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Proof. In the first place, whether M lies in a plane or not
F(C;) must be connected, since by virtue of Theorem 2 we have

(1) F(C) =F (2 ;) =1lim 0,

and the last set clearly is connected since each C; is connected.
Therefore if F(C;) contains more than one point, it must
contain more than two points and, hence, by Theorem 5, G would
have to be of order = 2. whereas @ is infinite. Therefore F(0;)=p
where p is a point of K.
The second part of the theorem follows immediately from (1).

Theorem 7. If M is a two dimensional sphere and T(M)=M
is & homeomorphism such that one rotation group under T' is of order
>1, then K is a simple closed curvel).

Proof. Take a rotation group of order > 1 and call two of
its elements O, and C,. Then by Theorem 4, F(C(,) is contained
in a simple closed curve J and, since C, is open in M and therefore
F(C,) separates M, it follows that F(C,)=J=F(0,). Now we show
that C;+C,+J=M. By the Jordan Curve Theorem, M—dJ=D;-+D,,
where D; and D, are connected regions. Now C; is contained either
in D, orin D,, sayin D;; then clearly C;=D, sinee D, is connec-
ted and containg no point of F(C,). Similarly C,=D, Whence
Ci+Cy+J=M and therefore J=K.

Corollary. Under conditions of Theorem 7, there ewists only
one rotation group under T and this group is of order 2.

1) Since this theorem was obtained the author has learned that a similar
conclusion under less general conditions has been proven independently by W.
Dancer and extended by R. L. Wilder. The same method used by Wilder
to extend D ancer’s result may be used to extend this result to higher dimensional
Euclidean spheres. See abstracts by Dancer and Wilder in the Bulletin of
the Amer. Math. Soc., Vol 41, pp. 342 and 484, respectively and Fund. Math. 27.

University, Va.
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Mean values of trigonometrical polynomials.
By
J. Marcinkiewicz and A. Zygmund (Wilno).

CHAPTER I.

1. The object of this chapter is to establish a number of in-
equalities between various mean values of trigonometrical poly-
nomials. :

Let o<ty <<ap<l..<&y be a system of 2n-+1 points
equally distributed (mod 27) over the interval (0, 27), i e.

27
By=1mo+v T (=0, 1, ..., 2n).
Let
(1) S(w):—;—ao—}— 27 (ax cos kz-+-by sin kx)

k=1

be an arbitrary trigonometrical polynomial, real or complex, of
order not exceeding n. It is well known that‘

@) 3 [Is@par— gy S s@r.
0 p==0

In this chapter we extend this relation to the ‘case of exponents
other than 2. It is plain that the sign of equality in (1) shall have
to be replaced by a sign of inequality. ’
Without loss of generality, we may suppose that x,=0, for
otherwise it is sufficient to consider the polynomial 8(z+x,) in-

stead of S(x). o
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Given an integer ©>0, let & function @, (x) be defined by
the following conditions

2m 27 . 27
gult)=j—  for ?7<t<(7+1) 0
where j=0, +1, +2, ... The function ¢.(t) is a step function,
with jumps 27/u ab the points 27j/u. The relation (2), with x,=0,
may be written

27 2
@ [ 18(@)P do= [ |8(@) dg,, (@),
Y 0

and this form will be more convenient to us than (2).
In the sequel, S will constantly denote an arbitrary trigono-

metrical polynomial (1) of order not exceeding n. By 8§ we shall
mean the conjugate polynomial, 7. e.

(4) Sa) = j’ (a sin ko — by cos k).

k=1

Theorems 1 and 2 which follow are not new?!), but we have in-
cluded them for the sake of completeness.

Theorem 1. There is an absolute constant A such thdt

(5) {_[ZTS"D d¢2n+1}1/l7 <A{7niSIp dm}l/p.

0 0

I<p<<oo).

Theorem 2, There is a constant B, depending only on p and
such that

(6) { f2 ISP o)< B, | f2 5P APyy) "
0

0

(1 <p <oo).

It will be shown on examples that for p=1 and p==oco the
inequality (6) is false.
Theorems 1 and 2 have analogues for the conjugate polynomials.

Theorem 3. There is a constant A, depending onl
such that P ooy on p ond

2 7
(7) {of“sﬁpd%nﬂ}llp < -‘Ip {/2|Slp dm}l/p (1<p <<oo).
o

1) Bee Marcinkiewicz [2].
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Similarly,

2;

(8) {/ |Slp dm}l‘p < EP {‘/‘ Slpd¢2n+1}'l i (1 < p < oo) .
0

0
with B, depending on p only.

The following three theorems may be considered as limiting
cases of Theorems 2 and 3. '

Theorem 4. If

2w
S| <™

(9) Max

then there is am absolute comstamt Ao such that, for every 0<KA<Ag,

2T

(10) [expa|S|de<m
0

2
(11) [ exp 28 dr <,
0

where u, depends on 1 only.

Theorem 5. There exist two absolute constants A and B such that

(12) [181de < 4 [ 181og* 8] a9, + B,
0 0
2 27

(13) [18lae <4 [18]1og" |8|ag,,,, + B-
0 0

Theorem 6. For every 0 g <1,

2 2 “

(14) [18@1" do < Ku{ [ 180)] 39y,..f
0 0
27 _ 2 “

(15) (1@ do < Eu{ [ 18@)] 80,4
0 0

where K, depends on p only. Moreover

K
_Ky,gl_' ”’_7

K denoting an absolute constant.
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We have already mentioned that Theorem 2 is false for p=1
and p=co. Theorems 4, 5, 6 are substitute theorems for those
cases. Another substitute theorem is the following

Theorem 7, For every integer k>0,

27 2
(19 [a0<(1+5) [191dp,...
0 0 )
17 Max |8 <(1 2" Ma, s(»—z’“’— :
o o ol < 1+ 0 8 25)
In particular, 3f n>(1+4€)2n 148 an inieger, then
) 27 1 2.7r
(18) f 820 < (143 ) (19149
0 0
1 2my
(19) Max |S(w)[<(1+;) Max s(_ﬁ_) :

In the following paragraphs we shall give proofs of the theo-
rems enunciated as well as of some other results.

2. Lemma o. For every p>=>1,

27 . 27
(20) {[ 18 @l aaf " <nff |8(ar) "
] 0
This inequality is known?). It represents a generalization of
Bernstein’s well-known theorem, to which it reduces for p=oco.
It is sufficient to prove Theorem 1 for p finite and greater
than 1, for thence we obtain the remaining cases by a simple pas-
sage to the limit,
We observe that

27 2 2
[ 8¢ dgy, = [ 18 @(05,—a) + [ |8 .
0

) 1) See Zygmund .[1]. A weaker inequality, with the coefficient n on the
pght r’epla;ced by 2n, will be found in Zygmund [2], 156. This weaker Tesult
is sufficient for our purposes.
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The function ¢, ,— does not exceed 27/(2n+1) in absolute

value, and vanishes at the ends of the interval (0, 2z). Hence,
integrating by parts and taking account of (20) we obtain

2 2 27
2 e .
(21) f 8" d%n+1<2—n1’~fi f ISP~ 18] dar + / SJP dc
(‘) 0 - 0
27t 27 2
/ 7 1:; .
\fn—p (fISi”dw)lp(ﬂS’l”dm) "+ f%&"dm
0 0 0
27
<(mp-+1) f ISP de.
0

This proves (5), with A = Max (rp+1)t7 ).

