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Soit maintenant ¢CX une courbe simple fermée et feSf" une
homéomorphie. Comme dim X=1, il existe 4¢) une extension 1 esf
de f, pour laquelle on a évidemment /' non ~1 sur O, d’ol by(X)>=1.

| Soient maintenant C,CX et C,CX deux courbes simples
fermées différentes. On trouve alors facilement deux transformations
fisfoe 87T telles que que 1° f; transforme O; par homéomorphie
(6=1,2), 2° f,(C)E8Ffs(C;). Comme dim X=1, il existe 4%) alors
des extensions fi,f2eST et on a

’

sur (), h ~ 1
sur Oy,

fi non ~1 sur C,,

’

fo ~ 1 famon ~1  sur Cy.

Les fonctions fi et f3 sont done linéairement indépendantes, d’on
by(X)22.

Théoréme 3. Tout continu X localement comnexe, de dimen-
sion 1 et mélriquement homogéne est une courbe simple fermde.

Démonstration. On a en vertu du th. 2 soit b, (X)=0, goit
b(X)=1. Tout continu localement connexe sans courbes gimples
fermées (e. 4 d. une dendrite) contient, comme on sait, des points' gui
le divisent et des points qui ne le divisent pas. Par conséquent, il
n’est pas homogeéne. Le cas b, (X)=0 est done exclu en vertu de (1).
Par conséquent b (X)=1, d’ol, en vertu de (2), existence d’une
seule courbe simple fermée CCX.

Envisageons la propriété suivante d'un point x ¢ X: @ appartient
4 une courbe simple fermée contenue dans X. Or, par suite de homo-
généité de X, tout point xeX jouit de cette propriété, c.id.
qu'on a xeC. Par conséquent X(CC, d'ott X=C. ‘

) voir p. ex. W. Hurewicz, Fund. Math. 24 (1935), p. 144.
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Concerning biconnected sets.

By
Edwin W. Miller (Aun Arbor, U. S. A).

Introduction.

In their paper on connected sets B. Knaster and C. Kura-
towski introduced the idea of a biconnected set and gave several
examples of such gets?). Each of the biconnected sets constructed
by Knaster and Kuratowski contains a dispersion point ), and
Kuratowski raised the question?) whether every biconnected set
contains such a point. The main ohject of the present paper is to
prove that if the hypothesis of the continuum is true, there ewists (im
a bounded portion of the euclidean plane ) @ biconnected set which
containg mo dispersion point. The proof makes use of the axiom of
Zermelo. ‘

1) Sur les ensembles connexes, Tund. Math. II, pp. 206—255. In this paper,
as well ag in the present paper, a sefi of points is said to be connected if it contains
more than one point and is not the sum of two non-vacuous mutually separated
sets. A set of points is said to be biconnected if it is connected and is not the sum
of two mutually exclusive connected sets. Tt is an immediate consequence of
theorem XI of the Knaster-Kuratowski paper that a definition -equivalent to
the lagt in this: a set of point is biconnected if it is connected and does not contain
two mutually exclusive connected sets. For generalizations of the idea of hi-
connected set see P. M. Swingle, Generalizations of biconnected sets, Amer. Journal
of Math., LIII, no. 2, pp. 385-—400.

2) A point p of a connected set M is called a dispersion point of M if M—op
containg no connected set. For theorems on dispersion points and dispersion sets
see J. R. Kline, 4 theorem concerning connected point sets, Fund, Math. III,
pp. 288—239, and R. L. Wilder, On the dispersion sets of conmected point-sets,
Tund, Math. VII, pp. 214—228.

8y Pund. Math. III, p. 822,
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§ 1.
Preliminary theorems.

Definition 1 A family of gets will be said to possess property B
if there exists a set which containg at least one element of each
set of the family, but does not exhaust any set of the family 4).

Definition 2. If M is a connected set and C a continuum
which separates M, then the set M- C (which of course is non-vacuous)
will be called an M-boundary.

