A combinatorial condition for planar graphs').
By ‘
Saunders Mac Lane (Cambridge, Mass.).

1. Imtroduction. Kuratowski? has proventhat a topolo-
gical graph is planar, i. e., that it can be mapped in & 1—1 conti-
nuous manner on the plane, if and only if it containg no subgraph
having either of two specific forms. Whitney ®) has shown that a
graph is planar if and only if it has a combinatorial “‘dual”. This
paper establishes another combinatorial condition that a graph be
planar. This condition may be stated in terms of ordinary combi.
natorial concepts:

Theorem I. A combinatorial graph is planar if and only if
the graph contains a comiplete set of circuits such that no arc appears
in more thanm two of these circuits.

A graph in the plane divides the plane into a number of regions,
and each region is bounded by one or more circuits. These boundary
circuits, with certain omissions, can be readily shown to form a com-
plete set, and obviously no arc can appear on more than two of
these boundaries. Hence the necessity of our condition iy immediate
(ef. § 5). The sufficiency proof is largely combinatorial in character.
It is advantageous to first reduce the problem to the case of the
non-separable graphs (cf. § 3) considered by Whitney. By removing
a suitable arc (or arcs) from any non-separable graph we obtain
a simpler non-separable graph. We first embed this simpler graph

') Presented to the American Math. Society, April 11, 1936,

?) C. Kuratowski, Fund. Math. Vol. XV (1930), pp. 271--288. He con-
siders a more general point set than a graph.

%) H. Whitney, Non-separable and planar graphs, Trans. Amer. Math.
Soc. 34 (1932), pp. 339—362. We refer to this paper as Whitney I.
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in the plane, then show from the assumed condition that the re-
maining arc (or arcs) can be added in the plane (§§4, 5).

By strictly combinatorial means the criterion of Theorem I
will be shown equivalent (Theorem II, § 6) to the existence of a dual.
This is in turn known?) to be equivalent (combinatorially) to the
condition of Kuratowski.

9. Definitions. A combinatorial graph G consists of a finite set of elements
a, b, ¢, ..., called “arcs”, and a finite set of “yertices” p,q, 7, ..., such that each
are b ““joins” exactly two vertices p and ¢. Then p and g are the ends of b or are
on b, while b may be denoted by pg. We assume that each vertex ix on at least
one arc?). Any set of ares in @, together with all the vertices on these arcs, form
themselves a subgraph of G. Each subgraph is determined by its arcs. If m>1
and if py, Py, - P, denote distinet vertices, then a subgraph C with arces
P1Pgs PaPgs s Py 1P s PPy 18 2 CUFCUIL, B subgraph D with arcs p,p,, PaPss - Pry 1 P
is a chain with ends p, and p_, and the chain D is suspended if p, and p, are the
only vertices of D) on three or more arcs of & If 4 and B are subgraphs, then
ANB is the subgraph containing those arcs'in both 4 and B, A+ B contains
those ares in either 4 or B, and G—A4 containg all arcs of @ not in 4.

If a graph @ has E(Q) edges, V (G) vertices, and P(G) connected pieces, then
@ R(G)=TV(Q)—P(G). N(@=EE—V@+P@
are respectively the rank and nullity of G. A sum modulo 2 of circuits C;+0Oy+...4-C,,
iz the subgraph containing all ares present in an odd number of the C/s. The
circuits Cy, Cs, .., 0, form a complete set in @ if every circuit in & can be ex-
pressed uniquely as a sum mod 2 of certain of the CO;s. Every G contains ab
least one complete set of n=N(G) circuits.

A planar topological graph H consists of a finite number of arcs (1-—1 bi-
continuous images of line segments) in the plane intersecting, if at all, only at
their endpoints. These aves and their endpoints, considered as elements and
possibly renamed, form a combinatorial graph H'. Any such combinatorial
graph H’ is called planar, and H is a map of H'.

3. Non-separable graphs. A gré,ph G is separable if it has
two subgraphs F, and F, such that F,+4F,= @&, while F, and F, have
no ares and at most one vertex in common. If ¥, and F, have no
common vertex, they are not connected; if they have one common
vertex p, p is called a cut vertex of G. In either event G may be se-
parated into Fy and F,. F, is either non-separable, or can itself be
separated into F, and F,, and likewise for F,. Repetition of this
finally yields subgraphs Gi, G, ..., Gm Which are no longer separable.
These non-separable components of G are always the same, no matter

1) H. Whitney, Planar Graphs, Fund. Math. XXI (1933), pp- 73~é4
We refer to this paper as Whitney II.
2) This exclusion of *isolated” vertices obviously does not affect Theorem L.
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how the separation is carried out?). On the other hand, two arcs
@ and b in G are eyclically conmected if a=1> orif there iy a circuit
in @ containing both & and b. It can be proven that the relation
“g iy eyeclically connected to b” is symmetric and travsitive and
that it holds if and only if2) & and b belong to the same non-se-
parable component of ¢. This result gives an “invariant” definition
of non-separable components, and 8o again proves their uniqueness.