3. The best value of the constant A is unknown but it cert-
ainly exceeds 1. For let

S(z)= cos na, a = n[(2n-+1).

Then
s(ea)| |z
jr|8| APy = 2aé‘ |cosva| =4a (—;— + 2‘ |cos va\>
v=—n v=1
=4a (—;— —]—2/1" ¢o8 wa)=4a D, (a),
where ‘ ! i (4
(22) Do(u)=%+cosu+ ... + cosn'u;:W

denotes Dirichlet’s kernel. It is now sufficient to observe that
2 .
40 Dy(a) = 2a=2a/sin }a>4 = [ |8]do.
i}

Tn the inequality (5) we may replace A by 1in the cases p=2

and p=oco, and it may be asked whether the same is true for the

1) The inequality (5) holds if dg,, is replaced by de, where u>=en.
The constant 4 will then depend on e
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values of p belonging to the interval (2, co). But this is not so, ag
can eagily be geen on the example ’
8(z) = sin nx, p=3 1),
. 4. We' now pass on to the proof of Theorem 2. We shall re-
quire the first part of the following proposition.

Lema?m B Let f(2) be a function of the class I where 1 <p<oo
and (-)f pem.od 27n. Let s,,_[f]::s,,(w, f) be the n-th partial sum of thc’;
Fourier series of f, and 8,(z,f) the polynomial conjugate to s,. Then

2 o
(e e
0

27 i
- it P o) * < B { [ aef”,
0

where R, and R, are constants depending on p only ).,

Moreover we shall use the remark that, for anv tricon
: or any trigonometri
polynomial 7(z) of order not exceeding m, a,n’d for any u>m, we lf;cvag
)

2z 27

(25) [ 1@ o = [ T(a) dy, (a).
0 b a
Let p'=p/(p—1). There is a function g(x) such that
(26) (}n[SIPd )llp 78 i
2 ) = [ Sgdx " =1.
Hence 0 0 ’ b/ ’

1p 2xm 2

27 (of [S]Pdm)= b/ Sgdr =I/FS Snl[g] do
0
27 . 1jp 027:: , 1p
<(b/ 18] dq’2n+1) 4 (of |3n[9]1p dm)
2 7T inf
S ARy ( 0/ g d%n-u)l/p(j lg” dm)l’p

27
=4y ([ lsp 1,,)

- 7’8’3 a g Ky "
[ Ssig1an,, ., < ([ 1505, Fiota a0,

1) Whe = =
e b‘)m)m, :.,;z 'pA i];c l(lggk_ 1;5" 02; th); ;::; :?l?t obtain for 4 a slightly better value
< . it is sutfic ; i
analog:u;ﬂ to (.2) to the polynomial S%, which ilzz ozli;r;fe tgrcﬁappb;c fhe eanation
) M. Riesz [1], [2]; Zygmund [2], 153, "
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This proves (6). The best value of B, satisfies the inequality
(28) B,<CARy,.
It is known that
(29) R, =Ry 1<p<oo) )
and it may be proved that
(30) Ep<E,<Lp for pz=2,%),

where K and L are two positive absolute constants.

5. The following result completes Theorem 2.

Theorem 8. The least value of the constant B, in Theorem 2
satisfies the relations

(31) R,<B,<AR,,

where A denotes the constant of Theorem 1 and R, the least constant
in the inequality (23).
The second inequality (31) follows from (28) and (29), and

we may restrict ourselves to the first inequality (31).
We shall require the following lemma, which is a special case

of a known result.
Lemma Y. Let f(t) be an L-integrable function of period 2w,
and let
9a(t) = flu+1).

Given an arbitrary function h(z) of period 2, let I.[z, ] denote
the trigonometrical polynomial, of order mot exceeding n, which at the
points 2nv[(2n+1) (»=0, 1, ..., 2n) takes the same values as h (). Then

1 2n
(32) 5 | Inlo—u; guldu = $a(®y ) ®)-
5

1) M. Riesz [1]; Zygmund [2], PP- 149, 165.

%) For the second inequality (30) see M. Riesz [2]. The first inequality (30)
may be obtained by considering the n-th partial sum of K, (%), where K, (x) de-
notes Fejér’s kernel, and making use of (29). The first inequality will not be used
in the sequel.

3) Marcinkiewicz [2].
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We give the proof, which is very simple. Let D,(t) denote
the Dirichlet kernel (22). Then

(33 Llo—ugl=x f guli

D, w—% )d(p‘.ln—]-l (t)‘

Integrating the right-hand side with respect to #, and inverting
the order of integration (this is permissible, since the integral in (33)
is but a finite sum) we obtain

2 2 27
1 1 1
%/In[m—%, Juldu = 'T'E‘!fd‘p%-i-l(t)é‘ﬁ ./gu(t)-D
0 0 0

27 2ar
_lfd B
—5 [Amuittg [Hutt) Dalo—u—y au=
0 0

27 2
1 1
= nﬁ/'d‘pmﬂ(t)é‘ﬁ /f(u) Dy
0

From (32) we have, by Jensen’s inequality,

2
(m———u)du:%ﬂ‘/ Apn(t) = s,(@, f).
0

84 (2, F) f Ln[——u, g,]|" du.

We integrate this relation with respect to %, and invert the order
of integration:

on 2

fls,. (z, 1)l dm<2 fdu/lfn[w‘“"% 9] do =
1
_L f au f [T, 9P < 22 f du f 212, 9.1 s (@
B > y
—2 [ f [fut2)P dg,,, (@) = B f ) du,
0 0 0

This completes the proof of Theorem 8.
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6. We shall now show that Theorem 2 is false for p=1 and
p=oo. For let S(x) denote the Dirichlet kernel D,(x). Since D,(r)
vanishes at the points 2n»/(2n-41), where »=1, 2, ... 2n, we have

27

t/ !Sl d(p‘_’.n-}-l =
0

On the other hand, the integral of |S(z)| over (0, 27) (“Lebesgue’s
constant’) is an unbounded function of n.

In order to verify that Theorem 2 is false for p=oco, we con-
sider the trigonometrical polynomial S§(z), of order m, which at
the points 2m»/(2n+1) (»=0,1,...,,2n) takes the values (—I)".
That is '

S(z) = %i 2 (—1)° Dol —m.).

»=0

It is easy to see that

on 1 < 1
S(_—2n—{-1>=2n+12 MY
= oI\ T2
and the right-hand side of this equation is unbounded with n.

7. Lemma 3. Every trigonometrical polynomial 8(x) satisfies,
for p>1, the inequality

e 2t
o {of |Blo)f day < B, {6/ I8(a)” da"”,

where R, is a constant depending on p only.

This is a special case of M. Riesz’s well-known theorem.
The inequality (7) follows at once from (34) and from the inequality

([ 18P dp,.,.) "<
0

established in (21). For 4, we may take (ap+1)'"R,.

A similar argument ena.bles us to deduce (8) from Theorem 2
and the inequality (34). Such a deduction would however give
a rather imperfect estimate for the constant B,, and we prefer to
use an argument similar to (27).