Theorem 15). If M is a biconnected set, then the associated
family of M-boundaries fails to possess property B.

Proof: Assume that the associated family of M-boundaries.
does possess property B. Then there is a subset @ of M such that
both @ and M—@ have a point in common with every M-boundary.
It follows easily ) that both @ and M—@ are connected. But this
contradicts the hypothesis that M is biconnected.

Theorem 2. If M is a connected set, and every M-boundary

has the power of the continuum, then M is the sum of two mutually
exclusive conmected sets.

Proof: It is well known that the set of all continua which
separate a given connected set has the power of the continuum.
Accordingly, the family of all M-boundaries consists of ¢ sets of
power ¢. But Bernstein’s work shows’) that such a family of sets

possesses property B Hence by theorem 1 we have that M is the
sum of two mutually exelusive connected sets.

4) It seems that results in connection with this property were first ob-
tained by F. Bernstein, Zur Theorie der trigonometrischen Reihe, Leipz. Ber. 60,
1908, pp. 325—-338. For further material concerning this property see Sier-
pinski’s book, Hypothése du Continw, theorem 1, p. 113. See also E. W. Miller,
On o property of families of sets, C. R. Soc. Se. Varsovie 1037.

5) The theorems in this paper may be thought of as stated for the euclidean
plane. Most of them hold true in much more general spaces.

%) See Knaster and Kuratowski, 1. ¢., theorem XXXVII, and 8. Ma-
zurkiewics, Butension du théoréme de Phragmén-Brouwer aux ensembles mon-
bornés, Fund. Math. III, pp, 20—25.

") F. Bernstein, 1. c. See also C. Kuratowski and W, Sierpinski,

Sur un probléme de M. Fréchet conoernant les dimensions des ensembles lindwires,
Fund. Math, VITL, p. 193,
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Theorem 3. If M is a connected set and P is a finite subset
of M, and if M—P=M+M,, where M, and M, are mutually separated

and M==0 (i=1,2), then M+P contains a connected set (i=1, 2).

Proof: The theorem will be proved by induction. In the first
place, it is well known that in the case where P consists of a single
point M+P (i=1, 2) is connected ?). Let us assume then that M;-+P
{i=1,2) containg a connected set when P consists of » points, and
show that the same result holds when P consists of n-+1 points.

We have then that M—P=M,+M, where M, and M, are
mutually separated, M;=0 (i=1,2), and. P=p -+pyt...+0,+ D,
Let us denote py+p,+...+p, by . We have M—Q=M +p,  ,+M,.
If M+, 18 connected then M,+P certainly contains a connected
set. If M -+p, ., is not connected, we have M,+p, =M, +M,, where
My, and M,, are non-vacuous mutually separated sets and M, Jp, ;.
Then M-~Q=M~+(Myo-+M,), where My, and (M,,-+M,) are mutually
separated. Now it is given that M,+Q contains a connected set.
The same is therefore true of M,+P, since M,+P D M;+Q. The
same procedure of course proves that M,+P contains a connected set.

Theorem 4. If M is a biconnected set which comtains no dis-
persion point, and P is a finite subset of M, then M—P is connected.

Proof: Let us suppose there were a finite subset P of M
such that M—P=M,+ M, where M, and M, are non-vacious
mutually separated sets. Now since M can contain no finite dispersion
set 9), either M, or M, — let us say M, — must contain a connected
set 19), But by theorem 3 we know that M,+P contains a connected
set. Accordingly M contains two mutually exclusive connected sets.
Bat this is imposssible since M is biconnected.

If theorem 4 is interpreted in terms of M-boundaries and
combined with theorem 2 we obtain

Theorem 5. If M is a biconnected set which contains no dis-
persion point, then every M-boundary is infinite and some M-boundaries
have a power less than ¢ ).

