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La propriété (o) entraine évidemment la propriété (1); d’autre
part, il résulte des propositions (i) et (ii) que

(iii) 8¢ sy=¢, la propriété (A) n'entraine pas la propriété (o).

3. E étant un espace métrique, appelons mesure dans E chaque
fonction finie!®) non négative d’ensemble borelien dang E, absolu-
ment additive et s’annulant pour les ensembles composés d’un seul
point. Considérons la propriété suivante:

(f) Chaque mesure dans F s’annule identiquement.

On sait que la propriété (f) satisfait & la condition 2° (voir no 1)
et qu'il existe un ensemble linéaire de puissance ¥, jouissant de la
propriété (f) ). Par conséquent, il résulte de 1(i) que

(i) 8i s,=¢, il existe un ensemble de dimension n situd dans &
{de méme qu'un ensemble de dimension dénombrable dans K, et un
autre de dimension indénombrable dans ) qui jowit de la propridte (B).

Considérons enfin la propriété suivante d’un ensemble E:

(C) 11 existe pour chaque suite {#,) de nombres positifs une~
décomposition E=E,+E,+... telle que 6(E,)<a, (n=1, 2, ....).

On sait que chaque ensemble jouissant de la propriété (0)
jouit également de la propriété (8)15) et qu’il est de dimension 0 16),
Or, nous voyons d’aprés (i) que

(ii) 8 xy=c¢, la propriété (f) n'entratne pas la propriété (C) 17).

' 13) Cette prémisse est essentielle. P.ex. la mesure linéaire d’engembles
situés dans un carré n’est pas une mesure dans ce sens.

¥) W. Sierpifiski et E. Szpilrajn, Remarque sur le probléme de la mesure,
Fund. Math. 26 (1936), pp. 256—261. -

15). Théoréme de M. Poprougénko. Cf. E. Szpilrajn, Remarques sur
les fonetions complétement additives, Fund. Math. 22 (1934), p. 311 et Sierpinski-
Szpilrajn, 1. c.

) 16) (:Jar la propriété (O) entraine la mesure linéaire nulle et celle-ci entraine

la dimension 0. Cf. E. Szpilrajn, La mesure et la dimension, Fund. Math. 28
{1937), p. 85.

17) Une ‘autr‘e démonstration de cette proposition se trouve dans Iarticle
de M. E Szpilrajn, Sur les ensembles et les fonetions absolument mesurables (en
polonais), C. R. de la Soc. des Scienegs et des Lettres de Varsovie 30 (1937)
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Some theorems on orthogonal systems.
By
J.Marcinkiewicz and A. Zygmund (Wilno).

1. Let {gn(®)}n=12.. be an arbitrary system of functions ortho-
normal in an interval (a,b), that is
4
/ Pru@ndr =10

a

4
/ (p;z, dr=1
a

(For simplicity we restrict ourselves to the case of real functions @y.)

From the last equations it follows, in particular, that all the
functions ¢,(x) are of the class L?*(a,b). If therefore we consider
the Fourier coefficients

b
(11) 011:./ f(Pnda;I

of any function f, with respect to the system {g.}, we must, in the
general case, assume that feI’(a, b). Otherwise, the integrals (1.1)
may not exist.

In the case when the functions ¢, are uniformly bounded, the
integrals (1.1) exist for every feL(a,b). In this case, a number of
results have been proved about the coefficients ¢,. These results
generalize the well-known Bessel’s inequality and the Riesz-Fischer
theorem 1).

1y ¢f. F. Riesz [1]; the results are reproduced in Kaczmarz and
Steinhaus [1] and in Zygmund [1].
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In the present paper we intend to consider a slightly more
general case, viz. when the functions ¢, satisfy, for a certain »>2,
the mequmhmes

1w

(1.2) Umym)<mm

‘where the M, are finite numbers. When »=>s0, the left-hand side
of (1.2) becomes the essential upper bound of |p,)

By p=u(») we shall denote throughout the number satistying
the equation D ‘
' u+1jp=1.
Hence, following the usual netation, u=»'. It is plain that 1< p<2.
Under the hypotheses (1.2), the integrals (1.1) exist for feL'(a, b).

Theorem 1, Let

(13) n<p <,
and let g satisfy the equation
(1.4) wip + (2—p)lg=

Then, under the conditions (1.2),

(1.5) (ZM;"’M,”)( ( / |f|"dm)1”.

Theorem 2. Let
(1.6) 1<p<2,
and let ¢ be given by the equation
(1.7) (2 —u)p + ulg=1.

Ij the series X My Pl and D led* both converge, then there
s a function feL’(a,b) satisfying (1.1) and suoh that

s | (!/'[f|"dm> (2 M”{a,,]") N

n=1

If v=00 (that is u=1) and M1=M2=...=-M, Theorems 1 and 2

reduce to F. Riesz’s well-known theorems.

1) Cf. also Rosskopf [1]. ‘ ' | l

| Orthogonal sysfems - 311

If we use M. Riesz’s convexity theorems '), the proot of Theo-
rems 1 and 2 does not differ essentially from that of IF. Riesz’s,
theorems. Nevertheless, for the sake of completeness we give the
proof here, starting with Theorem 1.

In the first place we observe that p=2 implies ¢=2. Hence (1.5)
is true for p=2. If p=yu, that is g=oco, the inequality (1.5) is alse
true. It may then be written .

1w

o < M ( /?|f|." (Z:n) ,

a

Max
n

and this inequality is a consé.quence of (1.1) and (1.2). Let

M =D (2 > ( / m"“m) .

where feL'“(a,b). We have shown that

Fll

Mig12< 1, Mo 1

By M. Riesz’s convexity theorem, log M is a convex function
on the segment joining the points (1/2, 1/2) and (1/x, 0). (It will
be noted that this segment lies in the triangle 0 <<a<<1, 0<f<a).
In particular, M. <1 for every point a,f of that segment. The
equation of the segment iy (1.4) if we replace there 1/p by a a,nd
1/g by B. This completes the proof of Theorem 1.

