A lemma on the topological index ').
By
Tibor Radé (Columbus, Ohio).

Introduction.

Let the closed continuous curve ¢ be given by equations z=f(t),
y=y(t), 0=t=1, f(0)=f(1), g(0)=yg(1), where f(t), g(t) are con-
tinuous in 0 <¢=1. If the point (x,y) is not on C, let n(x, y) denote
the topological index of (x,y) with respect to ¢ %). If (w,y) is on C,
then put n(z,y)=0. In connection with investigations in various
fields (theory of the area, Caleculus of Variations, transformation of
double integrals) the study of f f n(x, y) do dy in its dependence upon
the curve C became of fundamental importance in recent years. Let
C; be a sequence of closed continuous curves approximating C in
the sense of Fréchet ). Let nja, ¥) have the same meaning with
respect to C; as that of n(z, y) with respect to ¢. In most of the
" investigations referred to above, the scope of the result was deter-
mined by the character of the additional assumptions used by the
respective authors to secure the relation f f n;—> f f n. The pur-
pose of this paper is to discuss this relation under conditions less
restrictive than those considered in the literature, as far as it is
known to the author. Our result is as follows. Let 1[g], 7[g,] denote
the total variations of the y-coordinates g(t), g,(t) of the closed con-
tinuous curves C, 0. It C;— C in the sense of Freéchet, and if
Tlg1— T(g), then f f |n;— m|— 0 %). Note that we obtain, instead of

f f n—> f f n, the much stronger relation f f |nj—m|—0. On the

1) Presented to the American Mathematlca.l Society at the meeting in
Chicago, April 1936.

) For the properties of the topological index, see for instance Kerdk-
idrt6, Vorlesungen iiber Topologie (Berlin, J. Springer, 1923).

%) See 6.2.

84) Tlg), Tlg;] are supposed to be finite.
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other hand, the approximations in general use at present (integral
means, Stieltjes polynomials, and the like) are such that the
strong assumption Tg;] — T(g] is automatically satisfied. Due to thege
circumstances, our main result leads to a number of applications (in the
fields mentioned above), which will be discussed elsewhere. Since for
some of these applications the weaker relation f f'n, - / ‘ / 0 is quite
sufficient, we included, among the corollaries in § 6, a few remarks
concerning this relation.

The method used in the present paper depends essentially upon
cerfain results of Banach on functions of bounded variation 4).
These results of Banach were first used by Schauder ®) to control
sequences of index-functions n,(»,y) with regard to term-wise
integration. In the situation which Schauder considered the eurves
C; were polygons inscribed in the curve (. For this special situation,
Schaunder derives from results of Banach a common summable
upper bound for the absolute values of the funections nyz, y). It is
unlikely that such a bound exists in the more general situation
considered in our main lemma. At any rate, we proceed in a dif-
ferent fashion. In the terminology of Vitali, we establish the uni-
formity of the absolute continuity of the integrals, considered as
functions of sets, of the functions ny(z, y). ' That is, instead of
working with a sufficient condition, we work with the necessary and
sufficient condition for the term-wise integration of the sequence

|ny(@, y)!.
List of notations and definitions.
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4) Banach, Sur les lignes rectifiables et les -surfaces dont Vaire est finde,
Fundamenta Mathematicae vol. 7, pp. 226—236.

8) Schauder, Uber stetige Abbtldngm, Fundamenta Mathematicae vol.
12, pp. 47—174.
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§ 1. The function N(y).

¢
" 1.1. The purpose of this § 1 is to summarize, for the convenience
of the reader, and in a form suitable for the present purposes, cer-
tain results of Banach on functions of bounded variation 8),

1.2. Let g(t) be continuous for 0=t=1. If ¢(¢) is of bounded
" variation in 0<t=1, then 7T[g] will denote the total variation

of ¢(t).

