, 96, 153, 178 — 9, 250,
265, 274-5, 313-4, 368, 393. d (1) < .016 only for
d (95) = .01116, 4 (153) = .01091, d(313) == 01587, 4 (393) = .01518,

10. Corollaries. The first following is from J/, § 3:

L (1 1 1 ) L b— 1 < ol
n 4nt

Log @ == 1.2169081 - .3138181 1 - (; "o 1)Log n,

_ 1

3
L 5F==( Lo
o8 2 | 2h

)loga—-(l 1-)(.0880456],
n
11. Case ¢ "=4n We may take m=2n, Y=y =m., Since our
formulas remain valid if £ is increased, we may increase @ to 47 and
decrease each R, to zero, By (29), the new E is Ex=%G,}+4n(Z-+
5—8n -1,

3. Acta Arithmetica, IL.
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<.0012885 nt, —log b, < .1555733 nt, —log < .1558838 nt— J = .2341309/n,
Log P =.2915386 n®, Log N = .2915414 1% In (10), L >N if

nj(n — 1)"7T (nLog2 — Log4n) >Log N.

First, let n=18. Then ¢+ 7 =259=2, X ==496, £ == 9137, and
the limits (32) are .0348549 and .9402813. But & (n) lies between them
if 18 =n=45.

Second, let n==46. Then Z =878, X = 702358, £ = 797119, and
the limits (32) are .00000001 and .9999981. But d(#) lies between them
if 46 ==n= 400,

Thlrd, let 7=16. Then Z==222, X==309,FE;==6646, and the li-
mits {32) are .10141 and .82802. While d (17) lies between them, d(16)
does not. We may dispose of 7==16 as follows, When a 756, £1%6310
and the limits are .09628 and .84755. When a==60, g= 25, d==56, r[2'0<_
841693, When a = 61, g = 22, d = 46, r|2'"<.84934. Finally, when a =
64, 63, 62, 59, 58, 57, d == 16, 26, 36,7, 18, 29, respectively, and r[2'%< 8567,

The final term in (23) exceeds 3 k-—2 with k==2k", This proves
Theorem 3.

When a=n, we may take Y=y =215,

12, When ¢ =3, n=11, we det
Log w<.1719876 1%, Log F<.0054325 1*,
log C, <,0033762 1!, —J >.2267562n,
—log b, <C.2741006 12*, — log ¢ < .2750898 n*,
Log P = .5333317 1%, Log N = 5333346 1%,

13. Case a=2. Take m=n--1.
creasing each R; to 0 and get

Er=YG+2Z-+d-+1—2n

For n=11, let £; become E’ when we increase d to 2. The last factor
in (10) is nLog (n-+1)—nlogn—Log2, since v==1/n to 7 decimal
places. The condition L,v" % 2in Lemma 20 holds since n™:5, For
nz=10 and k=2k', 3k —2 is less than the second entry of !“0 given
by the second member of (21).

For n==11, the least {7 is Z=168, X =57, FE'*393, The
limits (32) are .191894 and .76587. For n= 11, 12, 13, d(#) lies between
them.

When n=14, Z=234, X=637, E'=612, The limits (32) are
0373535 and ,944828. For 14 <7545, d(n) lies between them.

We increase E to E, by de-
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When n=46, Z= 1110, X =702271, E' =1704402. The limits (32)
are .00000001 and .9999982.

LEMMA 30. For g"=E<(2g" let all infegers’) in K = (E, E4-p)
be sums of h n-th powers. Then all in K are represented by
[le— 1) (a— 1)1, [Ajal].

In various recent papers, the writer has explained his method to
find £ by use of certain equations L;j==r;, where L; is linear in 2%, 8"
Write B=rp—r;, S=L+E, S=x2"4-.. 4 x, 8" where x,=0,
or 1. The weights of S, S--1,...,S+B—1 are=¥x+B-—1=4h
Write xi=ay,--8B,, 0= B, ,a—l while By=0 or 1, Then S=
SB - a Xy it is 1epresented by [¥B;, Xy]. By Lemma 7,0,...,B—1
are all represented by [¢—1, (B — b)/a], where b==B (mod a), 1 Sb=<a.

Hence S,...,S--B—1 are all represented by [z, 7],
t=a—14+EB=a—1-4(g—2)(a—1)+1,
av=aXy;+B—b=%x—YB-+-B—b=h

For a=2, n=9 or 10, we apply Lemma 30 with E=6"-} 25",

14, When a= 2, n=10, we get Log N =.6405552 1%, All integers?}
in K are sums of 149 -4 3 tenth powers, Hence by Lemma 30, all in K
are represented by [6, 76]. Thus all in (E,E~-2+2") are represented
by [, 76].

The values of Gy,..., On are 57, 17, 9, 6, 4, 3, 3, 2, 2. The
corresponding R; are 1, 1, 1, 0. 0,¥1, 1, 0, 0, and the Q:; are 28, 8, 4,
3,21, 1,1, 1. Hence by Lemma 6 with m=11, all (E, L,=E-11Y)
are represented by [15, 125]. We det

Log v = 2.9986626, («19.0

) (. 1008605) == Log N, Z— 149,
Here F,=1[41, 519].
< F.