8) Knasgter and Kuratowski, L ¢., theorem VI, p. 210.

%) Hee R. L. Wilder, L. c., theorems 1 and 10.

1) Yoo Knaster and Kuratowski, L. ¢., theorem III, .

1y Tt iy oasily proved for any connected set M that some M-boundaries
will have the power of the continuum,
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§ 2.

On the existence of a biconnected set which contains
- no dispersion point.

Definition, A get is called widely conmected if it is connected
and if every connected subset of it is everywhere dense in it 12),

Theorem 6. If M is a widely connected set whose associated
family of M-boundaries does mot possess property B, then M is bi-
connected and contains no dispersion point.

Proof: Suppose M were the sum of two mutually exclusive
connected sets My and M,. It follows at once that since M, is denge
in M, there is a point of M; on every M-boundary. Then, since
the family of M-boundaries does not possess property 12, the sot M,
must exhaust some M-boundary. But the set M, since it too ig
dense in M, must have a point on this M-boundary. But this is
impossible, since M, and M, are mutually exclusive. Accordingly M
is biconnected.

A widely connected set contains no cut-point ). It contains,,
a fortiori, no dispersion point.

Theorem 7. Let K be an indecomposable continwum and M
a conmected subset of K. Then M is widely connected if mo composant
of K contains a connected subset of M M),

Proof: Suppose that M is not widely connected. Then M
contains a connected set N such that N (that is, ¥ together with
its limit points) is a proper subcontinuum of K. Accordingly N lies
entirely in some one composant of K. The same is therefore true
of the connected set N, and the theorem is proved.

2) P. M. Swingle introduced the idea of such sets and proved their exist-
ence in his paper, Two types of connected sets, Bull. Amer. Math. Soo. XXXVIIL,
Pp. 254—258.

%) See P. M. Swingle, 1. c., theorem 4, p. 256,

1) This theorem was directly suggested by the method used by Swingle
to prove the existence of widely connected sets. For the meaning of the terms.
indecomposable continuwum and composant see 7. Janiszewski and . Kura-
towski, Sur les continus indécomposables, Fund, Math. I, pp. 210--222,
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Lemma. On the base AB of a square ABCD let us take a no-
where dense perfect set P. At each point of P erect a perpendicularto AB
ewtending to CD. Let us denote by W the point set comsisting of the
points of these perpendiculars. Let T denote a denumerable subset
of W dense in W. Let H denote a denumerable set such that H-T=0.
There exists a simple closed curve J such that:

1) H-J=0,
J intersects ¢ lines of W amd lies entirely within ABOD,

t))
3) any line of W intersects J in at most two points,
4) TJ is dense in W-J.

Proof: Let us arrange the points of H in a sequence ki, b, ..., huye..
In what follows, the projection on. P of any point of W will be de-
noted by the Greek letter corresponding to the Roman letter used
for that point. -

Let & and b be two points of 7' within ABCD such that « pre-
cedes f in the order from 4 to B and such that there are points
of P hetween a and f. Join a to b by a simple closed curve J; lying
within ABCD go that:

1. hy, is outside J,, .

2. any line perpendicular to 4B and arising from a point
within of intergects J; in exactly two points, while any line per-
pendicular to AB and arising from a point outside of does not
interesect J,,

3. the segment within J, of any line perpendicular to AB is
of length <<1.

Now take points " #”..#0 of T within ABCD so that e,
0, 1, ..., 7, B are in that order on AB, so that there ate points
of P between any two of these points and so that every point of P
between « and f is at distance <1 from some one of these points.
Join a to by a simple closed curve, £ to 1" by a simple. cl.osed
curve, etc. Each one of these simple closed curves is taken within J;
80 that:

1. h, is outside the entire chain of simple closed curves,

9. any line perpendicular to AB intersects the chain in ab
mogt two points, o

3. the segment of any line perpendicular to 4B within any
simple #loged curve of the chain is of length < §.
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The next step, of course, is to take points 2 ., £ within
the simple closed curves of the first chain so that a, 72,70, 0y 1D, B
are in that order on AB, so that there are points of P between
any two points v so far obtained, and so that any point of P between
o and B is at a distance <} from some point 7. A new chain of simple
closed curves extending from @ to b is than constructed within the
first chain, having for its vertices the points ¢ so far considered and
such that:

1. hy is outside the entire chain of simple closed curves,
2. (same as above).
3. (same as above, except that § replaces }).

