

Über die Stieltjessche Integration abstrakter Funktionen.

Von

Mark Gowurin (Leningrad).

Neuerdings sind mehrere Arbeiten erschienen, in welchen das Lebesguesche Integral für abstrakte Funktionen, d. h, für solche Funktionen x(t), die vom reellen Argument t abhängen und deren Werte in einem abstrakten metrischen Raume X liegen, definiert worden ist 1). In dieser Arbeit definieren wir das Stieltjessche Integral für abstrakte Funktionen.

§§ 1 und 2 enthalten einige Definitionen und Behauptungen. U. a. definieren wir dort für abstrakte Funktionen eine Eigenschaft (die w-Eigenschaft), die einigermassen der Beschränktheit der Variation analog ist. In § 3 geben wir die Definition des Stieltjesschen Integrals und betrachten einige von seinen einfachsten Eigenschaften. § 4 enthält einen Existenzsatz. In § 5 untersuchen wir die Eigenschaften des Integrals im Falle, wo der Integrand stetig ist und unter dem Differentialzeichen eine Funktion von beschränkter Variation oder eine Funktion, welche die w-Eigenschaft hat, steht. Schliesslich, führen wir in § 6 ein Radonsches Integral ein, mit dessen Hilfe wir die Sätze von Fichtenholz-Kantorowitsch und Riesz verallgemeinern. Diese Sätze geben die allgemeine Form eines linearen Funktionals im Raume beschränkter messbarer Funktionen bzw. im Raume stetiger Funktionen.

§ 1. Betrachten wir einen linearen normierten Raum $X=\{x\}$ und einen vollständigen linearen normierten Raum $Z=\{z\}$. Die linearen Operationen z=y(x) bilden ebenfalls einen linearen normierten Raum $Y=\{y\}^2$). Jedem Paar von Punkten $x \in X$ und $y \in Y$ ist ein Punkt $z \in Z$, nämlich der Punkt z=y(x), zugeordnet. Wir erklären den Punkt z als Produkt der Punkten x und y und bezeichnen dies mit $z=y\cdot x=x\cdot y$.

Aus der Definition des Produktes folgt unmittelbar:

- 1) $a(x \cdot y) = ax \cdot y = x \cdot ay$, wo a eine reelle Zahl ist.
- 2) $y \cdot (x_1 + x_2) = y \cdot x_1 + y \cdot x_2$, $x \cdot (y_1 + y_2) = x \cdot y_1 + x \cdot y_2$.
- 3) $||x \cdot y|| \leq ||x|| \cdot ||y||$.

Wir können den Raum Y durch einen beliebigen linearen Raum $Y_1 \subset Y$ ersetzen, ohne im weiteren irgendwas wesentlich zu verändern. Hieraus sehen wir, dass die Rolle der Räume X und Y ganz symmetrisch ist.

§ 2. 1º Nachdem der Begriff einer abstrakten Funktion wie oben definiert worden ist, setzen wir voraus, dass das Argument t ein Intervall [a, b] durchläuft und der Raum X linear und normiert ist. Die Definition einer stetigen Funktion ist klar. Die Funktion x(t) heisst endlichwertig, wenn sie die Form

$$x(t) = \sum_{i=1}^{n} x_i \, \varphi_{e_i}(t)$$

hat, wo e_l disjunkte messbare Mengen sind, die eine Zerlegung des Intervalls [a, b] bilden, und $\varphi_e(t)$ die charakteristische Funktion der Menge e ist.

Die Funktion x(t) heisst messbar³), wenn sie fast überall eine Grenzfunktion einer Folge von endlichwertigen Funktionen $x_n(t)$ ist. Wir nennen eine beschränkte messbare Funktion totalmessbar, wenn sie eine Grenzfunktion einer gleichmässig konvergenten Folge von endlichwertigen Funktionen $x_n(t)$ ist. Es ist leicht folgenden Satz zu beweisen:

Eine messbare Funktion x(t) [$a \le t \le b$] ist totalmessbar dann und nur dann, wenn ihre Werte eine in X kompakte Menge bilden.

¹⁾ S. Bochner, Fund. Math., 20 (1933), pp. 262—280; N. Dunford, Trans. Amer. Math. Soc., 37 (1934), pp. 441—453; G. Birkhoff, ibid., t. 38 (1935), pp. 357—378; Gelfand, Über die stetigen und totalstetigen Operationen (russisch), Dissertation, Moskau 1935.

²⁾ S. Banach, Théorie des opérations linéaires, Monografje Matematyczne, Warszawa 1932.

³⁾ S. Bochner, l. c.

Die Funktion x(t) hat beschränkte Variation 4), falls eine Zahl M>0 existiert, so dass für jede Unterteilung des Intervalls [a,b]:

$$(1) a=t_0 < t_1 < ... < t_l < t_{l+1} < ... < t_n = b$$

die Ungleichung

$$\sum_{i=0}^{n-1} ||x(t_{i+1}) - x(t_i)|| \leqslant M$$

gilt. Die kleinste unter solchen Zahlen M wird Variation der Funktion x(t) im Intervall [a, b] genannt und mit Var x(t) bezeichnet.