1.3. We think of the function g(¢) as defining a transfor-
mation y=g(t) of the points in 0=¢=1 into points on the y-axis.
Since ¢(f) is bounded, the image of ‘0=¢=1 is comprised in some
interval |y|<K, where K is a finite constant. We shall denote
by ¢f:(y) the characteristic function of the image, on the y-axis,
of the sub-interval # =t=1%,. That is, tp‘,’f(g;):l if the equation
y=g¢(t) has at leagt one root ¢ such that # =t=t, and Pr(y)=0
it gtyZEy for 4, =t=t, If we denote by M, mf the maximum
and the minimum respectively of ¢(f) in ¢, <t=t,, then clearly

gty =1  for mf<y= M},

and

piy)=0  for t<mf and 1> Mf

and
K
[oity)dy = Ms—m.
X

1.4. The function N(y) is defined, for |y|=K, as the number
of distinet roots of the equation g(f)=y in 0 <¢=1. If this equation
hag infinitely many distinct roots, then we put N (y)= oco.

1.5. On the y-axis, let us mark all the points 'm,ff, M¢, where
ty and ¢,>1 take on all rational values in 0=St=1, and let us
also mark all the points which correspond, under the transformation

y=g(t), to rational values of 1. The set of points thus marked will be’

denoted by S8*. The set 8* is denumerable and hence of measure zero.

1.6. If h ig a positive integer, we define

'Pn(?/ Z‘P(k o/n(Y).

8) See 4),
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1.7. Obviously vx(y)=2N(y) always and Yx(y) = N(y) for y
not in S*.

1.8. Obviously, if H is any number less than N(y), then
Ya(y) = H for h larger than some hy=hy(y, H).

1.9. Obviously (see 1.2).
K h ,
' / Yu(y) dy =k§ (M&ll—i),h—m&lix)/’h).
—K ==

1.10. Obviously, it follows from 1.7, 1.8, 1.9 that yx(y)— N (y)
almost everywhere in |y| < K. Hence N(y) is measurable. If ¢(i)
is of bounded variation, then we have, from 1.9,

h —> co.

K
Jwn(y)dy—>T0g1  for
-K

The integrals of the functions ¥x(y) being thus uniformly bounded,
it follows that N(y) is summable. We infer finally from 1.7 that
X

K
[ wny)dy— [ N(y)dy
-k —K
Hence, if g(t) is of bounded variation, then N (y) is summable and
' K
[ ¥y ay = 11g).
~-K

Conversely, if N (y) is summable, then it follows from 1.7 and 1.9 that

h K
kz; (M fﬂn/}. --mglf-u/h) =2 f N(y)dy
= “x

for all values of h. Congequently, if ¥ ( ) is summable, then g¢(i)
is of bounded variation.

§ 2. A remark on sequences of positive' functions.

2.1. Let & denote a set of functions F(y), each of which is
defined and summable in the same finite interval |y| =K. We shall
say that Q possesses the property P if the following condition is
satisfied. To every &¢>0 there corresponds an 7=1y(¢) >0 such that

J |F(y)|dy < e
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for every function F(y) of & and for every measurable set § in
ly| < K, with a measure less than #(e) 7).

2.2, In a finite interval |y|<K let there be given a sequence
of functions F;(y) and a function F(y). Suppose that the following
conditions are satisfied.

a) F(y)=0, Fily) =0

b) limF,(y) = F(y)

in [y =K.
almost everywhere in

ly| = K.

¢) Fy), F(y) are summable in |y|<= K.
K K
Q) [ Fway— [Fy)dy.
R 'S K .

Theén the set of functions F(y), F;(y) possesses the property P.

2.3. If we replace lim Fy(y)=F(y) by lim Fy(y)=F(y) in
condition b), then the above statement reduces to a well-known
theorem and can be proved by almost exactly the same argument.
The reader is therefore requested to assume the easy task of adapting
the proof given loc. cit.”) to the situation described in 2.2.

§ 3. A remark on sequences N;(y).

3.1. In the interval 0=t=1, let there be given a continuous
function ¢(f) and a sequence of continuous functions g,(t). The
symbols
‘ Jj‘P:f('y)y J’M:fa Ni(y), Sf) .

are defined with respect to g¢;(f) in the same way as the symbol§
‘pff(?/): Mﬁf’ N(y), 8% ..
were defined with respect to g(t).

3.2. Lemma. Suppose that the function g(t) and every function
of the sequence g;(t) is continuous and of bounded variation in 0=t<1.
Suppose alsothat T[g)—T[g] and g;(t)—>g(t) uniformiyin 0t<1.
Then the set of functions N (¥), Ni(y) possesses the property P.