Theorem 3.1. If G is non-separable and has nullyty greater
than 1, and if R is a circuit in G, then there is ®) in R a chain A which
is suspended in G and whose removal leaves a non-separable graph
G—A of nullity N (G)—1.

The proof proceeds by building up & from a sequence of non-
separable subgraphs H,C Hy,C HyC...C G. As N(G)>1, there is
an arc @, not in R. Pick a circuit containing a, and an are of R,
and call this circuit H;. If H,-1=FG hag been chosgen, H, iy con-
structed thus: First pick an arc a,, in ¢—H,,—4, such that a, is not
in B unless G—H,,— containg only arcs of R. Since G is non-ge-
parable, there is a circuit D containing a,, and an arc of H,, ;. Denote
by A the piece of D containing a,, and extending in each direction
from @, to the first vertex of H,... Then choose H, a8
Hy=Hp 1+ Ap.

Each subgraph H, is non-separable, as we now show by in-
duction. The circuit H; must be non-geparable. If H,., is non-ge-
parable, then the arcs of 4,, are cyclically connected to the rest
of H,, by the circuit consisting of 4, and a chain B in H,,—( joining
the ends of A, so that H, is non-separable.

We next prove that R(CH, implies H,=@. By the con-
struction of H;, RCH, is impossible. Hence let m>1 be the
smallest integer for which R(CH,. Then R is not contained in H,, 1y
and there is an arc b of R not in H,—;. Denote by E the piece of B
which contains b and extends along R in each direction from & up
to the first vertex of H,—.. This chain E is in R, while R(C Hy, 50

1) Whitney I, Theorem 12.

%) A similar proof in Whitney I, Theorem 7. Cf. also Kuratowski et
Whyburn, Sur les dléments cycliques et leurs applications, Fund. Math. XVI
(1930), pp. 305—331.

%) This includes the special case of this Theorem, which was proven by
Whitney (I, Theorem 18), and which does not require A(CE. Theovem 3.1
can also be proven by an induction from Whitney’s Theorem.
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that BC Hy=H;—1+4,. By construction, ¥ has no ares on Hy,1,
so ECA,. An was chosen to have its ends and no other vertices
in common with H,—;. E hags the same property. Thus F is a sub-
chain of 4,, with the same ends as 4,, so that ¥ must equal 4,.
Now if @—H,—1 were not contained in R, 4, would contain the
are ¢, not in R, so that 4, cannot equal F, which is in R. Because
of this contradiction, G—H,—; must be contained in R. But Hy
contains all of H,_; by construction and all of R by assumption,
and so contains all of G. Hence R(C H,, implies H,=@G and A,CE.
Bach 4,, is a suspended chain in Hy, so that its addition to
H,.; increases the number of arcs by 1 more than the number of
vertices and so increases the nullity by 1 (cf. (1)). Thus N (Hu)=m.
The construction process finally stops with an H,=@G, and this
n must be N (@). The last added chain A=A4, is a suspended chain
in H,=@ and is contained in R (see the paragraph above), while
G—A has nullily n—1, just as required in the Theorem.
Separable graphs can also be built up in a standard fashion:

Theorem 3.2. If G is separable, then there is a non-separable
component H of G such that H and G—H have at most one vertew
N COMMON.

Proof: Pick out any eomponent H, of G. If H,; does not have
the desired property, there is a component H, in G—H,; with
a vertex p, in common with H,. If H, does not have the desired
property, there is a component Hz#H, containing a vertex poEDy
in common with H,. Were H,=H,, then chains of H, and H; joining
p; to p, would form a circuit containad in no one component, an
impossibility. Hence H,, H, and H, are distinct. If Hj does not
have the desired property, we find a new component H,, ete. The
graph is finite, so the process must end with a component H, with
but one vertex in common with G—H,, as required.