Die Funktion x(t) ist absolutstetig³), falls für jedes $\varepsilon > 0$ ein $\delta > 0$ existiert, so dass für jedes endliche System von disjunkten Intervallen $\{[t_i, s_i]\}_{i=1,2,...,n}$, für welches $\sum_{i=1}^{n} (s_i - t_i) < \delta$ ist, die Ungleichung gilt

$$\sum_{i=1}^n ||x(s_i) - x(t_i)|| < \varepsilon.$$

Eine Reihe von Theoremen der reellen Analysis ist auch für abstrakte Funktionen gültig. So hat eine Funktion von beschränkter Variation in jedem Punkte die Grenzwerte von rechts und links; die Menge ihrer Unstetigkeitspunkte ist abzählbar. Daraus folgt, dass eine Funktion von beschränkter Variation eine Summe von einer stetigen Funktion und einer Sprungfunktion, folglich eine messbare Funktion ist.

2º Bochner³) hat für messbare Funktionen x(t), für welche das reelle Integral $\int_a^b \|x(t)\| dt$ existiert, ein Lebesguesches Integral $\int_a^b x(t) dt$ definiert (wobei immer $\left\|\int_a^b x(t) dt\right\| \leqslant \int_a^b \|x(t)\| dt$ ist) und hat gezeigt, dass das unbestimmte Integral $\int_a^b x(t) dt$ eine absolutstetige Funktion seiner oberen Grenze ist.

Man kann den gewöhnlichen Satz über die Variation des unbestimmten Integrals beweisen:

Falls
$$\xi(t) = \int_a^t x(t) dt$$
, so ist $\operatorname{Var}_a \xi(t) = \int_a^b \|x(t)\| dt$.

30 Kehren wir nun zu den Räumen X, Y, Z zurück, die wir in §1 betrachtet haben. Wir sagen, dass eine Funktion y(t) [$a \le t \le b$; $y(t) \in Y$] die w-Eigenschaft besitzt, falls eine Zahl M > 0 existiert, so dass für jede Zerlegung (1) und für beliebig gewählte Punkte $x_i \in X$ (i=0, 1, 2, ..., n-1) die Ungleichung

$$\|\sum_{l=0}^{n-1} x_l \cdot [y(t_{l+1}) - y(t_l)]\| \le M \cdot \max_i \|x_i\|$$

erfüllt ist. Die kleinste unter solchen Zahlen M bezeichnen wir mit $\overset{b}{\mathbf{W}}y(t)$. Folgende Eigenschaften der Zahlen $\overset{b}{\mathbf{W}}y(t)$ sind dabei zu merken: ist a < c < b, so ist

$$\overset{c}{\underset{a}{\mathbb{W}}}y(t) \leqslant \overset{b}{\underset{a}{\mathbb{W}}}y(t) \leqslant \overset{c}{\underset{a}{\mathbb{W}}}y(t) + \overset{b}{\underset{c}{\mathbb{W}}}y(t), \qquad \overset{b}{\underset{c}{\mathbb{W}}}y(t) \leqslant \overset{b}{\underset{a}{\mathbb{W}}}y(t).$$

Es ist leicht zu sehen, dass jede Funktion y(t) von beschränkter Variation die w-Eigenschaft hat und es gilt:

$$\underset{a}{\overset{b}{\mathrm{W}}}y(t) \leqslant \underset{a}{\overset{b}{\mathrm{Var}}}y(t).$$

Ist Z der Raum der reellen Zahlen, so stimmt die w-Eigenschaft mit der Beschränktheit der Variation überein und es gilt ebenfalls:

$$\overset{b}{\underset{a}{\text{W}}} y(t) = \overset{b}{\underset{a}{\text{Var}}} y(t).$$

Im Allgemeinen aber brauchen die beiden Begriffe nicht äquivalent zu sein. Es sei z. B. M der Raum der beschränkten messbaren reellen Funktionen x=f(s) $[a \le s \le 1]$ und, wie üblich,

$$||x|| = \sup_{0 \le s \le 1} |f(s)|.$$

Wir setzen X=Y=Z=M und verstehen unter Produkt $x\cdot y$ dasjenige Element z=f(s), welches das gewöhnliche Produkt der Funktionen $f_1(s)=x$ und $f_2(s)=y$ ist. Wir definieren die Funktion y(t) $[0\leqslant t\leqslant 1]$ in folgender Weise:

$$y(t) = f_t(s) = \begin{cases} 0 & \text{für } s < t \\ 1 & \text{für } s \ge t. \end{cases}$$

Ist $t' \neq t''$, so ist ||y(t') - y(t'')|| = 1. Daraus folgt, dass die Variation von y(t) unbeschränkt ist. Aber die w-Eigenschaft ist für y(t) vorhanden und es gilt $\sqrt[1]{y(t)} = 1$.