Theorem 1 remains valid, and its proof unaffected, if the in-
terval (a, b) is infinite. We observe that, if feL” (a,b) and. p satis-
fies (1.3), the integrals (1.1) exist. For oneL"(a,b) and onel’(a,b).
Hence, by Holder’s inequality, @.eL” "(a,b) if 2<p'<». This gives
the integrability of the product fe. over (a,bd). :

We now pass to the proof of Theorem 2. Let

N
(1.9) , f(ac);:l. i. L m. _2 c,,gv,l(m),
where L. i. m. denotes lumt in measure, By the. Rl&SZ-FlSCheI' theorem,
it Y ¢ converges, then f(x) exists and belongs to I’. Moreover,
f satisfies (1.8) for p=2. : :

1) See M. Riesz [1], or Zygmund {1], 192 sqq.
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If p=1, the relation (1.7) gives q=y/(,u-1)-—-4, and (1.8)

" takes the form
b

1/v of
(firas) "< 3 o,

a n==1

In order to prove this inequality, we observe that if f is defined
by (1.9), then )

1< Nleard=_" (leal H)™ (e M,,)”"’Il,q}—"

1

(‘2' |0”[M“ M)l,uﬂ
! Mu

n

‘t

<( e M,.)”

We have not yet proved that f exists. Let S(x) denote the right-

hand side of the last inequality. If the integral of S"(z) over (a, b)
i finite, then the series >'c.pn(2) is convergent (indeed absolutely
convergent) almost everywhere, so that f(x) exists. But, on account
of (1.2),

( fb 8 () (lm)l wg (2‘ M,,)l : (2‘ (x| M,,)I/ﬁzzv |Cal M.

Hence (1.8) is established for p=1.
Let

b =%}
(1.10) M, =Max( f 1 d) ( >
= Moz , If'" de :

n==

Cn

Oﬂ

e 4]
o, M'z')"
where we take into consideration all the sequences !¢} for which
the denominator of the ratio is finite. The class of such sequences
will be denoted by G.. If 1ja=2 and 1/8=2, or if 1l/a=1 and
1/8=v, we mean by f the function (1.9). We have then ‘

(1.11) Mip12 < 1, M. < 1.

Let 1 denote the segment joining the points (1/2,1/2) and (1, 1/»).
(! lies in the triangle 0 <<a<{1, 0< B<a). By M. Riesz’s convexity
t‘;heorem, the linear operation which transforms the sequence {¢p/Mn}
Into-a function f, and which is so far defined for {¢}e¢®; and {c,) €G1a,
may be extended to every . where 1/2 <<a<{1. If the point (a, B)
%1e,s on I, the number M.; defined above is finite; moreover, log M
is convex on l. This, in connection with (1.11) gives M. <1 for the
points on I. Hence (1.8) is established. l
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It remains to show that we have (1.1). Let s,=¢,¢+...4- 6,0y
The linear operation which we consider is additive. The relation (1.8)
applied to f—s, gives

4 1
[fo-sraf

i. e. {s,) tends to f in the mean. Hence f is again defined by (1.9).

The condition of the convergence of the series Y |e,f* has not
so far been used. Taking it now into account, we see that the fune-
tion f defined by (1.9) belongs to Lz, and that

c‘ov 9 Up
2 ’G"in -"[lz;—p) I

n=N+1

b .
/ lf —s,[* dw—>0

a

as N —»oo,

Hence, if N>n
”- b
/ f(]J"dﬂf:/ (f—SN) tP,,dm—}—cll:g",

a a

for

\./Q(f“SN) rpndw} < (f }j_SN\‘Z da;>“ (&./'bq;fl da;)—>0 as§ N—oo,

a

This gives (1.1), and so completes the proof Theorem 2.

2. Tt may be asked how far the hypothesis of the convergence of both the
series ) le, [P M2 P and Yle,/* is indispensable for the truth of Theorem 2.

Ttis plain that if the numbers M, are bounded below by a positive constant,
the inequality > le 1P M2 P<oo, implies 2 lo,[P<<oo, amnd so also > ]an2<00.
Hence the condition of the convergence of the series 2len)* may be omitted
in the statement of Theorem 2.

This is, in particular, the case when the interval (a,b) is finite. For then,
by the well-known theorem on the mean values of integrals,

b v by ,’\
(L [ ) >/(,,—i—ah/b|m,,1‘l w) =

) i vy
ie M, = (—a)2

It the interval (a, b) is infinite, the situation is different, for then we may
have Mn—>0. In that case, it is possible to find a sequence {cnj such that

(2.1) ey MyP oo, Slle,l'=co.
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The first of these relationy implies, as we have seen, the existence of a lunetion §
defined by (1.9), and satigfying (1.8). Bub if we try to prove that / fulfils (1 [)’
we encounter difficulties. ‘ Co
' The function f belongs to L7, so that the existence of the integraly (1.1)
Iy certain only in the case when the ¢, belong to the conjugate clasy L’"(w', Z)

where p=gq/(¢g—1)<<2. But the relation ¢, elP(a, b) ix not necessarily truo’
The functions ¢, belong to L¥a,b) as well as to L'(a,b). Ience they belong to
every ‘Ls(a, b), provided that 2<s<». Since (q, b) is infinite, this does not neces.
samly' imply ¢,eL (a,b) for p<<2, and 80 the existence of the Fourier coefficients
of f is not assured. -

) We shall now show that there exists an orthonormal system lo,), and

n P nty G

a sequence {cn) satisfying (2.1), such that if f is defined by (L.9), one at least of
the products fp, is not integrable. : ' ’

_Leﬁ r{,(m), where n=2,3,.., by the sequence of Rademacher's periodic
functions, i. e.