4. The Induction Process. Consider a combinatorial graph G
which satisfies the condition of Theorem I. That is, assume that @
contains a complete set of circuits
(2) Ol, Gg, cery O"; %:N(G‘),
which contain no arc more than twice. We call such a set (2) a 2-fold
complete set. The C; are independent, so that the sum
(3) R=0;+Co+4...+Ch (mod 2)
is not zero. We call R the rim of G. It has the following property:
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Lemma 4.1, For a non-separable G, the rim (3) % « eirewit,

Suppose instead that I is not a circuit. 1t is then a cycle (i. .,
each vertex is on an even number of arcs of K) and 8o containg
a proper subcircuit D. The representation of D in terms of the com-
plete set (2) may be written, if the (/s are suitably renumberad, ag

D=0+ Cy4...-0) (mod 2)

As D#FR, n exceeds m. Hence neither of the graphs
Fi=0;+0C+...4+Cy ’ Fy= 01::»{—1 + Om~|~2 oo O

is void. We ghall show that ¢ separates into ./, and #, An arc b
- of F;NF, must bein one of the first m (s and in one of the last
(n—m) ("s. Since (2) is a 2-fold set, b is in no more of the (.
Thus b isin just one summand of D and in two summands of R,
mod 2, so that b is in D and not in R, althoungh DT K. This con-
tradiction shows that F, and F, have no ares in common.

As @ is non-geparable, there iy a circuit K containing an ave
of 7, and one of f7,. The representation of K in the completo sot is

B=Y0,+3"0, (mod 2),

where the first sum runs over some of the indices from 1 to m and
the second sum over some of the remaining indices. Since I con-
tains edges of both F, and F,, neither sum is void. The first sum
E'=3"'0; (mod 2) is thus not equal to E. But &' is contained in #,,
so that none of its arcs can be contained in the civeuits (' 14, ..., O
of Fy. Therefore E'(CCE. The circuit # has a proper subeyele ¥,
an impossibility. Hence R is necessarily a circuit.

In a non-separable planar graph there must be a region bound-
ary C; which abuts on the outside boundary R only along a single
chain. The corresponding combinatiorial result can he stated thus:

Lemma 4.2. If G is non-separable and has nullity greater
than 1, then there is a suspended chain A in G such that ‘
(1)  G—A s non-separable of nullity N(G)—1;
(il) A is contained in R and in one and only one Oy, say in (!,
(i) Ci, Oy ..y Cuct form a 2-fold complete set for G~——‘—A, 7
(iv) The ends p and q of A are on R', where
(4) B =014Coc.40,,. 4 (mod 2),
(v) R’ consists of two chains R—A and C,—A jotwing p to q.
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Proof: Pick a suspended chain ACZER as in Theorem 3.1.
Then G—A is non-separable, as in (i). Since ¢ is non-separable,
each arc of A, and hence all of 4, is contained in some circuit. Any
circuit is a sum, mod 2, of the (s, so that A is contained in some C;.
By renumbering we can make A4 C, Since 4 isin B and at most
two (s, A can be in no other C;3=0C,, as asserted in (ii). The cir-
cuits Oy, C, ..., Cy—1 are thus in G—4, and they are independent
in @G—A4 as in G. Since there are at most n—1=N(G¢—A4) in-
dependent circuits in G—A, these n—1 circuits form a 2-fold
complete set in G—A, as stated in (iif).

We next show A=C,NR. For suppose b were an arc in
C,NR but not in A. Then b is in G—A4, hence is in a circuit D
of G—A. D is representable, by (iii), as & sum mod 2 of some of
Oy Csy ..y Cus. Yet b is in Cp and R, hence can be in no other Ci,
and so is not in the representation of D, contrary to beD. No
such edge b is possible, so that A=C,NR.

By (4), R'=R-+C, (mod 2), so that R’ consists of all arcs
in R or in C, but not in both. Those in both are in RMNC,=A4,
so that R’ must consist of the arcs of R—A4 and of C,—A. A R
is a circuit, R—A4 (and also C,—A) is a chain joining the ends
pand g of 4. R—A isin R’, so that its ends p and g are in R
This gives the last conclusions (iv) and (v) of the Lemma.

5. The Sufjiciehcy Prooj.

Theorem 5.1. A non-separable graph G with a 2-fold complete
set (2) can be mapped on the plane in such a way that each C; becomes
the boundary of one of the finite regions into which G divides the plane,
while R becomes the boundary of the exterior region.

