Rotation groups about a set of fixed points.
By
Lucille Whyburn (Virginia, U. S, A)).

This paper concerns itself with the set of points that remain
fixed under a continuous one to one transformation of a set M in
a topological space into itself. We shall show that the components
of the complement of such a set of fixed points in M fall into groups
of two types, one composed of a finite number of elements and
the other of an infinite number. By putting restrictions on M or
on the group of components or both we are able to establish certain
properties of the components and of our set of fixed points: for
example, if M is a plane continuous curve, every component of M
minus the set of fixed points under any homeomorphism T(M)=M
has property 8, or if M is a sphere and there exists one group of
components (in the above sense) containing at least two elements,
then our set of fixed points is a simple closed curve and our trans-
formation 7T must be such that it merely interchanges the two
complementary regions of this simple closed curve.

L Preliminary Notions and Theorems.

Definitions. A collection Co, Cy, Coy ...y Oy ... of components
of M—K, where M is a point set and K is the set of fixed points
under a homeomorphism T(M)=M, is said to form a rotation
group of Type I (finite rotation group) provided (1) the collection
Co, C1y Csy ..., C, ... containg only a finite number of components,
say n+1, and (2) the components of the collection may be ordered
In such a way that T'(Cy)=(;, T(C)=0y, ... T(C)=Crp1... T(0,)=0C

1 ’ : s N
) A component of a point set S is a maximal connected suhset of .
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and so that T(C)==0; for i<j<m; such a collection is said to
form a rotation group of Type II (infinite rotation group) provided

(1) the collection contains infinitely many components,
(2) it may be ordered as follows,
vey Oy ooy Oy, Oy Cyy Cay o Cy oy

where T(0)=Ci1 and T(0)==C; for i<j. _
It is at once apparent that for any two elements C; and (;

—i 1 1j—i
of either type of rotation group C=T"7(¢) and C=T"7"(C).

Moreover both the infinite and finite rotation.groups f(.)rm
cyclic groups under the following definition of the group operation:

0, C;=T'(0)).

Herecafter K will always denote the set of fixed points under
a homeomorphism 7 (M)=M. Clearly K is always a closed set.

Theorem 1. If T(M)=M is a homeomorphism and K is
the set of fized points under T, then every component of M—K falls
into one and only one rotation group.

Proof. Take any component ¢ of M—K and call it ¢,. Now
ginee K is a set of fixed points under T' and T is one to one,
T(M—K)=M—K. Now we wish to show that T(C,) is a c(fm-.
ponent of T (M—K) and consequently of M—K. In' thg first
place since (', is connected and T is continuous, T'(C,) is con-
nected and is consequently contained in some component Q1 of
T(M—K); secondly, T is a homeomorphism and therefore T is
one to one and continuous and consequently T‘i(Q) is conneetefi
and contains C,, from which, since C, is a component of M—K,
it follows that T (@)= C,; and from this fact it follows imrfxe-
diately that T(Cp)=0Q, i.e., Q=T[T (@)]=T(C,). Thus T(C,) is a

onent of M—K. _ ,
cOmpl\TOW let us designate T(C,) as C;. Then, just as above, T (.CI)
is a component of M—K, and we set C,=T(Cy); T(Cp) i8a
component of M—K, and we set C;=T(C,), ete. - If for an;r
n=1,2,3,.., T(Cn)=Co we shall consider our selection at an end.
And we see at once that we have a group of Typel provided we
can show that for no integer k¥ can T'(Cr)=C; (i<k<n?. To see
this let m be the smallest integer % such that T (Cp)=0C; (i<k <n).
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Then since m<n, =0, which gives us 7' (Civ)=0C; and 1 (Cn)=0,
contrary to the fact that T is one to one because Cp;==0, or
(m—1) would have been the first k such that 7'(Ch)=0C; (1 <<k<n).
If, then, there exists an » such that T'((,)=Co, we have a group
of Type L