The indicated process is continued indefinitely and it is easy to
show that the set of points common to all the chaing of simple closed
curves (together with their interiors) is an arc N joining @ to b and
such that:

1) H-N==0,

92) N intersects ¢ lines of W and lies within ABCD,

3) T-N is dense in W-N,

4) any line perpendicular to AB intersects N in at most
one point.

Clearly another arc from a to b can be constructed by the
game process 80 as to form with N a simple closed curve J satisfying
the conditions mentioned in the lemma,

Theorem 8. If the hypothesis of the continuum is true, there
exists in a bounded portion of the euclidean plame a biconmected set
which contains no dispersion point.

Proof: We shall begin with an indecomposable continuum K
and two squares EFGH and ABCOD such that,

a) K lies entirely within and upon EFGH,

b) ABCD lies entirely within EFGIH,

c) K.(4ABOD + its interior) is a set W related to ABCD in the
way specified in the statement of our lemma ),

18) Tor an indecomposable continuwm for which it can eosily be seen that
such squares exist one may refer to Z. Janiszewski, Sur les conlinus irrdduo-
tibles entre dewx points, Journal de I'Ecole Polytechnique, II Série 16-dmo Cahier,
1912, example 6, p. 114.
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The non-dense perfect subset of AB, from whose points the per-
pendiculars in the set of points W arise, will again be designated by P.

Now the set of all different composants of an indecomposable
continuum has the power of the continuum ¢). Let us then denote
by . the firgt transfinite ordinal to correspond to the cardinal
number of the continuum, and arrange the different composants
of K in a well ordered series of type Q.:

01, 02, eeny Ga, con

Let us likewise arrange in a well ordered series of type £. all
continua which separate K:

Bi, By, ..y Bay . a< Q..

Now let 4 be a denumerable subset of W dense in W. Consider
all subsets 4’ of 4 such that 4’ is dense in some W-region 7). There
are ¢ such subsets and we shall arrange all of them in a well ordered
geries of type Q.:

a<<f..

Al, A27 aeny Aa’ e

We shall proceed to define for every a<<. subsets M. of K
and simple closed curves J. with the following properties:

I Mu=0 if Bs-4=0,
II. My=paeBo-K if BuAd=0, ,
IIL. If M,=0 and M,4=0, where u<Q., v<Q2. and u+v, then M,
and M, helong to different composants of K,
IV. J. separates K,
V. Je );; My=0 and Ju(4—A4a)=0.

el

a<f..

Let us show first that if we succeed in comstructing the sets

M. and J. so that conditions I—V are satisfied, then M =A—|—, %’QM,,
. < e

is biconnected and contains no dispersion point. ’
We may notice at the outset that M is a subset of K. Then
from II we have at once that M is connected.

18) See 8. Mazurkiewicz, Sur les continus indécomposables, Fund. Math. X,
pp. 305~310. )

7y Let § be any square which contains no point in the exterior qf ABOD
and whose mides are parallel to the sides of ABOD. It S contains a point of W
in it intevior, then the set of all points of W in the interior of § will be called
the W-region corregponding to 8. ‘

Fundamonta Mathematicne. T, XXIX. 9
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Now from I and II we have that M, is either vacuous or clse
consists of a single point. Accordingly, since 4 is denumerable we
have from III that no composant of K containg a connected subset
of M. It follows then by theorem 7 that M is widely connected.