(rp+1)"] f Sla) as)
0
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There is a function g such thaf

2 2T 2
[l to=1,  [Boaa=|[ e "
Hence ’ ’ ’

(35) (71|[§]P dob\}IJ’L 7% g dw‘z 7%’ sulg]dw
0 0 b

w 2
= / Ssalg)de = _/ 889l d(p:!n—l-l
0 0

27

: VU 3 :
<( |S|pdf/72,,+1) (0/ |§"[g]]pdq)2”_}—1)

i

1

'

)2 » 1p 2'7_ y 1/p
<A(./ 18] dw‘zn+1) (/ 18.g1" d-’”\)
0

2n 2t

: / 2{! 1/p " /
<AR([isran, | ([ 0] =AR{ I ap,)
0

This gives (8) with
(36) B,=AR,.

If for B, we take the least possible value, then we have the
nequality k

(37) R, <B,<<AR, (p>1),

analogous t_o (3_1_). The second inequality follows from (36) and the
equation R,=R,. The first inequality may be obtained in the
same way as the first inequality in (31). We need only cbserve that
the formula (32) holds if we replace in it I,[z—u g.] and s,(z,f)
by I.[e—u, g,] and §,(z,f) respectively (in the f(’)rmula, (3§) :Ne
ﬁhall have to replace I,, by I, and D, by D,, where D, is the con-
Jugate Dirichlet kernel). Since R, satisties an inequality

(38) Kp <E,<Ip (p==>2),
similar to (30), we obtain from (30), (31), (37) and (38) that
(39) WSB,<Pp, ap<B,<fp (p>2),

where o and g8 are absolute positive constants,
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8. In order to prove the first part of Theorem 4, we observe
that, for any real u,

hed b
v

 (2v)!”
= (27)

expu< 2coshu=2

Let us replace here u by 48|, or by 4 |8], and integrate the result
over the interval 0<Cz<C2n. Using the inequalities (6), (8) and (39),
and applying Stirling’s formula for (2»)!, we obtain (10) and (11),
with 4,=1/8e.

9. The proof of Theorem 5 will be based on the Young inequality
wo <L wuloghu e 1) (=0, v=0)
and on the following

Lemma e If |g(z)|<<1, then

o 2
[ explsalglldn <, | exp algll do <y,
0 0

where y is an absolute constant ?).

We start from the formula
2{v 27 ’
(40) jISI dmsz(m) g(x) du, where |g(2)|=1.
0 0

Let 8 be a constant which will be fixed in a moment. We have

2 27 27
(41) [18ldo= [ 8(@) s:lg1do= [ 8() 5212y,
0 0

0

< f n}% 10g+$—§—‘d¢2,,+1+ fzﬂ exp |6 5.[g]] 4Py, ;-
b 0

Tt is easy to see that the inequality (12) will have been established
when we have shown that the last integral in (41) does not exceed
an absolute constant. The equation exp u=1+ ut+iu2+... and

1) See e.g. Hardy, Littlewood and Pélya [1], p. 6L
2) See Zygmund [3], or Zygmund [2], p. 164.
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the inequality (5) give

/ exp |Bsa[g]| o, < / exp |4ps.[g]] de.

In view of Lemma ¢, the last integral is less than y if only 481,
This completes the proof of (12). The inequality (13) may be est-
ablished in the same way.

10. The proof of Theorem 6 will be based on the following
proposition of Kolmogoroff:

Lemma {. Let f(z) be any L-integrable function of period 2m,
and let f(x) denote the f@mctzon conjugate to f(x). Then, for 0<Tu<<l,

(12) [ forar< g, (o as).
0 0

where K, depends on u ohly. The product (1—u) K, doés not exceed
an absolute constant K 1).

If # is different from the points of discontinuity of the func-
tion ¢, (), we have the formula

(43) f S(6
2n

_sinng dg,, ., (0)
/S ) 608 7§ — ot cosm[ﬁ(ﬁ)sinna
2tg 4 :
0

n(@—0) gy, ,,(0) =

a9, (6)
2tg § (x—10)

(2 -—0) n

+o f 8(6) cos (@ —6) dp,, ().
, ‘

Let  ¢i(x), where i=1,2,3, denote respectively the last three
terms on the right of (43). In view of the inequality

IS(W F<lgy(w W+ lga(@) I+ |gs(@)| (0 <u<),
the inequality (14) will have been established when we have shown that
(44) / lg:(@) iz < K, ( f 8(2)| dg, m)) (i=1, 2, 3).

') See Kolmogoroff [1], or Zygmund [2] p. 180. In the rest of this

paragraph, we shall denote by K, any constant depending on x only and such
that (1—u) Ky is bounded. ¢ f Y
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From the relation

1 "
(@< 75 [ 15000 dny,.., (0
0

follows the inequality (44) for i=3 (with K,=(27)'™). We may
therefore confine our attention to the cases i=1 and i=2, e. g. to
the former, the proof in both cases being exactly the same. Let

1 (6)
____fS CO8 N 6%@1(_;—6)

It is enough to show that

27

(45) [ Tl o< 2 ([ 8 )l ag,,(0) -

We write
a,=8(6,) cos nb,

f(6y=a, for 0,<6<bys

) 1 27 a8 92 Q Q,
0 v

The last equation may be written

(»=0,1,...,2n)

(46)

(47) _ (@) = f(x) —4(=).

The first equation (46) gives
27 2n
[1#(6)| a8< [ [8(6)] d@,, ;1 (6).
0 0

Hence, in view of (42)

27

(48) / o as <z, ([ 180 g, -
Let us suppose that 0;<<2<6z41. Then, if
o 1
_1 _ \a
(49 e = [ bgre—nmeTe—m
[/}
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we have

2n

(50) @) < é; |t & ()] =§ |y & ()] + @t St ()] | ()] +
+ a1 Erts ()] = (@) +0y(o) -+ () +- 95 (),

say. The dash ' denotes that the terms with the indices »=k—1, k, k-1
are omitted in summation.

In what follows, we shall denote by Ay, 4,,... positive absolute
constants. It is easily seen that

4 N
60(m)<(2n+1)2 2 } Py (O << < Opq+).
v 2

in?
Hence
“ 4, e
[t <gs 3 5
ﬂk‘l:rr "2" iy
[y 2’1a1|<43 / 50 dgy,.

0
L[
61 (5 [ @ ) f& 7) < 2f|s )Py,
0

For 6, <x<0Op1 we have

(52) Era(m)) <= 'fgtg 10— 2 lﬁk
k—1
2 1
(53) Sea(a)] <Z !/‘2tg7(0k+1—m) <2%+1'0k+1—-93
Ot

On the other hand, we have the following inequalities, where the
integrals are taken in the prmclpal value sense:

bpi1

2n 1 .
.thgT(w—HJ 2n+1'w__0k’ if 0, <e<<i(0r+0kt1)

Ok-+1
27 1

Iéfztg’r m-—-ﬂ)’<2n+1 [ 3 Ok FOht) <@ < Opgre
&
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The formula (49) therefore gives

-
(54) SOI< gt (gt ) Ge<o<bui.