The proof will be by induction on the nullity N(@). To avoid
irrelevant topology, we shall show more explicitly that & can be
embedded in such a way that each arc of G becomes a broken line
segment, while R becomes an equilateral triangle. In the first case,
if N(G)=1, Gisnon-separable and o is simply & circuit (cf. Whitney I,
Theorem 10); hence it can be mapped on the plane. If N(G)>1,
then Lemma 4.2 yields a suspended chain A such that G—A is
non-geparable, has a 2-fold complete set, and has a smaller nullity.
By the induction assumption, G—A can be mapped on the interior
and boundary of a triangle, with R’ on the boundary. By Lemma 4.2,
(iv), the ends p and g of A are already on the boundary R’, and
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by (v) the remainder ¢,—4 of €, is one of the arcs of this boundary
joining p to ¢. Hence we can add a new broken line segment 4%
outside the triangle and with ends p and ¢ in such a way that 4*
and C,—A together form the boundary of the new finite region.
Then by (v) the boundary of the new exterior region is R=A*--
+-(B—A). The induction proof will be complete if we show that
E can be made an equilateral triangle.

.To do this, let G@—A4 be mapped on the triangle with ver-
tices 7, s, and ¢ in the figure. Congider first the case when the arce

C,—A on the edge of this triangle contains two vertices » and t
of the triangle. Map A as the broken line puvq in the figure, To
make.’uhe rim spuvgs a triangle, first shear?!) the half plane which
contains s and has the edge pq until the new position 4p.s" of ps ig
& prolongation of up. Then shear the half plane with the edgé ug
until s’qw is a straight line s’qv’. The new rim is now a triangle uss’.
It may be made isosceles by a shear with edge v's’, then equilateral
b'y a c‘ompression toward this edge. As the shears used carry straight
lines into broken lines, we do obtain a broken-line map of G on
an equilateral triangle. The other cases, when C,—A contains
other vertices 7, 5, or ¢ of the map G—A, may be similarly treated.

Theorem 5.2. A graph G with o 2-fold complete set of circuits

cam be mapped on the plane in such a way that each arc becomes a broken
line-segment.

If & is separable, it can be reduced to non-separable compo-
nents Hi, Hy, ..., H,. Bach component H; which is not a gingle

*) A shear in a half-plane moves each point P 1
A gh L point P parallel to the edge a dis-
tance which is a constant times the distance of P from that edge. i
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arc contains one or more of the given complete set of circuits (2),
say the circuits O, Cs, ..., Cp. These circuits form a complete set
for H;: In the first place, they are independent (mod 2); secondly,
any circuit D in H; is expressible in terms of all the (s in the form
D=2"C;+2""C; (mod 2), where the first sum runs over certain
indices §=k, the second sum over certain indices j>k. Then
D—Y'C; has arcs only in H; and is equal to }''C;, which has
arcs only in other components, and so must be void. D=3'¢;
(mod. 2) is thus represented in terms of Cy, Cs, ..., Ci, and these
circuits are a 2-fold complete set for H,. Therefore H; is planar,
by Theorem 5.1. Furthermore it will suffice to prove the Theorem
for a connected graph @. .

The proof proceeds by induction on the number of components.
Choose one component, 8ay Hpm, 80 that H, and G—Hy, have but
one vertex p in common (Theorem 3.2), and make the induction
assumption that G—H,, with components H;, Hy, ..., Hn—1, has
already been mapped on the plane as a graph F. If H, has nullity
zero, it i3 but a single are and can be readily added to ¥ in the plane.
If N(H,)>0, then the vertex p appears in at least one of the,
circuits C; of the remaining component H,. If p is not already on
the rim of H,, we can make this the case by using a new 2-fold
complete set for H, like the old one except that one C; containing p
is replaced by the rim of H,. Then p is on the new rim C;. By The-
orem 5.1, map H,, on the plane as the graph Hp, so that p becomes
a point pf on the outside boundary. But p also appears in the map
of @—H, as point pj; it remains to fit these maps together so
that pf and pf will coalesce.

To do this, cut the plane of Hj into two halfplanes by a line
through p¥ and shear each half plane until the boundary of Hn
makes at pf an angle o smaller than the angle 8 between two of
the adjacent (straight line) arcs which meet in the corresponding
vertex pi of the map of G—H,. Then shrink H7 until it can
fit inside the region which contains the angle §, place H}, in this
region and let the points pf and pJ coalesce, thus forming the
desired cut vertex p* in a planar map?l) of G=(G—Hmn)+ Hm.
All the transformations involved map the arcs of G into straight
or broken line segments.