7) The importance of this property in problems on term-wise integration
was first stressed by Vitali. See for instance de la Vallée Pousgin, Sur l'in-

tégrale de Lebesgue, Transactions Amer. Math. Soe., vol. 16, pp. 4856—~501, in
particular p. 446,
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Let us observe that under the above agsumptions we have
a finite interval |y| =K such that all the functions N (), Ni(y)

are equal to zero for |y|>K. We can restrict therefore our at-
tention to this interval |y| < K.

3.3. Using the notations of § 1, we show first that
N(y)=lim N;(y) almost everywhere in y=K.

Suppose that y is not in the set §*+Y'Sf. Consider, for fixed
rational t,, ?,, the functions Pp(y), /P2(y). We assert that

PR =sp(y) - for 5> fo=jo(ty, b, ).
If (p{f(@/):(), this is obvious. If (p{f(y):l, then (ef. 1.2) we have ‘
mi <y = My
But y is not in .8*, hence we cannot have the sign of equality. Thus
mi<y< Mg
Since g,(f)—>¢(t) uniformly, we shall have therefore
mE <y < Mk

for j>jo=7jo(ts, sy y). Hence (cf. 1.2)

Pry)=1=0k(y)  for j>j(t,, ty, y).
Congider now the functions (cf. 1.6)

h
wn(y) =k§ 0’?/{‘11)/1:(9 )y

n(y) = ké}wfl’in/h(y).
On account of the preceding remark, we shall have
vay) S wnly)  for > ji=ji(h, y).
Since y is not in S}, we have (see 1.7)

Wn(y) = Ny(y).

Ya(y) = Ny(y)
and consequently

Hence o
for > i¢=js(h, v),

yn(y) = Lim Ny(y).
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Since y is not in 8%, we obtain (see 1.10) for h—>oco the desired

i alit
Heuatty N(y) < lim N(9)

for y not in 8% 3'8F, that is almost everywhere in |y| < K.

3.4. On account of 1.10, the assumption T[g;]-> T [g] implies that
K x |
[ Ni(y) dy—> [ N(y)dy.
~r —K

3.5. The lemma in 3.2 appears now as a direct consequence
of the remark made in § 2. Indeed, the functions N(y), N,(y) satisfy
condition a) in 2.2 by definition, condition b) by 3.3, condition c)
by 1.10 and condition d) by 3.4.

§ 4. Preliminary remarks on the topological index.

4.1. Let the cloged continuous curve (' be defined by the equa-
tions w=7f(1), y=¢(t), 0<t=1, where f({), g(t) are continuous in
0=t=1 and f(0)=f(1), g(0)=g(1). Let (x,y) be a point not
on C, and let (§, #) be a point which describes ¢ in the sense of
increasing t-values. Then the continuously varied argument of the
complex number E&-+4n—(x-4iy) changes by a certain amount
2km, where k is an integer (positive, negative, or zero). This integer k
is the topological index of the point (x, y) with respect to the (di-
rected) closed continuous curve C. ‘

4.2. The topological index of the point (w, y) with respect
to C is a funetion of @,y which we shall denote by = (x, y). For
(@, y) on C, we put n(z, y)=0. Clearly, n(x, y) is a measurable
function.

4.3. The closed continuous curve € being given as above, sup-
pose we have a sequence of closed continuous curves

9;(0) = g;(1),

where f;(f), ¢;(t) are continuous in 0=t=1. Suppose f;(t)—>f(t),
9;(t)—>g(t) uniformly for 0=t=1. TLet ny, y) have the same
meaning with respect to ; as that of n(x, y) with respect to C.
Then (s, y)~ n(r, y) for (x, y) not on €, as it is well known.

Cire=f;it), y=g;(1t), 0<t=1, f(0)=Ff(1),
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[t is also well known that the following more precise statement
is true: if k is a closed circular disc which has no point in common
with C, then n;(2, y)=n(2, y) on & for j greater than some Go=jolk).
It follows then, on account of the Heine-Borel theorem: if § ig
a closed set in the (z, y)-plane which has no point in common with a,
then #;(x, y)=n(x,y) on 8§ for j greater than some Jo=7o(8).