⁴⁾ Gelfand, l. c.

4º Ausser den Funktionen, die von einem reellen Argument abhängen, können wir auch Funktionen betrachten, deren Argument eine messbare in E=[a,b] liegende Menge e ist. Wir wollen uns nur mit den additiven Mengenfunktionen befassen, d. h. mit den Funktionen x(e), für welche $x(e_1+e_2)=x(e_1)+x(e_2)$, wenn $e_1 \cdot e_2=0$, gilt.

Die Mengenfunktion x(e) wird dann als von beschränkter Variation erklärt, wenn alle Summen

$$\sum_{i=1}^{n} \|x(e_i)\| \quad [e_i \text{ messbar} \subset E; \quad E = \sum_{i=1}^{n} e_i; \quad e_i \cdot e_j = 0; \quad i \neq j]$$

durch eine Konstante beschränkt sind. Die kleinste unter solchen Konstanten M nennt man Variation von x(e) und bezeichnet mit Var x(e).

Führen wir wieder die Räume X, Y, Z ein, so sagen wir, dass die Mengenfunktion y(e) $[y(e) \in Y]$ die w-Eigenschaft besitzt, wenn eine Zahl M>0 existiert, derart dass für jede Zerlegung des Intervalls E:

$$E = \sum_{i=1}^{n} e_i \qquad [e_i \cdot e_j = 0; \quad i \neq j]$$

und für beliebige Wahl von n Punkten $x_i \in X$ (i=1, 2, ..., n) die Ungleichung

$$\|\sum_{i=1}^n x_i \cdot y(e_i)\| \leqslant M \cdot \max_i \|x_i\|$$

gilt. Die kleinste unter solchen Zahlen M bezeichnen wir mit $\underset{E}{\mathbf{W}}y(t)$. Die Zahlen $\underset{E}{\mathbf{W}}y(t)$ haben folgende Eigenschaft:

$$\underset{e}{\mathbf{W}} y(t) \leqslant \underset{E}{\mathbf{W}} y(t) \leqslant \underset{e}{\mathbf{W}} y(t) + \underset{E-e}{\mathbf{W}} y(t)$$
 (e \subset E).

Die Beziehung der Beschränktheit der Variation zu der w-Eigenschaft ist dieselbe, wie für Funktionen mit einem reellem Argument.

§ 3. Es seien im Intervall E=[a, b] zwei Funktionen x(t) und y(t) gegeben, deren Werte in X bzw. in Y liegen (§ 1). Nehmen wir eine beliebige Unterteilung des Intervalls E

$$(1) a=t_0 < t_1 < ... < t_i < t_{i+1} < ... < t_n = b,$$

wählen die Punkte au_l :
und bilden die Summe $t_l \leqslant au_l \leqslant t_{l+1}$

(2)
$$\sum_{l=1}^{n-1} w(\tau_l) \cdot [y(t_{l+1}) - y(t_l)].$$

Falls eine beliebige Folge von Summen der Art (2) gegen einen bestimmten Grenzwert strebt, wenn $\max_i (t_{i+1} - t_i) \to 0$, so bezeichnet man diesen Grenzwert mit dem Symbol $\int_a^b x(t) \cdot dy(t)$ und nennt es das Stieltjessche Integral der Funktion x(t) nach der Funktion y(t).

Für die von uns definierten Integrale gelten viele Eigenschaften der gewöhnlichen Stieltjesschen Integrale:

- a) Existiert das Integral $\int_a^b x(t) \cdot dy(t)$, so sind die Summen (2) beschränkt.
- b) Die beiden Integrale $\int_a^b x(t) \cdot dy(t)$ und $\int_a^b y(t) \cdot dx(t)$ existieren nur gleichzeitig und es gilt die Formel $\int_a^b x(t) \cdot dy(t) + \int_a^b y(t) \cdot dx(t) = x(b) \cdot y(b) x(a) \cdot y(a).$

c) Falls
$$x(t)$$
 konstant ist, $x(t) = x_0$, so gilt
$$\int_a^b x(t) \cdot dy(t) = \int_a^b x_0 \cdot dy(t) = x_0 \cdot [y(b) - y(a)].$$

d) Hat x(t) (bzw. y(t)) die Form $x(t)=x_0\varphi(t)$ (bzw. $y(t)=y_0\psi(t)$), wo $\varphi(t)$ (bzw. $\psi(t)$) reell ist, und existieren die Integrale $\int_a^b x_0\varphi(t)\cdot dy(t) \text{ und } \int_a^b \varphi(t)\cdot dy(t) \left(bzw. \int_a^b x(t)\cdot dy_0\psi(t) \text{ und } \int_a^b x(t)d\psi(t)\right),$ so gilt $\int_a^b x(t)\cdot dy(t) = \int_a^b x_0\varphi(t)\cdot dy(t) = x_0\cdot \int_a^b \varphi(t)\, dy(t)$

$$\left(bzw. \int_{u}^{b} x(t) \cdot dy(t) = \int_{u}^{b} x(t) \cdot dy_{0} \psi(t) = y_{0} \cdot \int_{u}^{b} x(t) d\psi(t)\right).$$