If, however, T/ Cyn)ECy for every positive value of n, it
is easy to see we get an infinite sequence Cy, (i, Oy, ..., 0, ..
such that T'(C;)=Ci;1. Furthermore, since 7' is a homeomorphism
and C, is a component of M—K, T7'(C,) must be a component
of M—K. Let us set T_1(Go)=0_1, and T~1(0"1)=0~.2, ete.
An argument almost identical with the one given above to show
that T(Ch)#C; (¢<k<<n) may be used to show that this negative
series can not terminate or coincide with the positive series in any
component; and a similar argument may be used to show that the
series composed of the sum of the negative and pogitive series sa-
tisfies the condition that T'(C;)==0; for i<j. Thus we have a col-
lection

vy Oy oy Oy Oy, Oy, G, C1y Oy oy O,y .

satisfying the definition of a rotation group of Type II.

Starting with any component ¢ of M—K we have shown
that we can pick out a rotation group of Type I or Type II con-
taining that element.

It remains only to show that ¢ cannot belong to more than
one rotation group. This follows very simply from the fact that
if ¢ belongs to a given rotation group so also does T(e).

The(.n'em 2. If M is a set of points and T (M)=M is a ho-
Zwomorph_zsm then for any two elements C; and C; of a rotation group,
G,-———C’i=0j—0j.

Proof. If we denote the set 0;—C; by F(C,), then F(C)CK.
Therefore if PeF(0,), T(P)=P. Now let us choose any point
PeF(C;) and a set of points D1y Doy D3y - Of C; converging to P
and prqceed to show PeF(C)). As noted in the introduction,
C;=T""(C;), and since this transformation is continuous, limit
points are presgrved; therefore 7V7(p,), T'(p,), ... must have as
a limit point 77(P); but T/7/(P)=P, since PeK. Thus we have
shown that if PeF(C), PeF(C;). Hence also PeF(C)) implies
PeF(C;). Thus F(C)=F(C;) and our theorem is proven,
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Corollary. If M is connected and locally connected it follows
that for any rotation group, F(XC)=2F (C)=F(C,).

Corollary. Under the conditions of Theorem 2, if C is an element
of a rotation group under T, any point PeF(C) which is accessible )
from C is accessible from any element of C’s rotation group.

II. Rotation Groups in a Plane Continuous Curve.

Theorem 3. If M is a plane continuous cwrve and T(M)=M
is & homeomorphism and C is an element of a rotation group under T
of order z=2, then C has property 8 2).

Proof. Let us suppose that ¢ does not have property S. Then
there exists an ¢>0 and a sequence of points p,, Py, s, ... 0f €
converging to a point P of F(C) such that no two of these points
can be joined in C by a connected set of diameter <e. About the
point P take a circle N of diameter £/2. Clearly we may suppose
all the points py, Pgy Pay ... lie within N. Then for each j there exists
an arc p;¢; in € such that p;g;-N=g;. Manifestly the arcs p;q; are
disjoint and we may suppose they converge to a limit continuum H
which lies in €. Now, if we show that H-C=0, it follows that,
HCF(C)CK. Suppose, then, that beH-(. Since C is locally con-
nected, there exists a 0 such that any point of ¢ at a distance <<d
from b may be joined in ¢ to b by an arc lying within N. Since beH,
infinitely many of the arcs p;q; contain points at a distance <0
from b. Let psq, and p:q; be two such arcs. Then b can be joined
t0 P, ¢, and also to p:g: by an arc of C lying within N, and it is easy
to see that these four arcs form a connected set in C of diameter <le
containing p, and p; contrary to our assumption that no two of
the points pq, Po, Psy --- can be joined in C by a connected set of
diameter < e. Thus H-C=0 and we have HCF(C)CKH. We see
then that the disjoint arcs p;g; converge to a limit continuum H

1) A point p is said to be accessible from 2a set of points R provided there
exists a simple arc xp contained in B+ p.