4.4. Suppose we have a subdivision of 0=t=1 by points
0=1p ... <tp—y <t <{... <tp=1, such that the functions @), gt
are both linear in each of the closed subintervals t,,_i =t<t;. Then
the curve O is a polygon and will be denoted by II. Let——(x, y) be
a point not on I7, and draw from (z, y) a ray r which does not pass
through any of the vertices of I7. Let Poy oy Pty Pry .oy Py, P,
be the vertices of I7, numbered in the sense of increasing i-values.
If r intersects the side P, y Py of 11 in & point Ap andif (x,y), Pp_y, P,
is the counter-clockwise sense around the triangle (@,y), Py—s, Py,
then 4, is called a point of positive crossing. If (z,y), Py_y, Py is
the clock-wise sense around the triangle (@, %)y Pp-1y Py, then A,
ig called a point of negative crossing (remember that the ray r does
not pass through any vertex.) Clearly, the topological index of (z, y)
with respect to II is equal to the difference between the number
of points of positive crossing and the number of points of negative
crossing. Hence the absolute value of this topological index is cer-
tainly not greater than the total number of the sides of II which
are intersected by a line I through (2, y) which does not contain
any vertex of I7,

4.5. Let the closed continuous curve ¢ be given by equations
a=f(t), y=g(t) as in 4.1. Denote by I, the inscribed polygon cor-
responding to the subdivision of 0<t<1 into h equal parts. Let
us use the notations of § 1, the function g(t) of § 1 being identified
with the y-coordinate of C. Take a point (@, y) which is not on C
and whose y-coordinate is not in the set S* (see 1.4). Let 1 be the
line through (x, y) parallel to the z-axis. This line does not pass
then through any vertex of any of the polygons I7,. Therefore we
have, for the topological index nx(w, y) of (z, y) with respect to II},
the inequality |na(x, y)| = vu(y) where ¥, (y) is the function defined

(in 1L.5. We have therefore, on account of 1.7, |n(x, v)| < N(y). For
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h—>oo it follows that |n(®,y)| =XN(y), where n(w,y) is defined
as in 4.2. Since the set 8* is of measure zero, we gsee that
|n(@,y)| = N(y) almost everywhere °). |

4.6. On account of 1.10, it follows that if the y-coordinate
of the closed continuous curve O is of bounded variation, then the
topologlcal index m(z,y) is a summable function.

§ 5. The lemma.

5.1. Let there be given a closed continuous curve
C:z=f(t), y=1gt) f(0) =£(1), ¢(0)=y¢(1),

and a sequence of closed continuous curves
Cirx=ft), y=gt) 0=t=1, £(0)=F(1)

All the functions f(t), g(t), 1;(t), g;(¢) are supposed to be continuous
in 0<t=<1. In dealing with the functions g(t), g/(f), we shall
use the notations of § 3. The symbols n(x, ¥), iz, y) are defined
as in 4.3. ‘

0=t=1,

9:(0) = g;(1).

5.2. Lemma. The closed continuous curves C, C; being defined
as in 5.1, suppose that

Y fi(t) g;(t)—>g(t) wuniformly in VSIS
b the functzons g(t), g;(t) are of bounded variation in 0 =t=1;
¢) Tlg]1— Tyl

Under these conditions, all the curves C, C; are comprised in some
finite square, x| <K, |y|< K, and we have the relation

K K
[ [ Intz, y) —ny(e, )| dw dy — 0

—K —~K

for j-—>oo.

5.3. To prove this, let there be given any o>0. On account
of 5.2, condition b), the set of points (x, y) on C has its (two-di-
mensional) measure equal to zero. Hence we have, in the square

|z|= K, |y| <K, an open set @, with |@,;| <o which covers C. We:

denote Dby ¢q(r, y) the characteristic function of Q..

That is,
gs(x, y)=1 for (x,y) in Q, and ¢.(r, y))=0 otherwise.

8) As far as the present author is aware, this type of imitation for |n(z, y)|
was first used by Schauder, loc. cit. 5).
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5.4. We denote by @7 the complement of @, with respect to
the closed square lwl <K, |y|S K. Then Q! is a closed set. Hence,
by 4.3, we have a j, such that ¢;CQ, and ny(e,y)=n(z,y) on
Qr for j> j,.