Es ist klar, in welchem Sinn die Integrale $\int x \, d\psi$ und $\int \varphi \, dy$ zu verstehen sind: die Multiplikation mit einer reellen Zahl ist nämlich eine lineare Operation, die einen Raum in sich selbst überführt.

e)
$$\int_a^b x \, \varphi(t) \cdot dy(t) = \int_a^b \varphi(t) \, d[x \cdot y(t)], \qquad \int_a^b x(t) \cdot dy \, \psi(t) = \int_a^b [y \cdot x(t)] \, d\psi(t).$$

f) Existiert das Integral \int_a^b , so existieren auch die Integrale \int_a^c und \int_c^b (a < c < b) und es gilt die Gleichung $\int_a^b = \int_a^c + \int_c^b$.

$$\mathbf{g}) \quad \int_{a}^{b} x_{1}(t) \cdot dy(t) + \int_{a}^{b} x_{2}(t) \cdot dy(t) = \int_{a}^{b} [x_{1}(t) + x_{2}(t)] \cdot dy(t),$$

$$\int_{a}^{b} x(t) \cdot dy_{1}(t) + \int_{a}^{b} x(t) \cdot dy_{2}(t) = \int_{a}^{b} x(t) \cdot d[y_{1}(t) + y_{2}(t)].$$

§ 4. Man kann ohne Mühe beweisen, dass wenn x(t) stetig ist und y(t) die w-Eigenschaft besitzt, so existiert das Integral $\int_{-\infty}^{b} x(t) \cdot dy(t)$.

Für die reellen Stieltjesschen Integrale gilt folgender Satz: Existiert das Integral $\int_a^b f(t)\,dg(t)$ für jede stetige Funktion f(t), so hat die Funktion g(t) beschränkte Variationen. Einen analogen Satz können wir für abstrakte Stieltjessche Integrale beweisen:

Falls das Integral $\int_a^b x(t) \cdot dy(t)$ für jede stetige Funktion x(t) existiert, so hat y(t) die w-Eigenschaft.

Beweis: Lassen wir zu, dass für die Funktion y(t) die w-Eigenschaft nicht gilt, trotzdem das Integral

$$\int_{a}^{b} x(t) \cdot dy(t)$$

für jede stetige Funktion x(t) existiert. Nach dem bekannten Borelschen Satz existiert ein Punkt τ $(a \leqslant r \leqslant b)$, so dass y(t) in

keiner Umgebung von τ die w-Eigenschaft besitzt. Ohne Beschränkung der Allgemeinheit können wir voraussetzen, dass $\tau=a$ und y(a)=0 ist.

Die Funktion y(t) ist offenbar beschränkt: $||y(t)|| \le K$. Wählen wir eine Unterteilung $a = t_0^{(1)} < t_1^{(1)} < ... < t_{n_i}^{(1)} = b$ und ein System von Punkten $x_i^{(1)} \in X$ $(i=0,1,2,...,n_1-1; ||x_i^{(1)}|| \le 1)$ derart, dass die Ungleichung

$$\|\sum_{i=0}^{n_i-1} x_i^{(1)} \cdot [y(t_{i+1}^{(1)}) - y(t_i^{(1)})]\| > 2K$$

erfüllt sei. Daraus folgt die Ungleichung

$$\|\sum_{l=1}^{n-1} x_l^{(1)} \cdot [y(t_{l+1}^{(1)}) - y(t_l^{(1)})]\| > K.$$

Wir definieren jetzt im Intervall $[t_1^{(1)}, b]$ eine Funktion $\bar{x}(t)$, indem wir setzen:

$$x(t_l^{(1)}) = x_l^{(1)}$$
 $(i=1, 2, ..., n_1-1),$ $\bar{x}(b)=0$

und sie in den Intervallen $(t_i^{(1)}, t_{i+1}^{(1)})$ $(i=1, 2, ..., n_1-1)$ als linear voraussetzen. Das Intervall $[a, t_1^{(1)}]$ können wir durch die Punkte $t_i^{(2)}$ $(i=1, 2, ..., n_2; t_{n_2}^{(2)} = t_1^{(1)})$ so zerlegen, dass für eine entsprechende Wahl der Punkte $x_i^{(2)}$ $(i=0, 1, ..., n_2-1; ||x_i^{(2)}|| \leq \frac{1}{2})$

$$\| \sum_{l=0}^{n_s-1} \!\! x_l^{(2)} \cdot [y(t_{l+1}^{(2)}) - y(t_l^{(2)})] \| \!\!\! > \!\! 3K \quad \text{ und } \quad \| \sum_{l=1}^{n_s-1} \!\! x_l^{(2)} \cdot [y(t_{l+1}^{(2)}) - y(t_l^{(2)})] \| \!\!\! > \!\!\! 2K$$

gelte. Wir definieren die Funktion $\bar{x}(t)$ im Intervall $[t_1^{(2)}, t_1^{(1)}]$, indem wir setzen

$$x(t_i^{(2)})=x_i^{(2)}$$
 (i=1, 2, ..., n_2 —1),

und sie in den Intervallen $(t_i^{(2)}, t_{i+1}^{(2)})$ $(i=1, 2, ..., n_2-1)$ als linear annehmen.