°

(@) = sign sin (2717 4) (oo <w<loo; =2, 8,...)

Let {e,} n=2,3,... Me 4 sequence of positive nuwnbers tonding to 0 and such, that

o
2.2) D) o,

n==2

For n=2,3, .., we put

2.3), ¢, (#) =0 /————E" P
=Yl e () (m—1le] m; m=1,2,..),

where the numbers 0, are so chosen that the integral of 97?' over (—00,00) ig
t

equal to 1. H —1/2, i
n(llmlber A>Ofance On—>2 In particular the 0, are bounded below by a

‘Wé add that the 9, (n=2,3,..) are odd functions.
Let

s
ba)=)] ¢, (@).
n==2
The series ‘o'n the right converges ﬁniformly, as is seen from the inequality
p,<0,, 252 and from (2.2). Let

Mo)=1 it @(x)=0, Ma)=—1 if &(=)- 0.
Let {6"!} me=1,2, .. be a sequence of positive numbers which will be defined
presently and such that 2 6%"= 1. Let

(%) = 8, h(x) (m—1lgu<m; m=1, 2,..),

| Py (~2) = ¢, () (- 0).

Tt i ; ‘
1s easy to see that the sequence ®1(®), @y (@), ... is orthonormal on (+—00,00)

(Since for n==2,3, ... the i
ovor (e va,nmh% products Py q::"‘ are odd funethns of x, their integrals
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_Let ¢j=c¢y=...=1, and let correspondingly [(@)=g(r)+g,{w)+... On
account of (2.2) and (2.8), we may suppose that the series _-\:|c”]” M'f,‘” converges.
(=]

We shall sghow that the integral .f'jqzld.a does not exist. (This will imply the
0

o
non-existence of f foide). It is sufficient to show that
- R .

(24 [ 8() ¢, (@) de=co,
. 0

where @(x)=f(x)— @, (@)=, (®)+p5(@®)+ ... The latter integral is equal to

o0 m o
(2 N (| e |/
‘(-"5) 2 m 2 Cn 7?7,1+ﬁ" 9:'71 (.27\

m=1 m-—1 n=2

dex.

If is well-known that if a,, ¢4, ... are arbitrary numbers, then

1. o0 1' ) 9 19 oo 12
‘ oy Y Y
Dl | D emio| ) =5 D)
i n=2 0 n=32

n=2
where B:-0 is an absolute constant!). Hence the sum (2.5) is not less than

o (=]
\' ' n
(26) 4B D's, ( 2 m1+s,,)

m=1 n=2

12

Now observe that the series

[oe) o0 (==} oQ

(a2 12

m==1  ‘n=2 n=2 ‘m=1

diverges, since the sums in curly brackets tend to 1 ag n—>co. It follows that we
can find a sequence {dm} such that 2 X 6;’;1=1, and yet (2.5) is infinite. Hence,
we have (2.4). - ' B

3. In this paragraph, we generalize Paley’s theorems on ortho-
gonal series. Unlike in the case of Theorems 1 and 2, the changes
which have now to be made in the proofs, are not quite trivial,
and the reason of this is easy to see. Let us take, for example,
Theorem 3 which follows, and which reduces to a theorem of Paley
if v=oo and M,=M,=..=M 2). Paley proved his theorem first

1y (f. e. g Zygmund [1], 129.
2) See Paley [1], or Zygmund [1], 202 sqq.
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in the case of ¢ integral and greater than 3, and then interpolated
by means of convexity theorems. This could be done, since the
theorem is obvious for ¢=2, and every ¢>2 is contained in an
interval (2, g,) where g, is an integer greater than 3.

In our case it is plain that we must restrict ourselves to the
values of ¢ not exceeding ». Otherwise, the function f/ may not be-
long to L’ (Take the simple case ¢=1, cy=¢=...==0). If »>4, and
if the exponent ¢ is integral and satisfies the inequality

4L g<y,

the proof of Theorem 3 follows by an argument which is a modific-
ation of Paley’s argument. An application of convexity theorems
gives (3.3) for every ¢ such that

2SS Q<

?vhere g, is the largest integer <<v. If v<(4, the previous argument
is not sufficient. Nor can it be applied if » exceeds 4, but is not an
integer. The case ¢, < g<v remains then open.

Theorem 3. Suppose that

2 qg<y
and that the series 4 ’

22 -

(3) Nara

n=1
converges, where the M, are defined by (1.2). Suppose moreover that
(3.2) Mi<M<.<M<..
Then there is a function feL’(a,b) satisfying (1.1), and such that

v v—1 . 1
o} (9—2) pranc) (g—2) /g
“n 3

(33) (f]flq dw)lvq g 'A.q:” (2‘ ’cnlq Mn

n=1

Here -A..q,v _depends on g and v only. If by A we mean the least
number satisfying (3.3) for all sequemces {c,), then

y—2

(3.4) A< A
v—g

4

where A is an absolute constant.
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Theorem 4. Suppose that
p<p<2
that feL”(a,b), and that we have (3.2). Then the Fourier coefficients

e, of f, with respect to {@,), satisfy the inequality

o v v— ) b ‘
(3.5) (2‘ lea!” M:T:é (P—'Q)n;,':%(p~2)>1/p <B,. ( /[;f[" dw)w-
n=-1 a

The constant Bp,» depends on p and v only. Moreover
(3.6) Bp,»= Ag,vy
if p a,mi q are connected by the equation 1/p+1/g=1.