2) A get of points @ is said to have property S provided that for any preas-
signed positive number e, @ is the sum of a finite number of connected sets‘ of
diameter loss than & See W. Sierpinski, Sur une condition pour qu'un continu
soit une courbe jordanienne, Fund. Math. 1 (1920), pp. 44—60. See also R.L.Moore,
Concerning connectedness im kleinen and a related property, Fund. Math. 3 (1922),

PD. 232—237.
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such that PCHCF(C)C K. Let PleH and P'==P. And since H
contains both P and a point of N we may suppose P’ chosen so
that o(P’,P)=¢/4. Let N' be a circle with center P and of dia-
meter less than £/4 which encloses no point of the sequence 7:1, Py 2 p,,
Then it follows that there exists a sequence of points p), py, py, .
converging to P’ and such that for each p; there exists an arc
7p;s;Cpjq; such that r;p;s;- N = 1;+ 8. There exists an in-
teger G such that if m and n are greater than G then py, and pj, lie
together in an arc of M lying wholly within N'. T¢ ake any three
distinet indices n, m, k>@G. Of the three arcs PaDuSny "' PmSmy ThDr < Shy
one, 885 Tm PmSm separa.tes the other two in the circle N’ plus its
interior. Let us take the arcs pnp, and pnpi lying W11 hin N’ and
in M, as above. These arcs contain sub-arcs u,v, and 2,0, such that
UV nS 1=y UiV ‘Tmp;n Sm== Wiy EmWh* 7’1)119;“ 8=y AN 2y Wy Tl(p,/f""k: Wi
Since 6 (PmQm + U + Pagn) <& it follows that w,v, K ==0 and
similarly z,w; K== 0. Let 2, be the first point of w2, in the order
from w, to v, belonging to K, and likewise y, will designate the first
point of 2z, in the order from z, to w; of K. Then @yy,— (wy-+y,)
is contained in € and z, is separated from %, in N’ plus it interior
by the are rmpmSm- Bub T{z,y,) must contain a point b, lying out-
side N’ because since u,yel, T(x)=a, and T(y,)=w,;, and
therefore T'(x;) is separated from T'(y,) in N' plus its interior by
TmPmSm, it follows that T'(x y,) — (%, + ¥,) must either contain
a.point lying outside of N’ or contain a point of 7,pus,, Whereas
P PmSm (0, T2y y,)— (2 +y) CT(C) and T(C)-C=0 by definition.
Taking any three distinet indices greater than m, n, or & and fol-
lowing the same procedure as above we may obtain an arc z,y,
lying within N’ plus its interior and such that 7'(x,y,) containg
8 point b, lying outside N’ plus its interior and satistying the other
conditions of the are z,y,. Repeating this process indefinitely we
obtain an infinite sequence of arcs ¥y, 2,¥,, ..., which may be
chosen so as to converge to P’ but such that 7T(z;y;) contains
a point b; lying outside N’ plus its interior. Clearly this is impos-
sible since T_l(b,-)—> P, and T(P')=P' whereas TT* (b;)=1b,
and the sequence b; does not converge to T(P').

Corollary. Under the conditions of Theorem 3, every point
of F(C) is accessible from C.
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Theorem 4. If M is o plane continuous curve and C is an
element of a rotation group of order Z=2., then F(C) is coniwined in
some simple closed curve.

This theorem follows imﬁlediately from the above corollary
and a theorem of G. T. Whyburn?).

Theorem &. If M is a plane continuous curve and T(M)=M
8 & homeomorphism and F(C) [ C being a component of M—K] contains
more than two points, then the rotation group of C is of order <2.

Proof. Suppose the theorem is not true. Then the rotation
group of C is at least of order three and we may assume that
T(C)=D=C, T C)=T(D)=E=+D and E=C. Now we proceed to
show that this assumption leads to a contradiction. To do this let
us choose any three points x,y and 2 of F(C). By the Corollary
following Theorem 3, taking some point peC we can obtain three
arcs px, py, p2 in C+xty-+ez; and as a subset of the sum of
these three arcs we can pick out three ares p'z, p'y, p'z each two
of which have just p’ in common. From this we have the ares T(p'x),
T(p'y), and T(p's) lying in the set D4x-+y-+z each two of
which have just the point T'(p’) in common. Likewise, we obtain

the ares T%(p'z), T*p'y), and T%p'z) lying in E+4x-+y-+2, each

two of which have just the point T%(p’) in common. Furthermore

T(p'0)-I(p's)-p'z=12 (weX),

TXp'y)-T(p'y)p'y=y, and TI%p'2)-T(p'z)pe=
Now it is easy to see that the sum of these nine arcs form the well
known graph ?) containing 6 points of order 3, which is not to-

pologically contained in the plane. Thus the supposition that our
theorem is not true leads to a contradiction.