Wir setzen diesen Prozess weiter fort. Nach k Schritten haben wir die Funktion $\bar{x}(t)$ im Intervalle $[t_1^{(k)}, b]$ definiert, wobei das Intervall $[t_1^{(k)}, t_1^{(k-1)}]$ eine Unterteilung $t_1^{(k)} < t_2^{(k)} < ... < t_{n_k}^{(k)} = t_1^{(k-1)}$ zulässt, für welche die Ungleichung gilt:

$$\|\sum_{l=1}^{n_k-1} \bar{x}(t_l^{(k)}) \cdot [y(t_{l+1}^{(k)}) - y(t_l^{(k)})\| > kK \quad \text{mit} \quad \|\bar{x}(t)\| \leqslant \frac{1}{2^{k-2}} \quad (t_1^{(k)} \leqslant t \leqslant t_1^{(k-1)}).$$

Es sei $t_0 = \lim_h t_1^{(h)}$. Setzen wir noch $\bar{x}(t) = 0$ für $a \le t \le t_0$, so ist die Funktion $\bar{x}(t)$ im ganzen Intervall [a, b] definiert und stetig. Das Interval $\int_a^b \bar{x}(t) \, dy(t)$ existiert aber entgegen unserer Voraussetzung nicht, denn die zugehörigen Summen (2) nach der Norm beliebig gross sind.

§ 5. Jetzt wollen wir die Eigenschaften des Integrals $\int_{a}^{x} x(t) \cdot dy(t)$ im Falle untersuchen, wenn x(t) stetig ist und y(t) die w-Eigenschaft besitzt oder von beschränkter Variation ist. Es gelten folgende Sätze:

a) Hat y(t) die w-Eigenschaft, so ist $\left\|\int\limits_{a}^{b}x(t)\cdot dy(t)\right\| \leqslant \sup_{a\leq t\leq b}\left\|x(t)\right\|\cdot \bigvee_{a}^{b}y(t).$

b) Ist y(t) von beschränkter Variation, so ist $\left\| \int_{a}^{b} x(t) \cdot dy(t) \right\| \leq \int_{a}^{b} \|x(t)\| \, d_{t} \operatorname{Var}_{a} y(t) \leq \sup_{a \leq t \leq b} \|x(t)\| \cdot \operatorname{Var}_{a} y(t).$

e) Hat die Funktion y(t) die Form $y(t) = \int_{-t}^{t} \eta(t) dt$, so ist

$$\int_{a}^{b} x(t) \cdot dy(t) = \int_{a}^{b} x(t) \cdot \eta(t) dt,$$

wobei die Integrale $\int \eta$ und $\int x \cdot \eta$ im Sinne von Bochner zu verstehen sind.

Beweis: Sei $a=t_0 < t_1 < ... < t_i < t_{i+1} < ... < t_n = b$ eine beliebige Unterteilung des Intervalls [a, b] und wählen wir die Punkte τ_i $(t_i \leqslant \tau_i \leqslant t_{i+1})$. Die Funktion $x(t) \cdot \eta(t)$ ist messbar und integrierbar. Wir haben

$$\int_{a}^{b} x(t) \cdot \eta(t) dt = \sum_{i=0}^{n-1} \int_{t_{l}}^{t_{l+1}} x(t) \cdot \eta(t) dt =$$

$$= \sum_{i=0}^{n-1} \int_{t_{l}}^{t_{l+1}} [x(t) - x(\tau_{l})] \cdot \eta(t) dt + \sum_{i=0}^{n-1} \int_{t_{l}}^{t_{l+1}} x(\tau_{l}) \cdot \eta(t) dt =$$

$$= \sum_{i=0}^{n-1} \int_{t_{l}}^{t_{l+1}} [x(t) - x(\tau_{l})] \cdot \eta(t) dt + \sum_{i=0}^{n-1} x(\tau_{l}) \cdot [y(t_{l+1}) - y(t_{l})].$$

Die erste Summe konvergiert gegen Null und die zweite gegen das Integral $\int_a^b x(t) \cdot dy(t)$, wenn $\max_i (t_{i+1} - t_i)$ gegen Null konvergiert.

d) Das Integral $\int_{a}^{b} x(t) \cdot dy(t)$ verschwindet für jede stetige Funktion x(t) und eine fixierte Funktion von beschränkter variation y(t) dann und nur dann, wenn y(t) von einer Konstanten y_0 nur auf einer abzählbaren Menge von Punkten $\{t_i\}$ $(t_i \neq a, b)$ abweicht und wenn die Reihe $\sum_{i=1}^{\infty} ||y(t_i) - y_0||$ konvergiert 5).