The order of the functions ¢, within the system {p,; is plainly
irrelevant. If, for example, M,—>oco, We may change this order so

as to have (3.2).
4. The proof of Theorem 3 will be based on the following

Lemma 1. Let

n—1

‘Z"‘.:l 2’":1 1'_1:2 G2 m(q_m
@1)  Ba@= 3 qu@,  Cn=lalf Wi
fepm—1 p=gm—1
for m=1,2, ... Then, if
(4.2) dy/(v+2) < g <
we have
4 ’ 12 12 o hea |m—nl
(4.3) [10n®,|" dn < On' Cn* 27227
a

In order to simplify the notation, we supress the range of sum-
and suppose that % varies between 2" and 2" —1,

iha,tion in sums,
and 2"—1. We also suppose that m<n. Then,

and 1 between 2"
by Holder's inequality, ,

Bl < (S D e 2 )< (S M (e M)
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Using Holder’s inequality again, we have : We now suppose that m<n; to the case m=n we shall return
o ,7,_(’ a little later. From (3.2) we have
/ @mdjnlq 2d-’ﬂ< (2 l(zkl Mk)ou < ‘2 IGhIJV.[Iz o n"P}eIldﬂ')b (/l(b ,Z”“‘1> 2w M, < Mom_ 1 < Maona Ml
R n w1y
@n o N ‘
7 ‘ and so, applying (4.4), (4.5), and (4.10
(2 !wlek) (/ 1@, dm) , , applying (4.4), (4.5), (4.10), |
where ‘ t 1o a2t 2 il VAP T e
. (411) [ 10u @ a0 < O3 03 D Y
1 =qv[(2v—q). ) / ! > ) “>‘ )

We may write .
¥ ‘ For any integer r>0 and any a>0 we have
voog—2 g—2 p—1 2(11_-—1]) g2 -1

\ " Iolfl M, = lck‘ JW_—.T/GT.:E Mz(::—‘l)] q =2 , 2’j]
2 2 H (4]2) B 2‘ jma < (21'*1)—55 21’—1=2(rﬁ1) (1— u),..
so that, by Holder’s inequality, J=2 ' .
v : ) 'm{ . 2‘ =t We apply this inequality to the sums on the right of (4.11); the
( 4.‘5) ( 2‘ o4 M;,)q (11 2 ( 2 M"H“ B ,; e ‘ inequality (4.3), for m<(nm, turns out to be a consequence of (4.11).
: : s : Suppose now that m=n. In view of Theorem 2, we may write
The.inequalities (4.2) imply that 9 p\7P
g (4.13) 143,,,1 d < (2 |ck|” M, "’)
x 41 .
Let
(4.6) (2"*/-4)/291—!“,“/{11:1, Here p is given by (1.7). Therefore
» (r—2) . »(g—2)
80 that p:qu—E:—f" 3_p=§~ﬁ(~q——p'
4.7 p= q(v —2)v(q —2), 1—py=—2(v—q)fr(q —2). In other words,
From Theorem 2, we obtain 2=p= ”((q _hT) ¢
: q
: a2 o a2, If follows that '
(4.8) (/ |, d«”) < <21 c?‘M?'"“)I p. t follows YD p (o or=lp o o v=ip
,” Dl M7= Dl M= 7% 20k =2a
In view of (4.7) and (4.8) we may write . "2 2—> ;_;(,, —2NP T v, —(—2) (q-p) 7
‘ v—1 P _A—q) _ i (2 lowl" " ) (Zk
4, 9 cl M‘l'—m — Dy — 2((]* )?‘ ﬁ(q—z) 7 »(g—2, 'u-«Z(q —2) & { )6 3 "
( 2 2 M l "M 2] 2021,,,(2/70”1)0 plgGﬁ’,"-
_2—q) g _ 1’—1 oy Pt q;[—pl .
< 0”‘“’(2 M, 7@ = 3 )Z,‘.Tp‘,) From this and (4.13) we conclude that
b
o — Dy ' q
{’ q/2q, Z(H—q) g 1 q2 f’k . / [@ml d.%‘ < Om,
(410) (f [cﬁ,,[mdw) <O Su; envag v—z(’"‘)qu) " d
a

so that (4.3) is true also for m=mn.
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Remark. If
(4.14) < dvf(v+2),
the inequality (4.3) must be replaced by

b 9 12 12 [1“__2 (q-2) |m—n|
/l@,"@,,lq'/ dmgcm 0" 2

a

(4.15)

For we have

fiewonrao fimar™ (ot

where ¢ =2¢/(4—g¢). The condition (4.14) implies that 2<¢<».
Hence the last two integrals may be estimated by means of Theorem 2.
We omit the calculations here, since the inequality (4.15) will not
be required later.

5. We shall now prove Theorem 3, beginning with the case
of ¢ satisfying (4.2). We write

v——q
A= 29—29

and suppose that

(5.1) r—1<g<r,

where » is an integer >3. Let § denote the sum of the series (3.1).
Arguing as in (4.9), we find

* 2

20? (ZM, =y

I=1
From (3.2) we see that all'the M, exceed a positive constant.
It follows that the last series converges. Hence, if § is finite, so is
2 6. By the Riesz-Fischer theorem there is a function fel’
satisfying (1.1), and we have only to prove that f satisfies (3.3).
The series ) ¢,p, converges in the mean to f. We may write
b

flfl"dxs[ > |¢mi)qdm—._ (21@,,4) < (2|¢m[)dm,

m m

)(tl—’) q

sinee, by (5.1), ¢/r<1. Let
l¢mlq“l‘. = Tm .
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Then

.b
5.2) [Ifdn

a

[ 3

4 my.m,

m,. dm,

(%‘F )dx

where the m; vary independently from 1 to oco.
We may write

/ glml ]lUmz T’"I CZ;CI}'_/ H !.pml ‘g’jmk)l 2(r«—l)dw

a ilt=1
=k

Let R=r(r—1). An application of Holder’s inequality with R
exponents, each equal to R, gives

4

[ oy . ‘Pmrdw<[]{/ yfmlg/mk) dm\ _]]]/idi Bl dm

i, k=1 'a i, k=1 @
ik 1#11
12R 2R o— 2, |my—my|/R
<?[Cmi Omk o % lmy—my
i, k=1
1=i=k