Now let @ be any set which containg a point of each M-boundary,
Then, from IV and from the fact that M is dense in I, it follows
that Q has a point in common with every set M -J . Let Q*:Q-%: )M. e

e 8,

Now from V and the way in which the sets 4. were defined, it follows
easily that @* is dense in W. But from the first part of V. we have
at once that Q*C 4. Hence there is an ordinal f such that @* D4,
But from V we have that M-Jg=24,-Jp. Therefore @* and, a fortiori,
Q itself exhausts M-Js. We have shown then that the family of
M-boundaries fails to possess property B. Applying theorem 6 we
have that M is biconnected and containg no dispersion poin.

Our object now is to show that the sets M. and J. can be
defined so that conditions IV hold. Let us begin with By. If B,-A==0
we shall put M;=0. If B;-4=0 we shall put®) M,=p;eB;- (.
Now let J; be a simple closed curve such that:

a) J, intersects ¢ lines of W and any line of W intersects J;
in at most two points,

b) Jy- My;=0 and J,-(4—4,)=0,

¢) J, lies within 4BOCD,

d) Jy-4, is dense in Ji-W.

The existence of such a simple closed curve is assured by our
lemma. We have shown then that if =2 we have:

I Mu=0 if Ba-d=0 (a<<B),
II' Muy=pueBa K if Be Ad=0 (a<< f),
I If Mu=0 and M,==0 where u<pB, »<<f and w=F» then

M, and M, belong to different composants of X,
IV'. J. separates K

(@< p),
V. Ja-Z;iMM=O and Ju(4—Aa)=0 (a< ),
22

VI. J. intersects ¢ lines of W and any line of W intersects J,

in at most two points (a<< ),
VII. J, lies within ABCD (a<< B),
VIIL. Ju 4. is dense in J, W (a<< B).

18) The set B,- 0, is non-vacuous since any composant of an indecomposahle

continuum K is dense in K. See Z. Janiszewski and C. Kuratowski, 1. e.,
theorem 8, p. 221.
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Now let # be any ordinal <@, such that there exist M, and J,
fulfilling for all a<<f conditions I'—V’ and VI, VII, and VIIL. We
will show that M and J; can be defined so that these conditions
hold for a<{p ). (More precisely in ITI' we will have u<B, »<p
and p=v, and in V' we will have u4<f as well as a<f).

Consider Bg. Xf Bg-A==0 we put Mz=0. Now, by the hypothesis
of the continuum, é’; M, s denumerable. Also from the fact that

Mp=0 and from I’ and II' we have 4- Z;M,u:o. ‘We may accor-
Usf

dingly apply our lemma to obtain a simple- closed curve J such
that conditions IV’, V' (with u<f), VI, VII, and VIII hold for all
a<<f. Conditiong I' and II' will clearly be fulfilled for e<{f and
I for w<f, v<f and up=ko.

Assume now that By-4=0. We will show that there exists
a point py of By such that:

1) pp i8 not a point of any J. with a<<p,
2) pp is in a composant of K which contains no point %;MM.
, i

Let ug denote by (W) the subset of W actually within ABCD.
Suppose there are ¢ composants which intersect Bp in points not
in (W). Now, each J, lies entirely within ABCD, and the set %’3 M,

w

is denumerable in virtue of the hypothesis of the continuum. There
is aceordingly no difficulty in obtaining a point pg satistying 1) and 2).

If the set of composants which intersect Bg in points not in (W)
hag a power <c, then there are certainly ¢ composants which intersect
B; only in points of (W). In fact, since any line of (W) lies entirely
in exactly one composant of K, there will be ¢ composants which
intersect By only in points which lie on lines of (W) arising from
interior points of the perfect set P. From each of these composants
let ug select a point & of By-(W) and let us associate with each point
o a sub-continuum R. of Bs which contains the point » and lies
entirely within ABCD 20), Two cases arise.