Beweis: Ohne Beschränkung der Allgemeinheit können wir y(a)=0 setzen. Es sei $x(t)=x_0$. Dann ist

$$\int_{a}^{b} x_{0} \cdot dy(t) = x_{0} \cdot y(b) = 0.$$

Da x_0 beliebig ist, so muss auch y(b) verschwinden. Setzen wir jetzt

$$x_{\tau}(t) = \begin{cases} x_0 t & \text{für } a \leqslant t \leqslant \tau \\ x_0 \tau & \text{für } \tau < t \leqslant b, \end{cases}$$

so erhalten wir

$$\int_a^b x_{\scriptscriptstyle \rm I}(t) \cdot dy(t) = - \int_a^b y(t) \cdot dx_{\scriptscriptstyle \rm I}(t) = - \int_a^{\scriptscriptstyle \rm I} y(t) \cdot dx_{\scriptscriptstyle \rm I}(t) = - x_0 \cdot \int_a^{\scriptscriptstyle \rm I} y(t) dt.$$

Infolgedessen muss $\int_a^b y(t) dt$ verschwinden und die Funktion y(t) verschwindet auch fast überall. Daraus folgt d) unmittelbar.

e) Konvergiert eine Folge von stetigen gleichmässig beschränkten Funktionen $w_k(t)$ gegen eine stetige Funktion w(t) und ist y(t) eine beliebige Funktion von beschränkter Variation, so gilt

$$\int_a^b x_k(t) dy(t) \to \int_a^b x(t) \cdot dy(t).$$

Beweis: $\left\|\int_a^b [x(t)-x_k(t)]\cdot dy(t)\right\| \leqslant \int_a^b \|x(t)-x_k(t)\|\cdot dt \bigvee_a^t y(t) \to 0.$

⁵) In diesem Satze können wir nicht ohne weitere Voraussetzungen die Rolle der Räume X und Y vertauschen. Für den Beweis ist notwendig, dass für jedes $0 + x \in X$ ein $y \in Y$ existiert mit $y \cdot x \neq 0$.

f) Konvergiert eine Folge von Funktionen $y_k(t)$ mit der w-Eigenschaft gegen eine Funktion y(t) und ist $\overset{b}{\nabla} y_k(t) \leq M$ (k=1, 2, ...), so gilt für eine beliebige stetige Funktion x(t)

$$\int_{a}^{b} x(t) \cdot dy_{k}(t) \rightarrow \int_{a}^{b} x(t) \cdot dy(t).$$

$$\left\| \int_{a}^{b} x(t) \cdot dy_{k}(t) - \sum_{i=0}^{n-1} x(t_{i}) \cdot \left[y_{k}(t_{i+1}) - y_{k}(t_{i}) \right] \right\| \leqslant \varepsilon M,$$

$$\left\| \int_{a}^{b} x(t) \cdot dy_{k}(t) - \sum_{i=0}^{n-1} x(t_{i}) \cdot \left[y_{k}(t_{i+1}) - y_{k}(t_{i}) \right] \right\| \leqslant \varepsilon M$$

gelten. Für hinreichend grosse k wird $||y_k(t_l)-y(t_l)|| < \frac{\varepsilon}{n}$ (i=0,1,...,n) sein. Dann ist:

$$\begin{split} & \left\| \int\limits_{a}^{b} x(t) \cdot dy_{k}(t) - \int\limits_{a}^{b} x(t) \cdot dy(t) \right\| \leqslant \\ & \left\| \sum\limits_{i=0}^{n-1} x(t_{i}) \cdot \left\{ \left[y_{k}(t_{i+1}) - y(t_{i+1}) \right] - \left[y_{k}(t_{i}) - y(t_{i}) \right] \right\} \right\| + 2\varepsilon M \leqslant \\ & \leqslant 2\varepsilon (M + \sup_{a \leqslant t \leqslant b} \|x(t)\|). \end{split}$$

§ 6. 1° Wir haben früher ein Stieltjessches Integral für abstrakte Funktionen definiert. Jetzt definieren wir ein Radonsches Integral $\int_a^b x(t) \cdot y(dE)$, wo E das Intervall [a, b], x(t) eine totalmessbare Funktion und y(e) $[e \subset E]$ eine additive Funktion mit der w-Eigenschaft einer messbaren Untermenge e von E ist. Dieses Integral definieren wir folgendermassen:

Ist x(t) endlichwertig, $x(t) = \sum_{i=1}^{n} x_i \varphi_{e_i}(t)$, so setzen wir $\int_{E} x(t) \cdot y(dE) = \sum_{i=1}^{n} x_i \cdot y(e_i).$