From the inequalities (52), (53), and (54) we obtain
Opt1

o (o)t 2 Ll

I—uon+1’

O
Opt1
f (@) dn <<

b

Opt1

. A |a |! T
6’ 4 (Ert1]
f @ ey 071

Ay e
I—p2n+1

O

This gives, for i=1, 2, 3,
27 A 1 2n
S 4. i, |4
(55) f fo) to <y 5 Sjal
v=0 .

.A4 , 1 2:1 \u A4 ( 2n ;
<1 © (2n+1 2 |a,,[> <1-—M f[;S’(H)] dq’zn+1> .
=0 0

Finally, from (47), (50), (48), (51), and (55) we deduce

3
@) < fo)l' + d@) <@’ + 2 8 (@),

27 27 3 2 27
u ry u Y 4 A “
[ oy dn< [ a3 [ @ ar< 2 ( [ 1501y,
0 0 =0 0 0

This proves (45), and so completes the proof of the inequality (14).

The proof of the inequality (15) is analogous. The use is made
of the formula

(56) §e) =% [5(0)Du(0—2) dpy,,(6),
0

‘where
cos $u—cos (n+4) %
2§in du

5,,(u)=sinu+sin2u “+...-Fsinnu =

is the expression conjugate to Dmchlet’s kernel D,. We leave the
details of the proof to the reader. :
Fundamenta Mathematicae. T. XXVIII . 10
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It is of some interest to observe that the suffix 2n-41 in
Theorems 2—6 may be replaced by any integer m>2n. For m odd
this follows from the fact that, if the polynomial § is of order n, it
may also be considered as a polynomial of any order greater than ».
For m even the proofs are exactly the same as in the case m=2n-1.
Tf is sufficient to make use of the general equation (25).

11. Let s, and o, denote respectively the partial sums and
the first arithmetic means of the series %70 Uy, 1€ s= )_jouv,

""‘2( +1)

Consider, for %> 0, the expression

1
(57) a,,,k=~,;{(n+k) an+k_1—na,.~.1}=
1 H-rk 1 n--k
=z (& — ) U, — % (n—w uu_z Uy % 2 (n-+k—v)u,.
p=0) y=0 v=n-1

Hence we obtain o,; by adding to s, a linear combination
of k—1 terms with indices exceeding n. A particularly simple form
has the expression o,,=2001—0p—; 1).

Suppose that o, tends to a finite limit g. If n-»co and kZ=ne,
where & is an arbitrary but fixed positive constant, then o, ,—g.

Thus the formula (57) gives us a method of summation, at
least as strong as the first arithmetic mean. The interest which
this method may present is due to the tact that the fixst n--1 terms
of the series (56) enter into o,, with coefticients equal to 1.

If wy+%+... is the Fourier series ot a function f, the ex-
pression (57) will be denoted by o,.(®,f), or by on[f].

It is well known that, in general, the partial sums s,(z, f)
of the Fourier series of a function f do not represent the function
very well. In particular, s,(z,f) may diverge at some points for f
continuous, or diverge everywhere for f integrable. From the pre-
ceding remarks, however, it follows that if we complete &q(2y 1)
by a group of terms with indices exceeding n, we obtain an ex-
pression, o,x(,f), with represents f(x) at least as well as the Fejér

1) The expressions o ', Dave already been considered (for a different pur-
pose) by de la Vallée Poussm [1], 33 sqq.
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‘means do. Thus, if f is continuous, then o,x(x,f) tends uniformly

to f(»). If f is only integrable, oyx(z,f) tends almost always to f(z);
mMoreover onx(x, f) tends in mean to f(z), ete. (we always assume
that k= ne).

The following remarks will be useful later:

(58) I <M, then jouif<(1+72) o

2 2
(39) I Of f@)de <M, then Of ]o,,,k[f]]m<(1+-2kl’)M

These remarks follow from (57) and from the well known facts that,

27

if |f|<<M, then |o,[f]]<< M, and if f |flde<< M, then [ [0[1]] de << M.

We are now in a position to prove Theorem 7 . Suppose thab
g(x) satisfies the conditions (40). We observe that

2T

[ sqts= / S sulgl do= / 80nslgldo= [ 80nilg)d,,,,-
0

In view of (58), we obtain

21

- 2n
[is1a< 1+ 2) 1510910
, \

0
that is the formula (16).

In order to prove (17), we notice that
2 27
Max {S(m)]:Supj 8 g dz, where /]g] dz=1.
* 0 0

But we have again

27 27 27 ) 27
[ Sodo= [ $sa1512a = [ Suala)o =] Sonald1pss
0 0 .0 0

S (%)' f ZTUn,k [q]] APy e
o

< {1+ %) e 5 )

Hence
Max |8 (z)| < Max

which proves (17).
10*
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The inequalities (16) and (17) are limiting cases of the fol-
lowing inequality

27 27c ’
ip 2 , 1p .
( f N m) <(1 + —k@) ( f 181" dg,, 4_k) (h=1,2, ...),
0 0

where p is any number >>1. The proof of this general inequality
is similar to the proof of (16).

12, The following theorem on conjugate polynomials is an
analogue of known theorems on conjugate functions?).

Theorem 9. Let 8(6) be amy trigonometrical polynomial of
order n, and S(0) the conjugate polynomial. Then

o 1p 27 1/p
©8) [ [187 49, (0) <Lp([ 157 ap,,,(®)) (p>1)
0 0
27 27
(59) 181 a9,,.,,(8) < M [ 18] 1og*|S|dp,,, ,(6)+N
0 0

: 27 27 “
(60) 18 9y, (6) <E ([ 18], (0)) -
1] 0
Here L, depends exclusively on p, K, exclusively on u, and M, N
are absolute constants. The product (1—up) K, is bounded for 0<u<<1.

The inequality (58) is a consequence of (8) and of the inequality
(5) applied to S. We may therefore put Lp_AB Similarly (59)
follows from the formulae (13) and (5). The inequality (60) would
be a consequence of (15), if we could prove, for at least one value
of u, 0<<u<<1, the inequality
27

[ st ap,, <0 / |81 do.

We do not know Whether the latter inequality is true, and so we
must apply a different argument. Our proof will be similar to
that of Theorem 6. By K, we shall denote throughout any function

of p such that (l—u) K,=0(1). Absolute constants will be de-
noted by C, C,,

1) 8ee M. Riesz [1], or Zygmund [2], 147 sqq., where also full references
are given.
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We start from the formula (56). For 6,;<ex<<0pyy it may
be written
k41

(61) Bla) =g, >'8(6.
r=Rk

say. The dash’ will denote throughout that the terms with indices
k and k41 are omitted in summation. We observe that D,(0)= =0,
|Dn(u)| <<n. It follows that |U(6:)| <<|S(frs1)|, and so