Theorem 6. If M is a plane continuous eurve and T(M)=M
18 a homeomorphism and G=[C0t% is an infinite rotation group
under T, then F(C,) reduces to one point and, for amy preassigned
positive number &, 6(0;)<e for all save a finite number of subscripts i.

1) See G. T. Whyburn, Concerning plane closed point sels which are ac-
cessible from certain subsets of their complements, Proe. N. A. 8. (1927), p. 659,
‘Theorem 3. )

2) See C. Kuratowski, Sur le probléme des courbes gauches en Topologie,

Fund. Math. 15 (1930), pp. 271—29L.
Fundamenta Mathematicae, T XXVIII. 9
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Proof. In the first place, whether M lies in a plane or not
F(C;) must be connected, since by virtue of Theorem 2 we have

(1) F(C) =F (2 ;) =1lim 0,

and the last set clearly is connected since each C; is connected.
Therefore if F(C;) contains more than one point, it must
contain more than two points and, hence, by Theorem 5, G would
have to be of order = 2. whereas @ is infinite. Therefore F(0;)=p
where p is a point of K.
The second part of the theorem follows immediately from (1).

Theorem 7. If M is a two dimensional sphere and T(M)=M
is & homeomorphism such that one rotation group under T' is of order
>1, then K is a simple closed curvel).

Proof. Take a rotation group of order > 1 and call two of
its elements O, and C,. Then by Theorem 4, F(C(,) is contained
in a simple closed curve J and, since C, is open in M and therefore
F(C,) separates M, it follows that F(C,)=J=F(0,). Now we show
that C;+C,+J=M. By the Jordan Curve Theorem, M—dJ=D;-+D,,
where D; and D, are connected regions. Now C; is contained either
in D, orin D,, sayin D;; then clearly C;=D, sinee D, is connec-
ted and containg no point of F(C,). Similarly C,=D, Whence
Ci+Cy+J=M and therefore J=K.

Corollary. Under conditions of Theorem 7, there ewists only
one rotation group under T and this group is of order 2.

1) Since this theorem was obtained the author has learned that a similar
conclusion under less general conditions has been proven independently by W.
Dancer and extended by R. L. Wilder. The same method used by Wilder
to extend D ancer’s result may be used to extend this result to higher dimensional
Euclidean spheres. See abstracts by Dancer and Wilder in the Bulletin of
the Amer. Math. Soc., Vol 41, pp. 342 and 484, respectively and Fund. Math. 27.

University, Va.
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Mean values of trigonometrical polynomials.
By
J. Marcinkiewicz and A. Zygmund (Wilno).

CHAPTER I.

1. The object of this chapter is to establish a number of in-
equalities between various mean values of trigonometrical poly-
nomials. :

Let o<ty <<ap<l..<&y be a system of 2n-+1 points
equally distributed (mod 27) over the interval (0, 27), i e.

27
By=1mo+v T (=0, 1, ..., 2n).
Let
(1) S(w):—;—ao—}— 27 (ax cos kz-+-by sin kx)

k=1

be an arbitrary trigonometrical polynomial, real or complex, of
order not exceeding n. It is well known that‘

@) 3 [Is@par— gy S s@r.
0 p==0

In this chapter we extend this relation to the ‘case of exponents
other than 2. It is plain that the sign of equality in (1) shall have
to be replaced by a sign of inequality. ’
Without loss of generality, we may suppose that x,=0, for
otherwise it is sufficient to consider the polynomial 8(z+x,) in-

stead of S(x). o
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