1) Another proof, using more topology, is indicated in Whitney I, Theorem 27.
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This establishes the sufficiency of the criterion of Theorem [,
It remains to verify its necessity. If each component of @ has a 2-fold
complete set of circuits, all these circuits together form w 2-fold
complete set for @; hence it suffices to consider the non-separable case.

Theorem 5.3, If G is a non-separable planar graph with N (G) - 0,
then each finite region into which G divides the plane has as boundary
o cireust of @, and these circuits together form a 2-fold complete set,
while their sum, mod 2, is the boundary of the ewternal region.

For N(G)=1 this is the Jordan curve Theorem: in general,
it follows by a simple induction on N (@), using Theorem 3.1 and
the fact that a cross-cut in the interior (exterior) of a Jordan curve
cuts the interior (exterior) into two regions with suitable houndaries.
This insures that each added are is on the boundary of at most two
regions.

6. A Combinatorial Construction of Duals. Whitney’s
condition for a planar graph, the existence of a combinatorial dual,
must be equivalent to the existence of a 2-fold complete set of
circuits. We shall establish this equivalence by combinatorial
arguments, thus giving another proof for the criteria of Whitney
and Kuratowski for planar graphs.

A graph @' is a dual of a graph G if there is a 1—1 COTTeNpoOn.-
dence between the arcs of & and those of G’ such that, if H is any
subgraph of ¢ and H' the subgraph containing the corregponding
ares of G, then R(G'—H')=R(G')—N(H); (cf. (1)). A set S of
arcs in G is a out set if G—8 has either more connected pieces or
fewer vertices?!) than @, and if neither of these results would hold
were S replaced by a proper subset of S (Whitney IT, p. 76). A graph
has a dual if and only if each of its components has & dual (Whitney I,
* Theorems 23 and 25), and has a 2-fold complete set of circuits if
and only if its components have such sets, by the arguments of the

preceding section. Hence we restrict our attention to the non-
separable cage.

,fl’heorem II. A non-separable graph G has & combinatorial
dual if and only if it has a 2-fold complete set of cirowits.

1 ?racticﬂ}y, _this § cond case means that G—48 is disconnected “and
has one piece which is an isolat d vertex. We have exeluded such vertices.
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The trivial case when G is a single arc will be omitted. First,
let @ have the 2-fold complete set (2), with >0, and denote the
rim B in (3) by Cnt1. Since every arc is on at least one cirenit, and
on at most two circuits of the complete set, each arc is on exactly
two of Cj, ..., Ont1. Construct a new graph G’ with vertices p1, ..., Pri1
corresponding to the circuits C¢; and with ares b, b3, ..., b in 1—1

~correspondence with the ares of &, such that an are b; has the ends

p; and p; if the corresponding arc b; in @& is on the circuits C; and C.
We shall prove that this “circuit graph” @' is in fact a dual of @,
by means of a combinatorial analog of the Jordan curve Theorem:

Lemma 6.1. If D is a circust in G, then the corresponding
subgraph D’ in G' is a cut set in the circuit graph @'.

Proof: D has a representation in térms of the complete set
of (’s. Renumber the (’s so that the first & appear in this repre-
sentation, and then use the definition (3) of C,: to obtain

(5) D=G1+ Gg-{-...—}—C;,:C’k+1—[—0k+2—]—...+0,,+1 (mod 2).

There is a corresponding subdivision of the vertices of G into two
sets Piy ..., pr and Prtiy ..., Putr1. BY the representation (5), D’ con-
gists of all the arcs of @ which have one end in the first set of ver-
tices and the other end in the second. Thus in G'—D’ no vertex
of the first set is connected to any vertex of the second. However,
the vertices of the first set are all connected to each other in G'—D".
For were some of the vertices, say 91, P2 ..., pj, connected by no
arc of G'—D’ to the remaining vertices, then the sum FE=C,+
+...4+C; (mod 2) of the corresponding circuits of @ would contain
no arc also contained in Cjy, ..., Cr and so would contain only
arcs in D. Thus F would be a proper subcycle of the circuit D,
a contradiction. Similarly the vertices of the second set are all con-
nected to each other in @'—D’. The addition of any single are
of D’ connects the first set of vertices to the second, so that D’ is
a cut set, as asserted in the Lemma.