D(w—b,)+—— 2 S(H D (w—8.,)=Utz -V z),

r=[0

2+1

2 27 2z u

100 a9,y < 1860 dp, < 20 ([18060)dp,,,.)
% »
From (61) and (62) we see that (60) will have been established,
when we have shown that

u

(63) / [V(ﬁ)lu dq)‘)n-l—l QKH ( / IS(H)‘ dwln-l—l\ *

It is easy to verify that

8(6,)
‘>n+12 2tg (03—0

V(z)= )sinn (@ — 6,) —

‘)n—l—lZ 5(8

_ 2co8nw ' S(6y)cosnb, | 2sinnax <o’ 8(6:) sinnb, _
oan-+1 2 2tgL(z—6,) ' 2n+1 L 2tgl(z—b,)
. =Vyolx) +V,(2) —sinna Vy(z) + cos nx Vy(z),

say. The formula (63) is a consequence of the inequalities

27 uw
(64) [ Vi) i, <E. ( f 8ldg,,),  (=0,1,23),
0
which we now intend to prove. The case i=1 is obvious. It is suf-
ficient to prove one of the cases 9=0,2,3, for the proofs of the
remaining are similar.
Let us take, for example, i=2. We assume that 6,<Cz<6p1y.
We have, then, by turns

Vo (0] S Vo (00) — Vi (@) + [V (@),
Ort1 Ot

ol < [ Va0 —T(@) do+ [ 7,0t s

0 0,

7n+1
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27 on ()Ii-H 27
65 /]Vz H)IVd(pzn_ng fIVQ HI: .___V2 V‘dm_l_/ |V3(’B)|h do=A —I—B
0 k=0 §

k

say, For 6,<Co<0p,

72(6)—Va(e) 02 —
»=0
Hence
2n
VAR 18 (0)] \"
(66) a<ond Yo (2 PO <

2n |S "
(2 2n+12 k—L 2)
2n

2ur u
SO (‘)n—l-l 2|‘9(6” ) <SG (/ 18] d‘/’2n+1) :

Let us now consider the function I(x) appearing in § 10.
We have '

k1
2 Q S (6.
Tor=Fio+ iy 3 Tot gy = Vo) + W),

say. It is not difficult to verify that

27 27 u
b[ W)t < K, | of 18] 4,4 -

From this, the inequality |V, <C|I|" + |W]", and the inequality (45)
we conclude that ‘

(67) B= [IV (@) de < K, (f !Sld(p2n+1>

_ The relations (65), (66), and (67) prove (64) in the case i=2.
This completes the proof of Theorem 9.

icm

Mean values , 151

13. The theorems which we have established for trigonome-
trical polynomials have their analogues for ordinary polynomials

(68) P(2)=co+C12+... a2

For example,

Theorem 10. Bvery polynomial P(z) of the form (68) satisfies
the following inequalities:

(69) (/IP e as) <B*(/|P g, (6) (>1),

2

. 2
(10)  [1P(")] d9<< M* [ |P(e"”)| log* |P(e ‘) do,, (O)+N*,

0 0
2Ir

27 .
m [P d<Ef IP(G’”)Idwmul(e))‘ (0<u<1).
0 0

The inequality (69) corresponds to the inequality (6), and may
be easily deduced from the latter if m=2k is an even integer.
For then

n Pl k £ay
[Pl = |2 06" = | 2 owene™] = IS(00

where S(0)=¢, e""‘a—l—...-}—cn ¢*? ig a trigonometrical polynomial
(not necessarily real) of order k. The formula (69) follows from
the inequality "

27 ; 27 .
(72) (s ad “<z,{[0r ap,...)
0

and in the case considered we may put Bp=B.

It is plain that in (72) we may replace @, ., bY ®op s

If n=2k-1 is an add integer, the argument is a little more
complicated and gives a bigger value for B}. We write

P(2) = ap +20(2)

where Q(z) is a polynomial of order 2k. Now,
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© b it
(L[, Al Lo\
(55 [1eras) "<la+ (5. o)
0 0

2t
n (Ll [ L
< |ao| 4By (% ' / Q" ey, 2)
0
2t

= |a| "P“Bn(

p 1/p
| (lfp” [ l)

(W]

o
<ty o+, (g, [P, )"
0

/J-" d(pn—ll(%(,) /II’]'d ““) n.

Thm and the previous inequalities give us (69), with Bi=228, |1,

The proof of (70) iy similar to that of (69), if wo ohyerve that

thet?ncmon r(w)=ulogtu (uz20) is (i) convex, (ii) non-decreasing
50 that

On the other hand,

2(a+0) < x(2a)+x(2b) (a, b= 0),

and (iii) satisties the inequality w <<y (u) + e
Applying Jensen’s inequality, we deduce that
2

x(l%l)<.§;—t f ([ P(e")) dp, ..
0

The details of the proof we leave to the reader.

In the proof of (71) we use the ine s @ b
. qualit; 0 a' by
¥ 620, b0, 0<p<l. yoerirs et

.Theorem 7 can also be extended to the cage of ordinary poly-
nomials. T P(z) is of the form (68), then (cf. (16)) '

27
(72) [P as< 4
0

2

wi | |P(e") dgp,, , (b=1),
0
where A4, is bounded if the ratio nfk iy bounded. If n is even, we
n
may put A4, = (1 ~]——); othervise, Ay o= (1 A ?him ) for (/r;au&)

9 0 !
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14. We conclude this chapter by a few remarks on the coef-
ficients of trigonometrical polynomials.

Let ...6.4, €y €, ... be the complex Fourier coefficients of a fune-
tion f(0). In the theory of trigonometrical series there is a number
of theorems connecting the values of the sums M |e|¢ with those

27
of the integrals [ |fde,
0

where & and 8 are certain constants.

These results hold, of course, when f is a trigonometrical polyno-
mial §, of order ». From the theorems established in this chapter,
and in particular from Theorems 1 and 2, we see that in this special

2

case we may. roughly speaking, replace the integral f|f| ai by

the integral f |7‘|P’ dgn(0), where is m a function of n.
Y]

In this passage, however, generally something is lost, and the
results obtained in this way are less precise than the original ones.
To take an example, let us suppose that the Fourier series of f is

a power series in ¢, It is well known that then

(73) Sl<s [ionas,

and that the factor } on the right cannot be replaced by anything
smaller 1),

Let us now assume that f(0)=P(¢%), where P(z2) is of the
form (68). From (73) and from the formula (72) where we take,
for example k=mn, we obtain at once

2""”' <4 / IP(6)] dipy, (9)

=1

where 4 is an absolute constant. But what is the least possible
value of this constant, we are unable to decide.

A gimilar situation occurs in most cases. One of the few ex-
ceptions is the following proposition, which is an analogue of the
very well known Hausdorff-Young inequalities.

1) Hardy and Littlewood [1], Fejér [1]; Zygmund [2], p. 158.
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Theorem 11. If 8(0 Z o ¢ g a trigonometrical polyno-

»

mial of order n, and if 1<29<2, p'=p[(p—1), then

(’z% f TS(O)|I"d(p2“»H> ( 2, V,)l,,
' n

TS

( 2 & i”)” ( s f Ts(o)l"cz%,,,+_,)”'.
0

P gl

The proof is exactly the same as that of the Hausdorff-Young
theorem.

The first inequality is obvious for p==1 and p==2, and the
general case follows by an application of M. Riesz’s convexity
theorem ). The same argument applies to the second inequality
(which may also be deduced from the first) if we observe that the
values 8 (6) takes at the points of discontinuity of the function ¢,
are quite arbitrary, and define the polynomial uniguely.