S/ 0},.‘;{[[ Tt
k#x

i==1

in view of the lemma. We take into account (5.2) and apply Hol-
der’s inequality a,ga,in. Then

/quw <2 l]]al”ﬂz—%q%m,—mk]ml

..... m,. i=1 k—*l

< [[ .2 Omi Uo—valmz—mu oo
i=1 my,.., k=1
k=1

The sum in curly brackets may be first summed with respect
t0 My oy Mimyy Mgty ..., My, and then with respect to m.. In this way
we easily obtain ' )

(5.3) /m(l ar < (2 Gm) (Z g2 Inl (r-l)) r—1

me=1 n==-—00

Fundamenta Mathematicas., T. XXVIII. 21
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Let £ be any positive number lesy than 1. Then

ol 2 43
g2 4 8
> < <TTog T

n==—00

We put £=24,/(r—1). From the definition of 1, we see that
0<<é<<1. Hence, observing that 21,<1,

(Nl [B—1)"_ (8g) [8(r—2) \"
e < B <) = ()

Y— }
- p=-o00 g

. From this and (5.3) we deduce the inequalities (3.3) and (3.4),
provided that
¢* <q<v, where ¢*=dv/(y--2).

We have v—g¢*=»(r—2)/(v+2) so that 1<(r—2)/(r— ¢*)<<2. From
the inequality ‘

Y2
<8¢ (¢" < g<v)
‘we obtain, in particular, that
y—2
Aq*,u<8;_q*q*<1ﬁq*<64.

Let c(x) be a function equal to c,MY" 25 VCD v ok
(k=1, 2, ...) and otherwise quite arbitrary. Let y(2) be the function
constant in Qhe interior of the intervals (k—1, k), and having
a jump My>CTP 200D op the point #=k. Then

T o B o S
Dl ="k = [le@) dy (@),

where the integral is a Lebesgue-Stieltjes integral. The funection

H(@)=3}¢,p, is a linear transformation of ¢(x). By M. Riesz’s con-
vexity theorem,

log 4,~log Mox {177 ae)" ([ e @)y (@) ”“}
g a convex function of 1/qin the interval 1 <g<v. We have 4,,<1,

A < 64. Hence 4,,<<64 for 2 <q< ¢*. In particular 4,, is finite,
80 that (3.3) is established for 2 < g<». If 2 ¢ < g*, then

- ~2
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This proves (3.4) for 2 << ¢<<» 1). The value A=32 is of course
too generous, but we are not interested in the best possible value for 4.

6. Theorem 4 may be deduced from Theorem 3 by a familiar
argument. Let us fix an integer N>0, and let

o2 e
p—1 s pv—20 7y = 4
v,=le,l signe, M, n (n=1,2,..., N),

N
9=,

n=1
Then
N v r—1 N b
- ) e B A ] S .
Y pyyr—2 v—2 Y
e, n =0 v,=[1gds
n=1 n=1 a
(6.1)

;o tpy L
<{fipas)"( flaras) "

a a

On account of Theorem 3,

b . N » v—1
. 1/q ] ¥ —5(g—2) ,‘T;T_(Q’"-") g
(/ |g|q dm) < A"lv" {2 |yn|q Mi i n ? }
‘ﬂ n=1
N

v r—1
o (P2 S (p—2)\ 1/
=dg Dl 7 Y

n=1

From this and (6.1) we easily derive (3.5), in a slightly modified
form: the sum on the left is taken from n=1 to n=XN, and not from
1 to co. The exact formula (3.5), with B,,=A4,,, follows on making
N —>co.

A special cagse of Theorems 3 and 4 deserves attention, viz.
when the integrals (1.2) are bounded. We may then suppose that

(6.2) M=M,=..=M.
Let ¢f, ¢, ..., ¢, ... denote the sequence |¢, ey, ... Tearranged

in descending order of magnitude. Since we may change the order
of the functions @, within the sequence {g}, we have

1) For the case »=oo cf. Verblunsky [1].
21%*
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Theorem 3'. If, for 2 < q<<v, the series -

oa r—1 oo g2

- w2 o
(6.3) 20}',“’% = Sc}‘,“’n .

n==1 n=1

converges, then there is a function feL'a, b) satisfying (1.1) and such that

v g2

(,_/?lf|"dw)1"".<Aq,v = {20

a . n=1

(q 2>lW

Theorem 4'. If u<p <
cients of an feL”, then

<2, and 6,0y, ... are the Fourier coeffi-

b

(fira)”.

b ' (2—p)
21 (e lP o)
S n " <, 2

n=1

The constants 4,, and Bp, are the same as those in Theorems 3
and 4.

Let S denote the sum of the series (6.3) and & the sum of the
, Where p and ¢ satisfy (1.7). It is not difficult to ‘see that

3

(6.4) Slagor @,
In the first place,

Py —2 ‘
K T = Eral= i
Now, '

oo 2Nty ¢—2  g—2 oo

S_ZZ * 9'”]”<22"“2 *9 2Nq"p
N=0 n=2V N=0
-2, = -q/
<22~“(2'c;}327) o ( +2 *”2”’“)
N=0 N=1
o 2N gp 3 o0
<2H’(*” + Ecn) <2 “(22‘0 ) ,
N==p g1 n=1

which easily gives (6.4). Theorem 2, in the special case (6.2), turns
out to be a consequence of Theorem 3', although in a less precise
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form: into the right-hand side of (1.8) we have to ihtroduce a num-
erical factor 4,,2°® ", which depends on ¢ and » only. A similar
connexion may be established between Theorems 4’ and 1 1).