To show G' a dual of G it suffices ) (Whitney II, Theorem 2)
to show that a circuit in G always corresponds to a cut set of ares
in @, and conversely. The first half is the above Lemma. For the

1) At this point we could alternatively parallel the argument of Whitney I,
Theorem 29, that a planar graph has a dual, replacing the Jordan curve Theorem
by the above Lemma.
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converse, let 8’ be a cut set in G'. Since by the proof of the Lemma
the cut set D’ cuts G’ into just two pieces, G itsell must be con-
nected. Therefore 8’ cuts G into two ,pieces’’. Let the first contain
the (re-numbered) vertices pi, ..., pa; the second, the vertices
Ditiy -y Dut1. Then the corresponding circuits in G give a cycle

D=0+ Oy+... Cr=Cp1+ Ozt - Cut (mod 2)

Every arc on D belongs to one of the first & (’s and to one of the
remaining (’s, and so corresponds to an arc in G' connecting the
first set of vertices to the second set. This arc must belong to the
cut set, so that DCS. But the cycle D must contain a subset I
which is a circuit. The corresponding set Dj is, by Lemma 6.1, a cut
set in G, although Di(C#8’. By definition a cut set has no proper
subset which is a cut set, so that § must be identical with the cir-
cuit D,, and cut sets do correspond to cireuits. This shows G to
be a dual of G. ‘

Conversely, let & have a dual G'. To find a 2-fold completo
set of circuits, note first that the non-separability of @ implies?)
that of G'. By the definition of a dual, the nullity » of & is the same
as the rank V(G)—1 of @' (cf. (1)), so that G’ has n-1 vertices
Pty P2y -ory Pnt1. The set Dj of all ares on any one vertex p; is a cub
set in @', for its removal deletes p;,. Consequently the corresponding
set of arcs D; in @ must be a circuit, by the Theorem of Whitney
quoted previously. These circuits Dy, Dy, ..., D, contain each arc
of G exactly twice, so that their sum ig zero (mod 2). No other re-
lation mod 2 is possible. For suppose instead that

Di+Dy+t-...4Dp=0 (mod 2); m << n--1.

Then any arc of G on one of these D’s is on another one, so that
any arc of ¢’ with a first end on one of py, ..., p has a second
end on another one of these vertices, and pi,...,pm are not con-
nected to the remainder of G'. This contradicts the non-separability
of G'. Thus Dy, .., D, are independent (mod 2), are n==N(&)
in number, and so form a 2-fold complete set of circuits. Theorem LT
is established.

1) Whitney I, Theorem 26. The execlusion of isolated vertices is ossen-
tial here.
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Freie Uberdeckungen und freie Abbildungen.

Von
Heinz Hopf (Zirich).

Einleitung.

1. Den Ausgangspunkt fiir unsere Betrachtungen bildet die
folgende Higenschaft der n-dimensionalen Sphéren, die zuerst von
L. Lusternik und L. Schnirelmann, und dann noch einmal
von K. Borsuk entdeckt und bewiesen worden ist?):

Satz A,. Ist die n-dimensionale Sphire 8% mit n--1 abge-
schlossenen Mengen iiberdeckt, so enthdlt wenigstens eine dieser Men-
gen ein antipodisches Punkiepaar der Sphdre.

Die isolierte Stellung dieses interessanten Satzes reizt zu dem
Versuch, ihn in ein System allgemeinerer Uberdeckungssitze ein-
zuordnen. Beginnt man bei einem solchen Versuch mit der Analyse
des Falles n=1, so sieht man sofort, dall der Satz 4; nur ein Ko-
rollar des folgenden viel allgemeineren Satzes ist:

Satz AY. Bilden die abgeschlossenen Mengen F, und F, eine
Uberdeckung des zusammenhingenden topologischen Raumes?) R, und
st f irgend eine stetige Abbildung von R in sich, so enthglt wenigstens
eine der beiden Mengen ein Punktepaar {w, f(w)).

Denn da R zusammenhingend ist, gibt es einen Punkt «eFy-Fy,
und das Punktepaar {z, f(z)} gehort der Menge F; an, wenn diese
den Punkt f(x) enthilt.

1) L. Lusternik et L. Schnirelmann, Méthodes topologiques dans les
problémes variationnels, Moskau 1930 (in russischer Sprache), S. 26, Lemma 1.
K. Borsuk, Drei Sdtze iiber die n-dimensionale Sphére, Fund. Math. XX (1933),
8. 177. Man vergl, auch P. Alexandroff und H. Hopf, Topologie I (Berlin 1936),
§. 486—487. Dieses Buch wird im folgenden als A.-H. zitiert.

?) Unter einem topologischen Roum soll immer ein Raum verstanden wer-
den, der die Kuratowskischen Axiome erfillt; s. A.-H. (cf. Fubnote !)), S. 37 ff.
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