'On derivates of functions of rectangles.
By
S. Saks (Warszawa),

1. In a very interesting paper published in thege »nFunda-
menta’“ 1) A. J. Ward has established a series of theorems on the
strong derivability of additive funections of rectangles. The prin-
cipal results of his paper are as follows:

Th. 1. If for an additive function F(I) we have

— o0 <@, ) SF*@, 9) < + 00

at each point (z,y) of a set E, then almost everywhere in ¥ the
function F(I) is strongly derivable, i. e.

Fa, y) = F*(, y) = F*(x, y).
Th.3. If —oo <F*(w,y)<<F*(w,y)<+oo at each point of E,

then F*(a,y) = Fu(,y) = Fu(®,y) almost everywhere in .

As immediate corollaries of his Theorems 1 and 2 Ward
mentions:

1. If at each point of E we have F*(w,y) > —oo, then
F*(@,y) = Fun(x,y) almost everywhere in K.

1) vol. 26 (1936), pp. 167—182.
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2. If F(I) is of bounded variation, then almost everywhere
either F*(z,y) =-—oo or F*(z,y) = Fu(z,vy) 2).

We congider only the rectangles with sides parallel to the axes. The rect-
angle whose lower left-hand and upper right-hand corners are the points (a, ¢)
and (b, d) respectively, will be denoted by [a,d;e, d]. Two rectangles are said
tobeoppositeatacorner p, if p is their common corner and if they have no
other points in common.

By the upper F*(x,y) and the lower F*x,y) strong derivates of
a function of rectangles F(I) at a point (z,y) we mean the upper and the lower
limits of?) F(I)/|I| where I is an arbitrary rectangle containing (z,y) of dia-
meter d(I) tending to 0. If the rectangles are replaced by squares these limits
are termed the upper F(z,y) and the lower F(x,y) derivates (inthe ordi-
nary sense). : -

If Ii(m,y)=_(w, y) the function F(I) is said to be derivable (in the or-
dinary sense) at (v,y) and we write F'(z,y)=F(2, y)=F(x.y). Finally, Fy(z,y)
and F(x, y) respectively are the upper and the lower limits of F(8)/|8] as d(S8)—0,
where S is any square containing the point (z,y) at one corner. These notations
slightly differ from those of Ward.

2. In this paper we attempt to give a generalization of the
theorems stated in the preceding section. The proof given below
actually rests on the idea due to Ward; it seems, however, to be
slightly simpler than the latter’s original argument.

Lemma. If p is a density point of a measurable set P and >0,
then for amy sufficiently small square 8 containing p there exists a
square 8* such that (i) SC 8%, (i) A(8*)<(14-¢)-d(8), (iii) all corners
of 8* are points of P.

Proof. Let § be any square containing p and let gy, gy g,
and g, be the corners of S.Denote by 8, S,,.S; and 8, four equal
squares of diameter 4e-.d(S), opposite to S at the corners ¢,
42 45 and g, respectively. Since p is a density point of P, it is readily

) This theorem was established by Besicovitch (these Fundamenta,,. 25
(1935), pp, 209—216) for the case when F(I) is an indefinite Lebesgue integ;al i.e.
an absolutely continuous function. Ward actually assumes less than the bounded
variation of F(I) and in his proof uses the fact only that F (2, y)=Fu(®, y) almost
everywhere. As it follows from the theorem of § 3 of this paper the result holds
for any additive fanction of rectangles and the derivative Fy(z,y) may be re-
placed by the ordinary derivative F'(z, y).

8) If A is a point set, |A] denotes its outer measure.
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seen that there exists an >0 guch that
(2.1) 81— 8- Pl <18 for i=1,2,3,4 whenever d(8)<<y.

Let @, @3 and ¢, denote the parallel translations carrying the
squares 8, 3 and 8, respectively into §;. On supposing d(8) <1,
in virtue of (2.1) we have |8,—8,- P|<}|8,] and | 8,—@i(8;- P)| < 1|8,
for 1=2,3,4; thus the product of the four sets S,-P, (8, P), ®4(S5-P),
and ¢,(8,-P) is not empty, indeed of positive measure. Let a, be
an arbitrary point of that product, and let a,, a; and a, denote
the points which are carried into @, under the translations Tay P;
and @, respectively. It is clear on a moment’s consideration that
ay Gy, a3 and a, are the corners of a square S* that satisfies con-
ditions (i) and (ii). Since a;eP-8; for i=1, 2, 3,4, it satisfies con-
dition (iii) also. Thus the lemma is proved.

8. Theoremn. If for any additive function of rectangles F(I)
there is F*(w,y) > —oo at each point of a set E, then almost every-

where on B the function F(I) is derivable (in the ordinary sense) and
F¥(w,y) = F'(x,y).

Proof. Suppose on the contrary that F(w, Y) > F*(2,y) >—o0

on a set 4 of positive outer measure. We can obviously assume
that F*(z,y) is bounded below on 4, and even, by adding an addi-

tive function M|I| to F(I), that F*(@,y4) >0 over 4. Hence, there
are a set B(C A of positive outer measure, a positive number o and
two numbers x and 4 such that ‘

(3.1) F(I)>0 whenever d(I)<o and I.B=0,

and that '

(82)  F(@,9)>p>2>F*w,9) >0 for (w,y) in B.