7. Theorem 5. Let ¢>2 and suppose that the series (3.1) con-
verges. The numbers M, are supposed to satisfy (3.2). Then the series

(7.1) 2 0y Pu.

n=1
converges almost everywhere for every rearrangement of its terms. If

-]

(72) . 2/ onk (pnﬁ

n=1

is any rewrrangement of the series (7.1) and if

k
S*($)=M3,X|2. €y, P
=1

then

b v—1
(g5 -D;—

(7°3) 1 *”(m)dr <A;,,2 le? M, 'm 2,

a n=1

where Aj, depends on g and v only. ,

For y=oo, M,=M,=...=M, the theorem was established by
Paley 2). The convergence almost everywhere of the series (7.2) is
an easy consequence of (7.3), and so it is sufficient to prove the
latter inequality.

Let 8n, where m=1,2,..., denote the series the terms of
which coincide with the terms of the serieg (7.2) at the places where
"L mp<<2™—1; the remaining terms of the series 8, are equal
to zero. Let Smx(z) be the k-th partial sum of the series 8., and let

Sh(x) =Max |Sm,x(2)..
k
Then '

(7.4) 8* () < 8F (@) + 83 (1) +...

1) Cf. Paley [1], or Zy gmund [1}, p. 206.
2y Paley [1].
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Lemma 2. Let

G(t)= Max )ud,,f/),,()l

femeaN—1 1=
Then, -if ¢>2,

b / e Y (4 -2\ 1/e
( Gq(fv)dm)l <K, Z 2 (2 ,d“|tl v g(l ) 1

n=1
where K, . depends only on ¢ and ».
The proof which follows is almost identical with the proof
of a lemma of Paley’s paper. Let

me N2

¥ 2, m 2 dn q’n

n=(m- 1)21\"1“

¥ ()= Max ¥, . (w)].

Tsms2?

(0<AKN; 1<m 2%,

Hence

G(o) < }3"  (@).

A==()
Now, in virtue of Theorem 3,

P

i b
/ ¥i(w)de < 2' /|Tﬂ. ()| deo

m=14

24 r—1 (—2) (V—2) maN
g gr—2 T (g2
< D42 Z[d“r’M !

m=1 Il—(m 1y )N—'Z+1

—2)
2 i,

n=1

- Y —2)
a0

By Minkowski’s inequality

Z(/ 1 () dw) !

=0 @

N -1
=

b

(o' aas)

a

l)l-l——— vl oy 1/g
<4y {2|d,.l” = 2’l

=0 n==1
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This gives Lemma 2 with

r—1g—2
c)"_;—"é q q
By === q—2 Agr <O g—2 Agry
or—2 ¢q —1
where C is an absolute constant.
Lemma 3. For every ¢>2
b hl
P 2 —A Im—u[
(7.5) (8585 @ < Lo O €17 2
a

where L, . and Aiq. depend on ¢ and v only, end the C's are
defined by (4.1).

Let O<Q<1 be a number which will be fixed later. Then

b
(1.6) [ 878" do= | S;’,‘,"“‘f” >SRN
()

¢ a

e (1-+8)2 )
) —AB,

) b
[ T2 kg (1) ¥ /(16
<| [ 8: dz) ( [ S CHOgRaitD gy
’ a

a

say. Let k vary between 2" and 2"—1. On account of Lemma 2,
—t
;b (1—b)2 g [ lm=1) 5 (g—2) ( )T
(1) A<([Swas)  <EgRTT = 2\dﬁM""’ i
gKg’:H)q.ZGSI—H) 2.
On the other hand,
e (P — i/
85(2) < Zley ol < (Zle I (e 1o
Thence, applying Holder’s inequality, we deduce
b , g6, v(1+6) ‘ (1+46)2
BRug ¥—1 ” *q;(1+6)
(1.8) B<(2’ck1M i 2l 874 da)

a

<(ZlcklM ) {/ 2 |Ck| .Mm(’_l)lq)k\ )dm (/S*q, )‘7'2‘71 .

< Stegsf{ e 5.3,
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say, where we write, for short,

7.9 N LA

( ) QI V + 0(,‘}_(1) .
On account of (4.5)

q—1
—q g2 r—1 !‘.2—('

(7.10) Bl=<2‘10k|Mk)q0,2<0z12<2‘MZ—5T':Tzk‘%m;jﬁ

Let us assume that ¢,>>2; we see that this is true if for ¢ we
take a sufficiently small value. Moreover ¢, <q<v. If the suffix I

. 1 .
varies between 2" and 2"—1, we may write (cf. Lemma 2)

v—1q—2 ¢

b © 7 y
* g*a \a:2qy 2 N e v s (q—2) /24,
Bz:(./ S 'dm) <K, 2 2 a l{ > le® M} 2 } .
a

To thg last sum we apply Holder’s inequality so as to introduce
the expression C,. From this and the inequalities (7.6), (1.7), (1.8)
and (7.10) we obtain '

r—lg—2¢q

b

" a2 o*qi2 —)g.2 p g N A2
/Sml/ anl dnglgfp a quz CIII',A (11/2 0 v=2 q 2
a

qu ¥ ‘n o~

g—1 o
2 v—q _g—21—1 55 2 i a—a)
X {

e (v S b R ey
3y, e z} {E M, 2 = z)q—--m} 2(]_ )
If m<n, we obtain, using (3.2)

b -
. — O
* . g2 1—) 9 9 9 g~ (n—m) L—? 5
[ (8 87 dn <KL K92, 12 b2 =
a *

AN

o ;)I:fe the value 0:0%.” has bgen f%xed, ¢, becomes a function
of ¢ and », and' the last inequality gives (7.5). For m=mn, the
Inequality (7.5) is an easy consequence of Lemma 2.