Jede totalmessbare Funktion x(t) ist eine Grenzfunktion einer gleichmässig konvergenten Folge der endlichwertigen Funktionen $x_n(t)$. Da y(e) die w-Eigenschaft besitzt, muss der invariante Grenzwert $\lim_{n \to \infty} \int_{E} x_n(t) \cdot y(dE)$ existieren und wir setzen

$$\int_{E} x(t) \cdot y(dE) = \lim_{n} \int_{E} x_{n}(t) \cdot y(dE).$$

Man beweist leicht folgende einfachste Eigenschaften:

a) Ist f(t) eine reelle messbare Funktion, so gilt

$$\int_{E} x_{\mathbf{0}} f(t) \cdot y(dE) = \int_{E} f(t) [x_{\mathbf{0}} \cdot y(dE)].$$

b) $\left\| \int_E x(t) \cdot y(dE) \right\| \leqslant \sup_{t \in E} \|x(t)\| \cdot \bigvee_E y(e).$

c) Konvergiert die Folge von totalmessbaren Funktionen $x_n(t)$ gleichmässig gegen x(t), so ist

$$\int_{E} x_n(t) \cdot y(dE) \longrightarrow \int_{E} x(t) \cdot y(dE).$$

 2^0 Wir wollen den Raum M_X aller totalmessbarer Funktionen $\eta(t)$ betrachten, die in E=[a,b] definiert sind und deren Werte in X liegen. Wir setzen

$$\|\eta\|=\sup_{t\in E}\|\eta(t)\|.$$

Die allgemeine Form eines linearen Funktionals im Raume $M = \langle f(t) \rangle$ der reellen messbaren Funktionen ist durch das Radonsche Integral gegeben ⁶):

$$F(t) = \int_{E} f(t) \cdot \Phi(dE),$$

wo $\Phi(e)$ eine additive und beschränkte, folglich eine Funktion von beschränkter Variation ist. Wir geben als eine Verallgemeinerung den

Satz. Die allgemeine Form einer linearen Operation, die M_X in einen vollständigen linearen normierten Raum Z überführt, ist durch das Integral

$$U(\eta) = \int_{E} \eta(t) \cdot (dE)$$

⁶⁾ G. Fichtenholz und L. Kantorowitch, Studia Mathematica 5 (1935), pp. 69-98.

gegeben. y(e) ist eine additive Funktion, die die w-Eigenschaft besitzt, deren werte im Raume Y der linearen X in Z überführenden Operationen liegen. Dabei ist

$$||U|| = \underset{E}{\mathbf{W}} y(e).$$

Beweis: Es sei eine lineare Operation $U(\eta)$ gegeben. Wir wollen die Menge \mathfrak{M}_e der Funktionen $\eta(t)$ betrachten von der Gestalt

$$\eta(t) = x \, q_e(t),$$

wo $\varphi_e(t)$ die charakteristische Funktion der messbaren Menge e ist \mathfrak{M}_e können wir als einen Raum betrachten, der zu X linearisometrisch ist. Dann haben wir für $\eta(t) = x \varphi_e(t)$

$$U(\eta) = y(e) \cdot x$$

wo $y(e) \in Y$. Es sei y(e) bereits für alle messbaren Mengen e definiert. Es ist leicht zu ersehen, dass y(e) eine additive Funktion von e ist. Wir wollen beweisen, dass y(e) die w-Eigenschaft besitzt.

Betrachten wir eine beliebige Zerlegung $E = \sum_{i=1}^{n} e_i$ $(e_i \cdot e_j = 0, i \neq j)$ von E und ein beliebiges System $x_i \in X$ (i=1, 2, ..., n). Dann ist.

$$\|\sum_{i=1}^{n} x_{i} \cdot y(e_{i})\| = \|\sum_{i=1}^{n} U(x_{i} \varphi_{e_{i}})\| = \|U(\sum_{i=1}^{n} x_{i} \varphi_{e_{i}})\| \le \|U\| \sup \|x_{i}\|.$$

Daraus folgt, dass

$$\underset{E}{\mathbf{W}}y(e)\leqslant \|\overline{U}\|$$

ist. Die Gleichung $U(\eta) = \int\limits_{E} \eta(t) \cdot y \, (dE)$ folgt unmittelbar aus der Definition des Radonschen Integrals.

Es sei andererseits eine Funktion y(e) gegeben, die additiv ist und w-Eigenschaft besitzt. Das Integral $U(\eta) = \int_E \eta(t) \cdot y(dE)$ gibt eine additive Operation, die M_X in Z überführt. Die Ungleichung

$$||U(\eta)|| = \left| \int_{E} \eta(t) \cdot y(dE) \right| \le ||\eta|| \underset{E}{\mathbf{W}} y(e)$$

vollendet den Beweis.

3º Jetzt wollen wir den Raum $C_X = \{\xi(t)\}\ [a \le t \le b]$ von stetigen Funktionen, deren Werte in X liegen, betrachten und setzen

$$\|\xi\| = \sup_{a \leq t \leq b} \|\xi(t)\|.$$

Folgender Satz gibt eine Verallgemeinerung des bekannten Satzes von F. Riesz über die allgemeine Form eines linearen Funktionals im Raume C der reellen stetigen Funktionen.