CHAPTER II.
1. Let f(t) be a tunction integrable L and of period 2z, Let
D,(t) denote Dirichlet’s kernel. The expression

ot

W LeN=Lif=3 [0 Die—tdp,,
0

represents the trigonometrical polynomial of order <Cn which at
the points @,=2nv/(2n+1) (v=0, 1, ...,2n) takes the same values
as the function f. (This follows e. g. from the fact that D (wy)=n--1,
D(w,)=0 for »>0). Besides (1) we shall consider the expression

27

(2) Lals, N=Loalfl=3 [ 10 Dalo—1)dg,,, (i—u),
;

Wwhere u is a parameter. This expression ig the trigonometrical poly-
nomial, of order <Cn, which takes the values f(m,--u) at the points
Ly,

1) M. Riesz [2]; Zygmund [2], p. 190 80q.
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From (1) and (2) we see that

2ar

(2?1') n, u(w; /f t—{-—-%) Dn( '—u_‘t) d(pg,,_H( ) I:z(m“‘uy 9),

where g(t)==g.(t)=f(t-+u) 1).

In this chapter we shall prove a few theorems about the
behaviour of the expressions I, ,(z,f) for different values of u.

Theorem 1. (i) If feLP, p>1, then, for n—>oco,

271 2

(3) / /|In u wy ——f lpd.ﬂ du— 0.

(i) If |fjlog*|fleL, we have (3) with p=1.
(i) If feL, then

2 2w

/ I/ [T, (22, w) — F( )l”dm]l’/“du—»O for every 0 <up <1.
0

For the proof of part (i), we shall need the inequality

2 21

© (B) //|I,,,,1 x, f 1Pdudm<2n3"[|f )P de

where B, iy the constant of Theorem 2 of Chapter I, For
2T 27

/|In, @, )P do<B} / L u(@, NP A7y, (2—0)=B} [ |f(@+u)Pdo,, ,(@).
0

Integrating this inequality with respect to w, and observing that
the last integral is but a finite sum we obtain (5).

Now, in order to prove (3), we write f=f,-+f, Where f is
a trigonometrical polynomial, and

n
| o) dz <.
0

Then

(6) In,u[f]“‘fm In, u[fl]'—fl "{" In,u[fz:]—fz =In,u[f2]—f21

1y The function f(w) need not be defined at every point. If f is defined
for almost every x, the polynomials Inu[f] are defined for almost all .
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provided n exceeds the order of the polynomial f;. For such n, the
left hand side of (3) is equal to
2 2t

™ | [ [ ualfa— o) i <
00

2 27 b33

<2 //}I,,,u[fg]"cl:vdu—}—?:”-f%n/'|f'2(m)|”(1.'1}=<§2”-:3%(1&;}»]—-1)5,
b0 0

Since ¢ may be arbitrarily small, part (i) of Theorem 2 follows.

The proof of part (ii) is analogous. Wa start with the inequality

27t 2t 2t

/V' / Lo, u(y 1) de i << 200 A / [/ log* |f] dw-{-2m B,
09 0

where 4 and B are taken from Theorem 5 of Chapter 1. Applying
this inequality to kf, where & is an arbitrary positive constant,
we obtain

2.:1: 2 2{( 2:‘!

/ / 1Lp,u (1, f)[dmdu<2n./1,/ / If|log ™ k1| dw -2 B k.

00 0.0
We take & so large that 2nB/k<Ce, and then, having fixed k, we
write f=f,-+f, where f; is a trigonometrical polynomial, and f,
ig such that

2 2t
[hlan<e and [ |f log* |kl do <& ).
0 0

Arguing ag in (6) and (7), we obtain

2{: 2{r

/ / [Ln, u[f]1— f()| dew dus <27 A 6 - & 4 2t e,

00
which proves part (ii) of Theorem 1.

The proof of part (iii) we leave to the reader, observing only
that the place of (5) will be taken by the inequality
2w 27 27c

3 A w . 1/ . 7
/ [/ |In, u[ﬂl vdm] du<< 2x OUN / ff(m)( (l.‘l),
o0 0
which follows from the inequality (14) of Chapter 1.

1) For f, we may take a Fejér mean, with index sufficiont! i 4
' : v Fejér n, wi fliciently high, of the
Fourier series of f. Cf. . g. Zygmund [2), p. 83 sqq. o
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2. Theovem 2. For cvery fell, p>1, there is a sequence
of imtegers my <my<..., such that, for almost every u,
P2

(8) -/' lI"I{l “[/‘I mf(m)‘lp (Zm -> ()
0

Similarly if |filog* |fl e L, we have (8) with p=1. If feL, the re-

lation (8) holds for every 0 <<p<l.

We shall restrict ourselves to the case of feL”. For the proof
it is sufficient to observe that the sequence of functions

(k—>o0).

27
%,,(u) == ./ }L(,Ll[ﬂ"“'ﬂfﬂ);p dx
0
tends to 0 in the mean. Hence there is a sequence {n; such that
L (W) ~> 0 for almost all u.
It follows in particular that, for almost all w,
2 .
11__1__]:1/ |I“’“[f]__f(-’l))ipd-’lz‘=0 b
n—»eo {)
3. We shall see later that we cannot replace here lim by lim.
Yor the proof of this fact we shall use the following

Theorem 8. There is o function F integrable L, of period 1
and such that for mo value of w does the expression

n—1

b 1) =% 3wt )

tend to the integral b=

1
(9) fF(ao) dz.
0

In order to grasp the meaning of the theorem we observe that

(a) If ¥ is continuous, then &(w,F) tends to the value (9)
for all , even uniformly in u.

(b) If FeL, and n, is any increasing sequence of indices such
that mupq is divisible by ne (k=1,2,..), then &g, (u, F)
tends to (9) for almost all u 2).
1) Tt may be shown that for the sequence {n,} of Theorem 2 we maz take
a fized sequence, independent of f. For example, we may putb =} (3" —1).
To this problem we shall return on another occasion. )
2) Jessen [1]. Theorem 8 answers the problem propounded by Jessen, loc. cit.
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We define the function F(x) by the following conditions

(i) LluA-1) = H{w)

(10) for |u g%

. -1 1
(ii) F(u)=[u| ~log o
In the proof of the theorem we shall use the following well-
known fact from the theory of continued fractions: for every
irrational « there is a sequence of fractions {p/g¢), ,, ~ such that
< gy <.., and that
(11) u"“"‘—"( “'(Z' ('I:‘.::.: ]" 2’ .“).
From (10) we see that F(u)>2¢,loggq, for |u[<g, % From thig
and from (11) it follows that

Eg,(uy F) > 210g .

Hence, if « is irrational, then

(12) lim & (1, F') = + co.
G->00

If we wish tc have this relation satisfied also for all rational u,
we may proceed as follows. Let 7,7, ... be the sequence of all
the rational points of the interval (0,1). Modifying the definition
of I at the points r,, we put F(r,)=n. In particular, the new F
is finite everywhere. Then (12) holds for every u, and Theorem 3
is established.

The function F' defined above belongs to the clags I” for every
p<2. The problem whether there exists a function I satisfying
the conditions of Theorem 3 and integrable in a power 222 (in part-
icular a bounded function), remains open.