We shall not investigate the order of the constants L, , and A

g, Ve

. We are now in a position to establish Theorem 5. We start
with the mgqua,]ity (7.4) and apply to it the argument of the first
p_amt of sefztlon 5 of this paper. The argument is now even a little
simpler, sinece the inequality (7.5) is established for all ¢ interior

to the interval (2,+) and so no interpolation by means of convexity

theorems is necessary. The expressions 8% play now the same part

as the _functiops Qi,,,'in section 5. Instead of (5.3), we obtain an anal-
ogous Imequality, with |f| replaced by 8% and 1, replaced by Ag,vi
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moreover, on the right-hand side will appear the factor L, .. This
is, in a different notation, the inequality (7.3). Theorem 5 is thus
established.

8. If in Theorems 3 and 4 we interchange the »dle of the
function f and of the coefficients ¢,, we obtain theorems which are
also true. These new theorems will be stated in a moment.

Let {p,} be an orthonormal system in an interval (a,b). We
assume for simplicity that (a, b) is of the form (0, A), where
0<A<oo. This is no restriction of generality, unless (a, b) is of
the form (—oo, co). It will be convenient to suppose that A4=oco.
This we can always do, for if ' A<{co, we may extend the defini-
tions of f and of the ¢,, by putting f=0, ¢,=¢,=...0 in the infer-
val (4, oo). .

For any given f(x), we denote by f*(x) the function equimeas-
urable with |f(z)| in the interval (0, co) and non-increasing. The
theorems we intend to prove may be stated as follows?).

Theorem 6. Let q=2, and let f(x) be defined in (0,00). The
Fourier coefficients ¢, of f with respect to {@ ) satisfy the inequality
O?‘ 9 te ~ °°* (g=2)/u
(8.1) ( ]! M ") gAq,,,(ff L Ul dm)
1 ]

n=

1/q

The coefficient E(,,,u depends on q and p only and satisfies the
inequality
(82) A, < Ag/2—p),

" where A is an absolute constant.

Theorem 7. Let 1<p<<2 and suppose that the series Y |c,]” My ¥
and Yle” are both finite. There is then a function | satisfying (1.1)
and such that

> , 1p o?‘ ,_\VP
(8.3) ( [ 2P dw) <Bp,,,(2 leaf” M;"’)
6 n=1
where INB,,,,, depends on p and p only. If 1/p+1/g=1, we have
(84:) Ep,;:,'———gp,‘u-

1) For the case r==co0 cf. Verblunsky [1] and Zyginund [1], 208.
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Theorems 6 and 7 hold, a fortiori, it we replace there f* by |f,
but the argument we apply below seems to require the use of f*
even for the proof of the weaker results just mentioned. The reader
will also note that the numbers M, are not supposed to satisfy (3.2).

We add that Theorems 6 and 7 hold in the case when the
system {p } is orthonormal in the interval (—oo, co). By f* we
must then mean the function which is equimeasurable with [f],
even, and non-increasing in (0, c0). The integm] in (8.1) (and simil-

arly in (8.3)) must then be rcpla,ced by / LT . The proofq
undergo but little change. -

Finally, we observe that if 2 ?"¢L (0,c0), the Fourier
coefficients of f with respect to the functions ¢, exist. This follows,
in particular, from the argument with which we prove (8.1), but
can also be established independently. Applying Holder’s inequality

h =) - b

. "k =) . .
to the integrals / f“dx and / fdx so as to introduce the integral
h

/ 9P, we obtain at once that f*eL' (0, h), f*eI*(h, o0), what-
ever h>0. In particular, if ¥, and K, denote rcspeetlvely the sets
where [f| >1 and lﬁ<1, fl" is integrable over B, |f* integrable
over E,. Since g, eL”(0,00), the product /e, is integrable over f,.
Similarly, the relation ¢, el (0, 00) 1mp11es the integrability of f @,
over E, Hence fo el (0, o), and our assertion is established.

Lemma 4. Let f(x) be a function non negative and mnon

uncreasing in (0, 00). Then, for any pair of integers r and s
(—oo<r, s<<o0), and any q> 4,

(8:5) ZMH’\ f%dw\ \/ fqo,,dm\ <2012, 02 2 i,

n=1
where
ortl
Cr= / 19 D g
2"
|

This lemma is an analogue of Lemma 1 (obbcrve tha,t —_— ‘}; = 712 L)
P v

but now we do not suppose the inequality ¢<<» be to satisfied.
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Let I,, denote the integral of fg, over (27,2"F). Fivst of all,
g+l or+1 g
I, <7 [lglaz < £  [lo, da) "2 < pny 2,20

or or

We write ||?” [Lou|">= [Lnal”* [ Lsa 2 | Lsal. To the first two
factors on the right we apply the previous inequality, and observe
that, by Bessel’s inequality, |Isi*+|Isof* +... does not exceed the
integral of |f* over (2°,2°™"). Hence the sum in (8.5) does not exceed
(8.6) (N2 (2 TR ) 2

On the other hand, we have

9P o1 ’
(g - ___,.‘1:1
B1) FEYT < o= [ 0 gy < 20 0T,
,r—l Zr-
since, for a >0,
2"
'w—ndv g pr—1 9—(1-—1)11 — =1 (1—a)
:)r—l

Applying to (8.6) the inequality (8.7), and the corresponding
inequality for 7(2°)2°", we obtain (8.5). The lemma is thus
established.

We shall now prove Theorem 6, starting with the case when f
is non-negative and non increasing, and ¢=4,5,... The argument
will be similar to that of the first part of section 5. We write

ea  gnitl
‘ —/f«p,,dm-z 1o,z —20 :
m=-—ca 2™ m=—-00

say. Let Q=g(¢—1), 4 2{%—%, and let S(r,s) denote the sum
in (8.5). Then

g'lc,,l"iu,,“’<2M”— 2| ) 2 210,:1,' o

n=1 n=}1 m=—00 my.aiy n=1

By Holder’s inequality

[+
— iy —21 T
2 M:Zx q Icm, . ql <][\SII My ,mk)\ Q<9'I][Gl q { ’ ?) s | Q}_

n=1 i, k=1
A k:t:l
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Finally we obtain the inequality (analogous to (5.3))

* > g g—1
Sl < ou) | ey

n=1 M==—00 =m0

This is the inequality (8.1) which we have thus established
for f non-negative and non-increasing, and for g=4,5,... For these
values of ¢ we have also proved (8.2).