5.5. Consider any one of the functions n;(z, y). By 4.6, mn;(=, y)
is summable, and by 4.5 we have |n( m,y )| < N;(y) almost every-
where in |#| =K, |y| < K. Hence

| [ Ini(@,9)| dw dy =

(]

K K
""/ /I“Jm:?/ qw(myy)dmdﬂlg/(

KK Sk \=x

K
| qa<w,y>dw)1v,<y)dy

Denote by E; the set of those points 4 in |y| = K for which
K

/qu(w,y)dm exists and is > |Qq%,
—K

and let E7 be the complement of E, which respect to |y|= K. Then

|qa1_/ /q., 2,9) dmdy>/(/qu ,y>dm)dy>leal" B,
—K E;, \-K

and consequently
| Bo| < |Qufe < o',

5.6. It follows that

o K
,/ ,/ Ing(, )| dw dy < ﬁ/ ( | asta,9) dw) Ni(y) dy+

+j(

E*

[ ao(@,) dw)N/(y)du<2K | Wiy dy +|@d* j Nj(y

K
But, by 1.10,

/ Nily)dy = / Ni(y)dy = Tlg})
'Fd

Thus we obtain, since |Q < o, the inequality
[[ (o, 9)| dwdy < 2K [ Nw)dy + o Tlg)
. Q o »
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The same reasoning, applied to n(x,y), leads to

[[1n(@,y)|dody < 2K [ N(y)dy + o' T[g].
Qs Eq

Let us recall that |B| << o'k

5.7. By 3.2, the set of functions N(y), N;(y) possesses the
property P. That is, given any £>0, we have an n=n(e)>0
such that

[¥way<e, [ ¥mdy<e,
§ R g

for all values of j and for all measurable sets S in |y| =K with
|8] < n(¢). Suppose >0 is prescribed at pleasure. Choose the o of 5.3
so that o' <{7(e) and o':<Te. Then the inequalities of 5.6 yield 9

[ [ Iny(@,9)] dw dy < 2K € 4 T[g]),
Qq "

[ [1n (@, y) dwdy < 2K e + T(g]e.
@
By 5.4 we have then, for j>9‘0,
K K
[ [ Ini(@,9)—nlo, y)| dwdy = [ [ n(@, y) — (o, y)| dody <
Q

“K-K '
<(4K + Tlg] + Tlgj)) e.
Since T(g;]—> T'lg], it follows that

K K
fim [ [tz y)—n(o,9)|dody < (4K + 2T [g) e.
R KK
Since &>>0 was arbitrarily given, this implies
KK
lim / f|n,(m,y)-—n(w,y)
K—K

J>oo

dwdy =0,

and the lemma is proved.

¥) Essentially, these inequalitios express the fact that the set of functions

"z, y), n;(z, y) possesses the property P, stated for functions of two variables.
Cf. the introduction,
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§ 6. Corollaries.

6.1. With regard to applications to be discussed elsewhere,
we state first an immediate consequence of the lemma in 5.2. The
closed continuous curves O, C; being given as in 5.2 and satis-
fying the conditions stated there, we have some finite square
ls|=< K, |y|=K which contains all these curves. Let there be given,
in this square, a uniformly bounded sequence of measurable functions
Fi(z,y) which converge almost everywhere to a (bounded and
measurable) function F(z, y). Then we have the relation

K K X X
| [ Fitw) mio,y) dwdy— [ [B(o,y)n(,y) dudy.
—K K ~K —K

Indeed, we have

[ JEn—[ [Fim| < [ [(P—F) Inl + [ [ 12 m—n,

the integrals being extended over the square o] <K, |y|<K. By
assumption we have |Fj|<<M, |[F—F;<2M in this square,
M being some finite constant independent of j. Since |n| is summable,
the relations (F—F))n—0 almost everywhere and |(F—F;jn|<2M|n|

imply that ./"/'IF—-FJI In}~>0, while // |7 ]n——nj|<M./‘ﬂn——an,1—>0
follows directly from 5.2.