Theorem 38 is not entirely sufficient for our purposes. We shall
now prove

4. Theorem 3'. There is an integrable function I, of period 1,
and such that
Hm &1 (uy ) = oo
for almost all wu.
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‘We shall show firgt that in the interval (0,1) there is a set
H, of positive measure, with the following property. For every weH
there is & sequence of fractions, {p g}, with odd denominators,
and such that

Pi| 4 :
13 U—= <= i=1,2,..).
(13) 3| <@ (1=1,2,..)

TFor suppose that the set H of points satisfying the above
condition is of measure 0. Hence, in view of the theorem (stated
in the proof of Theorem 3) on the approximation by rational numbers,
there is a set H; of measure 1, contained in the interior of the inter-
val (0, 1), and such that for every weH; we have (11), where the g
are even. Let H, denote the set H, translated to the interval (1,2).
Then, if weH,, there is a sequence of fractions 7,/2s; satisfying
the inequalities
1
ds?’

i

(14) ‘v-% <

We may plainly suppose that the numbers »; are odd and that
1<ry/28;<<2. Let Hy be the set obtained from H, by the trans-
formation w=1/v. From (15) we obtain

1

” 2.5‘1
—_—— <5
4s?

Y1

<

and since r;<ds;, our assertion is established.
Let H* denote the set of points 1&—1—;—‘, where weH and

/8 are arbitrary fractions with odd denominators. Since H is of
positive measure, almost every point of the interval (0,1) belongs
to H*. To every weH* corresponds a sequence of fractions,
0,/8},—,,.. with odd denominators, satisfying the inequality

p| 48 .
U — — <5 (1=1,2,...).
k q 4 7

Here 8 depends on w only. It is easy to see that the function F(u)
defined by (10) fulfils Theorem 3'. The proof is the same as that
of Theorem 3.
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5. The argument used in the proof of Theorem 37 yields a slightly wore
general result.

Let @(n) be a decreasing sequence of positive numbers salisfying the following
wo conditions:

(i) For every integral 8.0, @ (n)==0(p(fn))

(i) For almost every real 0 there is a sequence of fractions {p/q}, |,

(1< g <o) such that

P
(15) f'w—|' Plq,)-
9
Let, moreover, ax--b be an arbitrary lincar form with inlegral coefficients,

Then, to almost every real f corresponds a sequence of fractions ply, salisfying
the relation
| [o—
0— = O(p(gy)
| ‘A
and having the denominators q; of the [orm

a4y = iy b (@ 0y 2wt iy dndegral),

We may assume that b4 0. Let K (4, #) denote the set of jrredueiblo
fractions of the form '

ag -~ A
16 ———————— §
) ay-+p

where z and y are arbitrary integers, A is one of the nwnbers 0, I, .., g1,
and ¢ one of the numbers 1, 2,..., a—1. The number of the sets (A, ) i
finite. Hence there exist two integers A, pg, and a set S of positive mensure;
such that for every 6¢S we have (15), where the irreduciblo fractions P, ave
of the form (16), with A=Ay, u=gu,. If is plain that the greatest common di-
visor of the numbers 2y, 1y, @ is equal to 1, for otherwise the fractions (st Ag) (- pe)
would be reducible, contrary to assumption. It follows that thoro oxist three in-
tegers «, 8, y such that
apgtBAgFya=1.

. : o ax4A

I?h'e fractions E-{—a;il"; are therefore of the form @qg—:—l{-’;}.—z, and in a set of po-
sitive measure give approximation <o (@y-p1g)=0 (¢ (ayd+-1,8)). By inversion
we prove that the points of a set S, of positive measure can bhe approximated

. P .
to by f‘motlons .a—w Ti with an error O(p (az+1)).

The fractions r/s, where s is of the form am-1, are everywhere dense.
It follows that the fractions

P

) a1

which are also of the form pllax+1), approximate to almost overy ¢ with an
error  O(p (ax-+ 1)), Hence the fractions

Loop v

b a1 = ay-+b

: apprfoximate to almost every ¢ with an error O(p(ay+ b)), This complotes the
proof, ‘

r
8
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6. The following proposition completes Theorem 2.

Theorem 4. For every pZz=1, there is an feI” such that
o . h ' .. :
fim [|L, [ dw=0co for almost all w.
n-»e0 0 .

Let f=F"", where I is the function of Theorem 3', but con-
structed on the interval (0, 27) instead of (0,1). Then feI’. In
view of Theorem 1 of Chapter I,

27 27t

Sl do > [l 9,0 — )=
0 0

2 . o
= [feraran,, 0=5 [Tetwi,, o
0 K

It iy now sufficient to apply Theorem 3.

7. Theorem 5. There is an integrable function f(z) of period 27
such that the sequence of the polynomials I, ,[f] diverges at almost
all points =, u of the square 0T 27, 0<Cu < 2.

We put

fw)=lo ™ for o <.

This function has only one point where it is infinite. In every interval
not containing that point, f(x) is of bounded variation.

In virtue of Theorem 3', for almost every  there is a sequence
of fractions p,/q,, with g, odd, such that

(17) ‘u+ on 2t <-G,;.
| 4 g

Here ¢ is a constant which depends only on w. We fix such a w,
and write @'==s—u. The function gini(2n+-1)t vanishes at the
points of discontinuity of ¢, ., (¢). Hence from the formula (2a)
we obtain :

91 .
o Sindq @ Y 1
'(18) I}(Ql—-l),u(m’ f)=2 _'”?Z"I'J—"(—l) f(u'}'tv)s_l‘n‘;(‘l‘v‘f“:t:)"

vawsl)
where #,=2n2/q,. This formula is valid if # does not coincide with

any of the points #,.
Tundamenta Mathematicae. T, XXVIIL

11
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In particular we suppose that 0<<w<2w. We also suppose
that 0<o'<2m. We can therefore find a >0 such that
19) 0<2< o< 2m—20 < 27, b o' <K 27— 9,

The sum in (18) we split into three sums
- (20) Iy (g—t,u) (@ f) = '+ 3"+ 2"

where ', 3", 3" correspond respectively to the po‘iinps t» be-
longing to the intervals (0, #'—d), ('8, ' 4-9), (({c’-—|—6, 271). ’D‘hg
sum Y’ may be considered as Lagrange’s interpolating polynomial
formed for the function g(t) which is equal to f(u--?) in the interval
o' —8<t<<w'-+0, and to 0 elsewhere (mod 2x). When ¢ runs through
the interval (2'—©,x'--6), the function g(f) takes on tho same
values as the function f(z-+7) in the interval —d<{r<Id, Hence,
in view of (19), g(t) is of bounded variation, and, by & well-known
theorem 1), ‘

(21) D=0 (1),

The term »=p, of the sum (18) belongs either to 3’ or to X", e.g.
to the former. From (17) we see that the absolute value of this
term exceeds

From (17) we aJlso see that, for k==1, 2, ..,

’u + w (p, £ k)
%

provided 4 is 'la,rge enough. Hence

(22) ‘2 ( |sin § g, ' |

= ty. Similarly

- 2l 0 k

——— >

!Zi Q? ql

g\ ! . ’
03"1 q,8in} 62 ( ) /“‘“‘”‘QOBxMS‘LnM,m |y

for 1=

: /! B/4
(23) iz <lsin} qu - %52 (k) = 0(1).