We now pass to the proof of (8.1) for general f, and ¢=4,5,...
Instead of (8.1) it is sufficient to establish the apparently weaker
inequalities

N e :
(8.8) Mol < Ay [P (N =12,
] 0

n=

for from this we obtain (8.1) on making N —> oo,

We make the following remark. Let us suppose that (8.8) is
established for every function f(x) of a sequence {f,) converging
almost everywhere to f. Let us also suppose that lim ct=c

k

fo? n=1,2, .., where ¢} denotes the Fourier coefficients of f,
with respect to ¢,. Then (8.8) holds also for the function f,
provided that

(8.9) [RI dy— [£1 72 gy
0 0

We add that if f,(»)-> /(z) almost everywhere, then f¥(z) —f*(z),
except, perhaps, at the at most enamerable set of points of discon-
tinuity of f*. ) :

.(a,) Now, (8.8) is certainly true if f is a non-negative step-
function assuming only a finite number of values. For in this case
we may rearrange the order of the intervals of constancy of f so
as to obta,in_ a non-increasing f. At the same time we transform
the system {g,} into another orthonormal system. Hence, in the

case considered, the theorem is a consequence of the regults already
established.

(b) Let f be boundgd and vanishes outside some interval (0, 4).
We have then f(»)=lim f,(z), a,,——“likm ¢k, where the f, are of the

1

form (a). We also have (8.9). Hence (8.8) holds in case (b).

(k —> oo0).
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(¢) Let f be an arbitrary positive funetion. Then f{z)=1im f,(z),
where the f, form a non-decreasing sequence and have the property (b).
By Lebesgue’s theorem on the integration of monotone sequences

we have (8.9). By the same theorem, lim ¢¢=¢, (we consider separ-
k

ately the sets of points where ¢ >0 and ¢,<0). Hence (8.8) is
true again.

(@) In the general case, f=f, —f, where f;=Max (0, f), and
f,= Max (0, —f). Correspondingly Gn=Cn—Cn, and by Min-
kowski’s inequality

\ — lq 2 7 lq v 2 71 g
(3 e "< | 3w+ 3 e}
- 1% N V- St
< Aq““( / flkqm((l—l)«/ldm) +-A-q,y< / ﬁ«qm(q 2). diﬂ) <
) 0 0
< 2AN,,,,,( / ' i 297 dw) .
(‘) .

Hence (3.1) is proved for general f and ¢=4, 5, ... In order
to extend the result to the remaining values of g, we replace, first,
F* by If| in (8.1). To the new inequality (which holds for ¢g=2 also)
we may apply M. Riesz’s convexity theorem. This theorem gives,
in addition, (8.2). Tf we now wish to obtain (8.1) (with f*, and not
|fl, on the right), we consider, as before, the cases (@), (B), (¢), (@).
In each of these cases, the same argument as before, permits- us to
replace |f| by f* 1). Theorem 6 is thus completely established.

9. Tt remains to prove Theorem?7. For f we take the function (1.9).
Let us fix N>0 and pub fy=0 @yt t Oy Py Let g=p/(p—1)
‘We verify that

ol ) 1/ %
([ rpatrnae) "= Mux [ g

for all >0 with { / g1 e d(m}1 9<1. It is even sufficient to restrict
0

g(x) to the domain of step functions vanishing for large @. A mom-
ent’s consideration shows that

./.ffvgdm =./lfN7’ dz,
[ 0

1) ¢f. also Zygmund [1], p. 209.
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where the absolute value of the function y(x)=yp(x;yg, N) iy equi-
measurable with g. Let dy, d,, ... be the Fourier coefficients of y. Then

N
2" Y ot
ﬁll dl?
1
N , N
N p oy 2—p\ 1P M q yp2—g\ 1Y
< Max (210,,;' i) ( Dl ‘)
1 T

[l

o? , Ip .
(9.1) (/7‘}"\,” dPAAn) = Max /fNyd;v:MaX
0 ! g p y

i 3

N
o 1 ~ o o 1
<( vac,,lpr, p) Max {Aq,v» (/ P dw)} !
1

N 1p o /
Y ) m r9—p\ ~ [ N Yo
=( > leal” M ") AgyMax ( / gl dm) :
0

. e

14 T 1iq
D qre—p "~ > . ’
M ) Ag Ma,x( / gt "’(1,.1:)

P /

)
Cp

‘N
43
1

1

N
~ ; i
< Aq, " (2‘ IC"IPM;)'—”)
1

On account of the condition Y |e2<<oo, there is a sequence
{fv,(2)} which tends almost everywhere to f(x). Hence (@) tends
almost everywhere to f*(x). Comparing the extreme termzs of (9.1)
and putting N=N, we obtain (8.3) and (8.4) by an application
of Fatou’s well-known lemma. Thus Theorem 7 is established.

Similarly as in the second part of § 6, we may prove that,
Theorems 6 and 7 generalize (except for a numerical factor)
Theorems 1 and 2.

There is also a theorem which stands to Theorem 6 in the

seime 1jelation as Theorem 5 to Theorem 3. The réle of the function.
8*(z) is played by the numbers

0
n =1\512;x quandm’ (0<E<n<oo).
i §
We finally adq that there is a number of theorems which may
be looked upon as intermediate results between Theorems 1 and 2
on the one hand, and Theorems 3, 4, 6,7 on the other. For y==o00 this
type of theorem was first studied by Hardy and Littlewood '), and

their argument can be applied without essential change to the case
v<co. We shall not congsider this subject here.

) Hardy and Littlewood .[1]; cf. also Zygmund [1], 234,
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