Let B denote the set of the outer density points of B, either

belonging, or not, to the set B. The set ¥ is apparently measurable

and is introduced to make the discussion of the measurability of B
superfluous. '

Now, let  be a positive number such that
(3.3) a<<l and u-(1—3a)> 2,
We shall first prove that
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(M) With any point p in B.Ba sequence of squares Sk may
be associated so that (i) all corners of any 8% belong to B, (ii) peS,
(iii) F(8%) >p-(1—2a)-|8%| and (iv) d(8%)—>0 as n—> co.

Indeed, in virtue of (3.2), there is a sequence of gsquares |S,}
such that '

(3.4) d(s,,><§, PeSu F(8,)>pu-[8, and d(8) 0.

In virtue of the lemma of § 2, on supposing all squares S, suffi-
ciently small, we can attach a square S* to any S, so as to
satisfy condition (i) in (M) and to have

(3.5) a(8y) <(1+a)-d(8.,) and 8,C S

Then it directly follows from (3.4) that 8% satisfy conditions
(ii) and (iv) in (M). In order to establish the remaining condition (iii),
subdivide the area S}—&8, into four rectangles, I{™, I 1% and
I, say, so that any of them should contain a corner of S

Hence, each of these rectangles containg a point of TB, and conse-
quently a point of B also. Thus, it results from (3.1) that
F(I,‘,"))>0 for k=1, 2,3,4, as by the first inequalities in (3.4) and
(3.5), respectively, the diameters of 8%, and consequently those of I3,

are less than o. Hence, by (3.5) and the third relation in (3.4),
we have

F(SYZF(8y) > - |8 > 1 - |83/(140)2 > p - (1—2a) - | 8%,

which is condition (iii) in (M).

Now, since almost all points of the set B are its density points
in the strong sense, it follows from (3.2) that there is a rectangle R
such that

(3.6) PF(R)<Ai-|R|, B-R|=|B-B-R|>(1—a)-|R, d(R)<o.
Hence, by (M) and by the well-known Vitali Lemma there exist

in R a finite set of not overlapping squares Ji,J5, ...,J, such that

3.7  J=(1—a)- R and FJw)=p-(1—2a)- |4
" for k=12, ..p,
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" the corners of each J, belonging to B. Further, as it is easily geen,
the area B—) J may be subdivided into a finite number of mnot
k

overlapping rectangles each of which contains one at least of the
corners of the squares 4) J,. Hence, each of them contains points
of B, and, consequently, of B. Since d(R)<o, it results from (3.1)
that the funection F(I) is positive for each of these rectangles, and
80, by (8.6) and (3.7) '

1B > F(B) > X P Zu- (1—20) (1—a) - |B| > 4 (1—3a) -|B].
This, however, is contradictory to (3.3) and concludes the proof.

4) This is directly obvious for the plane, but is not true for the space
as seen from a simple example kindly communicated to the author by Mr. O.
Nikodym. The problem whether the theorem itself holds for the space seems
to be open, and the same remark applies to the results of Besicovitch, L ¢.9).
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Ensembles dont les dimensions modulaires de
Alexandroff coincident avec la dimension
de Menger-Urysohn?).

Par
Karol Borsuk (Warszawa).

Dans la théorie homologique de la dimension, due 4 M. P.
Alexandroff?), on est conduit d'une maniére naturelle & con-
sidérer une infinité d’invariants topologiques qui méritent — au
moins du point de vue d’homologie — d’&tre appelés ,dimensions®
(modulaires). Toutes ces ,dimensions*, différentes pour les ensembles
compacts arbitraires, se montrent identique avec la dimension au
seny de Menger-Urysohn pour les ensembles dont la structure
topologique est peu compliquée (en particulier pour tous les po-
lyédres). Dans le domaine de ces derniers ensembles, la théorie de
la dimension prend une forme particulitrement simple, naturelle
et intuitive. Ainsi p. ex. se trouve réalisée pour ces ensembles ,,’hy-
pothése du produit” qui est en défaut — d’aprés M. L. Pontrjagin 3)—
dans le domaine des ensembles compacts arbitraires.

Le but de cette Note est de définir par des notions de la to-
pologie générale une classe d’ensembles (comprenant en particulier
tous les polyédres) pour lesquels toutes les dimensions modulaires
coincident avec la dimension au sens de Menger-Urysohn.

1) Les résultats principaux de cet ouvrage ont été signalés (sans démon.
strations rigoureuses) dans les C. R. 201 (1935), p. 1086—7, séance du 2 dé-
cembre et C. R. 202 (1936), p. 187—189, séance du 20 janvier.

2) Cf. P. Alexandroff, Dimensionstheorie, Math. Ann, 106 (1932),
p. 161—238.

3) L. Pontrjagin, C. R. 190 (1930), p. 11057, séance du 12 mai.
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