6.2. Let there be given a closed continuous curve ¢ and 2 se-
quence (; of such curves. The statement that C;—C in the sense
of Fréchet is then equivalent to the statement that these curves
admit of simultaneous representations

Cim=f(t), y=g(¢), 0=t=1, f0)=f(1), ¢(0)=g(1)
GJ:wzfj(t% Y = g;(t), 0=t=1, £(0)=7(1), gj(o)=gj(1)1

where f, g, f;, g; are continuous in 0=¢=1 and f—~f, g~>¢ uni-
formly in 0 =<#=1. Suppose now that all thege curves are rectifiable
and that the length I(C;) of C; converges to the length 1(C) of C.
According to Adams and Lewy 1), these assumptions imply that

) . R. Adams and Hans Lewy, On convergence in length, Duke Math.,
Journal, vol. I, pp. 19-—26. See their theorem 1 on page 20. For the sake of accuracy,
it should be observed that these authors only econsider sequences of arcs given in
the non-parametric form y = f(x). However, their method applies, with trivial
modifications, to the more general situation considered in our text.
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T{g)— Tlg), T~ TIfl. We have therefore, on account of 5.2,
the following theorem.

If the closed continuous rectifiable curves 0, C; satisfy the
conditions C;—>C in the sense of Fréchet and UC;Y—>U0), then

ff|'n—nji—» 0.

6.3 We shall now make a few remarks concerning theorems
of the weak lype / ' / ny—> f /n In deriving these theorems, we shall

replace the assumption T'[¢;]— T[g] by weaker assumptions re-
quiring only uniform boundedness of the total variation. While
it may seem that this will increase the scope of applications, it
should be observed that all the methods of approximation in general
use at present are such that the condition T[g;]— T[¢g] is auto-
matically satisfied. In the following statements of the weak type

f f nj—> f [ n, no effort has been made to reduce the assumptions
to & minimum,.

6.4. Let IT be a closed polygon given as in 4.4. Let n(w, y)
be the index-function relative to I7, and let Py, Py, ..., Pp.t, Py ..., P=P,
be the vertices of IT in the order of increasing i-values. If (wx, ys)

are the coordinates of P, then we have (a8 an easy consequence
of the remarks made in 4.4) the relation

J
—4 2 Y1
hoe1

6.5. Consider now a closed continuous curve C given as in 6.2.
Denote by II; the inscribed polygon corresponding to the subdivision
of 0=t=1 into j equal parts. Let x=Ff;(t), y=g¢;(t) be the equations
of II; the functions f;, ¢g; being linear between adjacent points

of division. Clearly
PR E:l)
”(k) (55 ‘

" Hence, if g(ty is' of bounded wvariation, we have TIf[g;J— T[g]-
Thus the lemma of 5.2 applies. Since, by 6.4, obviously

i ) 1 1 t
ffnj»%offdg——%fgdf-—-ffdg,
0 [}

f f n(w,y) dw dy = %k)i‘l Tt (Y1 — Yi-1)

Lp—— .- 1).

Tlg]= j
k=1
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we obtain the result that if the y-coordinate g(t) of the closed continuous
curve C is of bounded variation, then

j/ (@, y) do dy = /wdy,

where the double integral is taken over any square |o| <K, |y|< K
containing C 11).

6.6. To illustrate the way in which the preceding remark may
be utilized, we consider the following situation. Let the closed con-
tinuous curves O, C; be given as in 6.2, and suppose that all the functions
1,9, 1n9; are of bounded variation. Suppose that T(f;]<< M, Tg] < M,

where M 18 some finite constant independent of j. Then f f n;—> f f n,

the integration being extended over any square containing all the
curves C, O,

The proof is immediate. By 6.4, the assertion f f ny—> f f n
is equivalent to

1 1
f f;dg,—> | tag,
0 0

and this relation is a well-known direct consequence of the identity
1

1 1 1
[ 1ag— [ tidg = [@—gdf+ [(F—1f)dg.
1 0 0 0

6.7. Using again the theorem of Adams and Lewy (see 6.2)
we obtain the following corollary of the preceding statement. If the
closed continuous rectifiable curves C, C; satisfy the conditions C—>C;
in the sense of Fréchet and 1(C)) << M (a finite constant mdependent

of j), then fffn,—»ffn

1) This result could be obtained also without using the main lemma in 5.2.

12) Tor the simple properties of the Riemann-Stieltjes integral needed here
see for instance Hobson, The theory of functions of a real variable, vol, I (sevond
edition), p. 507.

The Ohio State University,
March 1936,
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