Satz. Die allgemeine Form eines linearen Funktionals im Raume C_X ist durch das Stieltjessche Integral gegeben:

$$F(\xi) = \int\limits_a^b \!\!\!\! \xi(t) \cdot dar{y}(t),$$

wo $\overline{y}(t)$ eine Funktion von beschränkter Variation ist, deren Werte im Raume Y der in X linearen Funktionale liegen.

Beweis: Es sei in C_X ein lineares Funktional $F(\xi)$ gegeben. Wir können es, ohne seine Norm zu vergrössern, auf den ganzen Raum M_X fortsetzen. Dann wird für $\eta \in M_X$

$$F(\eta) = \int_{E} \eta(t) \cdot y(dE),$$

wo y(e) eine Mengenfunktion von beschränkter Variation ist. (Wir benützen den Umstand, dass die w-Eigenschaft und die Beschränktheit der Variation übereinstimmen, falls Z der Raum der reellen Zahlen ist). Wir setzen $\overline{y}(a) = 0$ und $\overline{y}(t) = y([a, b])$ für $a \leqslant t \leqslant b$.

Es ist evident, dass $\operatorname{Var}_a \overline{y}(t) \leq \operatorname{Var}_B \overline{y}(e) = ||F||$. Falls $\xi(t)$ die Form $\xi(t) = xf(t)$ hat, wo f(t) eine reelle stetige Funktion ist, so gilt

$$\int_{E} x f(t) \cdot y(dE) = \int_{E} f(t) (y(dE) \cdot x) = \int_{a}^{b} f(t) d(\overline{y}(t) \cdot x) = \int_{a}^{b} x f(t) \cdot d\overline{y}(t).$$

Da die Menge der linearen Kombinationen von solchen einfachsten Funktionen in C_X überall dicht ist, haben wir für jedes $\xi \in C_X$

$$F(\xi) = \int\limits_{E} \xi(t) \cdot y(dE) = \int\limits_{a}^{b} \xi(t) \cdot dy(t).$$

M. Gowurin.

268

icm

Andererseits, ist eine Funktion von beschränkter Variation $\overline{y}(t)$ gegeben, so stellt das Integral

$$F(\xi) = \int\limits_a^b \xi(t) \cdot d\overline{y}(t)$$

ein lineares Funktional in C_X dar. Es ist

$$|F(\xi)| = \Bigl|\int\limits_a^b \xi(t) \cdot d\overline{y}(t)\Bigr| \leqslant \|\xi\| \operatorname{Var}_a^b \overline{y}(t) \qquad ext{ und } \qquad \|F\| \leqslant \operatorname{Var}_a^b \overline{y}(t).$$

Wird $\bar{y}(t)$ so gewählt (vgl. § 5 d), dass ihre Variation möglichst klein sei, so wird $\|F\| = \bigvee_{a}^{b} \bar{y}(t)$.

Institut für Mathematik und Mechanik der Leningrad Bubnow's Staatsuniversität. Les ensembles projectifs et l'induction transfinie 1).

Par

Casimir Kuratowski (Warszawa).

Je me propose de démontrer dans cette note que l'application de l'induction transfinie dans le domaine des ensembles projectifs ne conduit pas — dans des hypothèses très générales — en dehors de ce domaine. En particulier, on en déduira que la "surface de M. Lebesgue", dont la nature était jusqu'à présent inconnue, est un ensemble projectif ²).

Ce résultat, rapproché de ceux obtenus antérieurement avec M. Tarski³), met mieux en évidence — comme il me semble — le rôle fondamental de la notion d'ensemble projectif dans l'étude des ensembles (fonctions etc.) effectivement définissables.

1. Considérons d'abord, avec M. Lebesgue, le type d'ordre d'un élément de l'ensemble non dense C de Cantor 1. Imaginons à ce but tous les nombres rationnels rangés en une suite bien déterminée

(1)
$$r_1, r_2, r_3, \dots$$

et étant donné un élément t de l'ensemble de Cantor:

$$t = \frac{c_1}{3} + \frac{c_2}{9} + \frac{c_3}{27} + \dots$$
 où $c_i = 0$ ou 2,

¹⁾ Présenté à la Soc. Pol. de Math., Section de Varsovie, le 7. II. 1936.

²) Une esquisse de la démonstration se trouve dans ma note des C. R. Paris, t. 202, p. 1239. Le problème de la projectivité de la surface de M. Lebesgue a été posé par M. Lusin, qui s'en est occupé à plusieurs reprises (voir par ex. ses *Ensembles analytiques*, Paris 1930, p. 298 ss.).

³⁾ Fund. Math. 17 (1931), pp. 240-272. Cf. ma Topologie I (1933), § 34.

⁴⁾ Journal de Math. 1905 (chap. VIII).