1) See 6.g. Jackson (1.
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It is well-known that
' ﬁﬁlsin%gw’[:l

for almost all 2, that is for almost all ). From this and from the
formulae (20), (21), (22), (23) we infer that

w(@, f)] =00

for almost all #. This completes the proof of Theorem 5.

lim [Ty 1),

8. Besides the polynomials I,, we may consider Jackson’s
polynomials

27

Tul@, ) =Jalf1= [1(t) Kn(w—1) dp, ., (8),
0
where
TERTIAY
1 sin (n+ 5
K, (t)=
2(n-+1) ¢in _zt_

is Fejér’s kernel. The polynomial J, takes at the points of discon-
tinuity of ¢, ., the same values as the function f, but, besides, the
derivative J, vanishes at those points. It is well-known that, if f
is continuous, the J,[f] tend uniformly to f, a property which is
not ghared by the polynomials I,[f]. If is therefore not unnatural
to expect, that also in the case of f discontinuous the behaviour
of the J, is definitely much better than that of the I,. But this is
not so.
Let
2
Tnu(@ ) =T nulf1= [1t) Knla—t)dg, ., (t—u).
0
Theorems 1 and 2 of this chapter remain valid if we replace
in them I, by J, The new results are rather trivial and follow from
the most elementary properties of Fejér’s kernel (Unlike in the cage
of the I,, Theorem 2 of ChapterI is not necessary for the prootf).
‘We shall however prove that also the negative results of Theorem 4
and 5 hold for the J,.

1) Cf e. g. Zygmund [2], p. 269.
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164 J. Marcinkiewicz and A. Zygmund:
Theorem 4'. For every p>>1, there is an feL”, such that
2w

(24) i [ |Jalf)f do=oo
. G oob
for all w.

The proof is similar to that of Theorem 4. Let f=F"", whero
F is the function defined in § 4, but constructed on (0, 27). Then

2 27t
fJn,u[f]|l»dw 1 [(J,, ,,[f]\ drpn,l(wmn)

20t

= Z /V(w—l-u)lp dq)n+1 (w) = :‘I fl?’(m.—l_/u/) d(pwlm‘l (m)z
0 0

which proves (24).

Theorem &'. There is an integrable f swch that the sequemce
{n,ulfln=,2... diverges ot almost all points of the square 0o 2n,
IS 2n.

This theorem corresponds to Theorem. 5, but its proof is sim-
pler than that of Theorem 5, We only note that the terms in Jack-
son’s sums will be positive, and so the whole sum will be large if
at least one of the terms iy large.

9. The following proposition generalizes Lemmay of Chapter L.
.Theorem 6. Let

(25) Ho)~ S,6,

Jte—m0O

ond suppose for simplicity that | is real, that is Vo=V, Suppose,
, . ol o ‘
moreover, that the series 2 T converges. (This is certainly true
A=1
if feL?’, where p>1). Then, if s.(x) denotes the n~th partial sum

of the Fourier series of f, and I is any interval, whose length will be
denoted by II}, then

l
(26) n-{i m; L,y (2, f) du———s_,,(m)}a 0.

icm
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This shows that if the expression I, .(x,f) tends uniformly
to a limit g, when « remains within I, the Fourier series of f con-
verges at the point « to the value g.

The formula (2) gives .

(27) C Inulm )= 2 v () e,

k=—n
where

(28 y(n) —_ f f 1) e—ikt d‘pzn+1

Since, in view of (25),
f(t_l_ u) e—ik(t—i-u) NZ ys Gi(s——k) (l+u),

§=—00

the formula (28) yields the well known relation

2T
1 .
zz_nff(t"l'u) g ik(t) dtpzn_].l (t)'
0

(29) ) (0 Z‘ 7(2n+1)v+k glen+tywu
Integrating this over I, we obtain
V(zn+1)»+k
(r2) = Zenrprk
(30) fy (w) du=1y, |I| + 26 2 EnLi)

Yentivtr
=7 i+ 46, .2 ’ @nt1)v+%|

where ¢ and 6, do not exceed 1 in absolute value, and the dash’
signifies that the term »=0 is omitted in summation. From (27)
and (30) we deduce the inequality

—1—/‘1,,,“(90, 1) du—s,(x
1]

I .
which proves (26).

17,,1

III

Z—n-{—l

10. We conclude the chapter by a few minor remarks.

Let the complex Fourier coefficients of an feL? be y. In-
tegrating the formula

2 n
o J LalfPdo = 3 ()

k=—n ’
with respect to u# and taking account of (27) and (29), we obtain

2 2%

g | [ sl dua = 31y

A==—c0
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If s,(x) is the n-th partial sum of the Fourier series of f, then,
observing that I,u[f]—s»=Inulf—sa], We have

1 2 2:": o
9 . Y .
Z;;_Ef,f [In, u(ma f)*sn(w)|2du dw:::zz h’ﬂ, 2
0 Astr]-1
Thence we easily deduce the inequality
_00 2 2‘:1 , oo
va/ IIn, u"“‘Sn|2 du dx < 02/‘ ) h’,’ci\a
n=00 0 o

where C is an absolute constant. Similarly, if n4y.1/n,>>¢>1 and
m=1,

oo 2 2% ]
2‘ / / \Inmu—-snkﬁ du dr < (J,,Z' [y, log 4,
k=100 A
with C, depending on ¢ only.

The first of these inequalities shows that, if 2 1|y, <Coo,
then, for almost every translation u, the sequence I, ,(w, f) con-
verges to f(z) almost everywhere in the interval 0Ce<{2m. The
same may be said of the lacunary sequence I, ’k’“[f]’ provided that

the series '|y,*log 2 converges.
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Sur la géométrisation des types d’ordre dénombrable?).
Par

Casimir Kuratowski (Warszawa).

D’apres les théorémes classiques de la Théorie des Ensembles,
on peut faire correspondre d’une facon bien déterminée aux types
d’ordre d’ensembles dénombrables ordonnés certains ensembles de
nombres réels: c’est que chaque ensemble ordonné dénombrable est
semblable & un sous-ensemble de 1’ensemble des nombres rationnels
rangés selon leur grandeur (et méme, & une infinité de tels ensembles);
et qu’en outre, chaque ensemble composé de nombres rationnels peut
étre remplacé par un nombre réel, notamment, par le nombre réel
qui lui vient correspondre dansla correspondance biunivoque entre
la famille de tous les ensembles composés de nombres rationnels
ot 'engsemble de tous les nombres réels.

Nous allons réaliser cette interprétation géométrique des types
d’ordre dénombrable 4 I’aide de la méthode suivante, due & M.
Lebesgue et qui parait étre la plus simple possible 2).

Imaginons d’abord I’ensemble des nombres rationnels de l’inter-
valle 01 rangé en une suite infinie bien déterminée (composée d’élé-
ments différents)

(1) STy Py e Ty s
Soit ¢t un élément de I’ensemble @ non-dense de Cantor:

t_ﬂ+ﬁ+173__|_ (1"=0 ou 2)
3 9 271" ’

1) Présenté & la Soc. Pol. de Math., Section de Varsovie, le 9. X, 1936.
%) Journal de Math. 1905 (chap. VIII).
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