Since k,==60, [8, 3k—2] F,. By Lemma 8, all in (2"¢, 27¢-}-2")
are represented by [2, 368]. Then by Lemma 7 with m==17, all in (2"¢,
2t g 47" are replesenlcd by [7 4/3} <’ F(,

Take 7=26. Then [15-4 T, 125 ¢] = [41, 248]

%} In the applicalions here, we fake p =2/,

%)  Dickson, Researches on Waring's Problem, Carnegie Institution of Washing-
ton, 1935, p, 2, tablette I. We may replace 149 by 142 except for the two functions
numbered 6 and 25. By examining them, we find that all in K are represented by
16, 73].

%) Bull, Amer, Math. Soc,, vol. 40 (1934), p. 489, tabletle B=C=A=0, Actu~
ally all in K are represented by [6, 52
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ninth powers. Hence by Lemma 30, all in K are represented by [6, 54].
Thus all in (E, E +2-2%) are represented by [7, 54]. The values of
Gy, ..., Gy are 38,13, 7, 5, 4, 3, 2, 2. Thus the R; are 0, 1, 1, 0, 1, 0,
0 and the Q: are 19, 6, 3, 2,2, 1, 1, 1, Hence by Lemma 6 with m==10,
all in (E, L, = E 4 10%) are represented by [14, 89]. Here F, = [36, 256],
We may take k=86 (since ky= 56 and 3k—2=256), z=, 0000105,
We get—log b, <(3.363842 7%, log Cy <, 4890613 1%, log Ci[c < 3.4347593 1%,
— J—. 0241104, Log P ==15.82892n%, Log N = 1582907, The final
factor in (10) is . 1107101, Hence ¢ T = 136. Take T=22, £ = 114.
Then [T -+ 14, t -} 89] = [36, 203] <F, .

In Lemma 8, f=g=1, d=2, and all in (2"qg, 2"9-|~2") are re-
presented by [3, 141]. By Lemma 6 with m=7 E=2"q, all (2"¢,
2" g 7% are represented by [8, 173] and hence by Fy.

This proves Theorem 2. The proof of Theorem 4 is omitted.

16, For a=n, n=11, we get Log N=. 5335973 n’,

17. Case a=4, We take V'=y =0 since (25) and (28) are then
positive, Take m=n--3. We omit the final term in Lemma 27, In
(29), we decrease each R; to 0 and get £'=4Z-+YG; 437,

When n=11, we get Z=151, X<(93, E'<(734. The limits (32}
are . 35840 and . 59546. But 4 (11) lies between them.

When =12, Z=171, X ==110, £'=831. The limits (32) are
. 20288 and . 76349, But d (12) and d (13) lie between them.

When n=14, Z=213, .:-‘101'= 130, %Ri= 25, and (29) gives £ = 994,

The limits (32) are . 060669 and .921025. For 15=n:=28, d(n) lies
between them. The same holds for #==29 and the new limits.

Let n=14. For E=5"4-5"6"-4 7" all integers in K=(E, E 4 2")
are sums of 107947 14-th powers.®) Hence by Lemma 30, all in K
are represented by [19, 271], Hence all in (£, E-- @ 2"} are represen-
ted by [22, 271]. Then by Lemma 6, all in (E, E-~17") are represen-
ted by [64,370]. Since v==1/n to the sixth decimal place, we may use
Z==213 as above, Take T=0. Then [T-64, 370--{] = [64, 583]
= [64, 4151], viz,, (23) for Y=y=2, By using an interval longer than
2" and the paper cited, we reach (72) and hence retain Y==0.

(Received 5 August, 1936,

%) Dickson, Monalshefte Math, Phys., vol. 43 (1936), p. 393, tablette A =0,
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On Waring’s problem for fourth and higher
powers.

By

T. Estermann (London).

1. Introduction,

Let k£ be a positive integer. Then G (k) denotes the least number
§ such that every sufficiently large integer is a sum of s &2-th powers
(of positive integers). This notation was introduced by Hardy and Litt-
lewood!) and is now generally accepted. In my paper “Proof that eve-
ry large integer is a sum of seventeen biquadrates”?), hereafter quo-
ted as I, I proved (simultaneously with Davenport and Heilbronn %) that
G (4) =17, and conjectured that the same method could be applied to
the case £ >4 with the following result:

Let
6 moz[l’e~2llog2+logw~z)——1ogk]
log k — log (£ — 1)
and
(2) §=2my -7 [2t1 (k—2) (1 — k—1)m+] |

where [x] denotes the integral part of x. Then
(3) Gk)=<s.

The object of the present paper is to prove this conjecture,
When k=4, it follows from (1) and (2) that s=17, so that (3) is

) Some problems of partitio numerorum I, Géttinger Nachrichten (1920), 33—54,
?) Proc, London Math, Soc, (2), 41 (1936), 126—142.
) Ibid. 143150,
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