) We are of course mainly interseted in the possibility of defining Mp
and Jy so that I'—V’ hold for a<cf. This will be seen however to depend in part
upon the realization of VI, VII, and VIIII for «<p. .

20) A theorem due to Janiszewski assures the existence of such continua.
See %. Janiszewski, 1. ¢., theorem IV, p. 100.

9*
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Case 1. Bach continuum R, is a segment of the line of W
which containg the point a.

Since ;; M, is denumerable, there exists a composant ¢ of
223

the sott just described which contains no point of 2{]{ M. Let us
et

denote the point  selected from C by 2. The segment R, is clearly
a subset of 0. Now, by VI, any J« (with a<<f) has at most two points
in common with R,. Furthermore, there are at most a denumerable
infinity of simple closed curves J. for a<<f. Obviously then, there
is a point on R, which is not a point of any J. for a<<f. Such a point
may be taken as our point pg.

Case 2. There is a continuum R,=E which contains points
of two different lines of W.

In this case since R contains the point #, and » lies on a line
of W ariging from an interior point of P, it is clear that the pro-
jection. on P_of the continuum R is an “interval” (i.e. a perfect
set segment) I, of P. ‘

We will first show that the projection on I, of J. I for any
a<f is nowhere dense on I;. Let I, be any sub-“interval” of I, and
let us suppose that there ig a point ¢ of J,-B which projects into
a point of I,. From VIII we have that ¢ is a limit point of J-4.
Then, since By-4=0, we can find a point r of J.-4 and an arc 4 of J,
which contains , is free of points of the closed set Bp (and is therefore
free of points of R) and whose projection on I, is a sub-“‘interval’”’ Iy
It is clear that the arc A may be chosen so that its end points are
points of W. Now, from the second part of VI, it is clear that the
two lines of W which contain the end points of 4 determine a second
arc of J,. If this arc containg a point of R, by a repetition of the
process just described we obtain a sub-are of it which contains no
point of B and whose projection on I, is a sub-“interval” I,. It is
clear that I, contains no point which is projected from J.-R. It has
been shown, then, that the projection on I; of J,- B is nowhere
dense on I,.

Now any composant C of K is an F, ). Accordingly, we may
write C-R=)F, where ¥, is closed. Now consider the projection

n==l

of Fp, on I,. It cannot exhaust an entire sub-“interval”’ of I, for

M) See 8. Mazurkiewicz, Un théoréme sur les continus inddoomposables,
Fund. Math. I, pp. 35—39.
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in that case all of the lines of W arising from that sub-‘““interval”
would have to be contained in C. This, of course, is impossible, since
every composant of K is dense in K. Since the projection of F, on I,
is a closed set and does not exhaust any sub-“interval”’ of I,,it must
be nowhere dense on I,. Therefore the projection on I, of CR is
of the first category with respect to I,. Now again, in virtue of the
hypothesis of the continuum, there are only a denumerable inﬁnity

of composants of K which contain a point of }/ M,. The product
23]
of their sum with R will project into a set of the first category with

respect to the perfect set I,. Since the projection of ' J.-R is also
alf

a set of the first category with respect to I, it is clear that there
is a point y of I, which is not a point of either of these sets. It follows
that we may take any point of R on the line of W arising from y
a8 our point pp. '

To complete the induction, it remains merely to mention that
if we put Mp=py, then in the first place I' and II' are clearly satisfied
for all a<{f and III' ig satisfied for u<Cp; < B and u==v. In the second
place, we have Ja- %;z M,=0 for a<p. Furthermore 2} M, is denume-

# w

rable and 4- éf M,=0. We can accordingly apply our lemma to
Hep

prove the existence of a simple closed curve Jp such that IV, V',
VI, VII, and VIII hold for all a<p. We have shown now that for
every a<<(Q. there exist sets M, and J, such that conditions I—V

‘hold, and our theorem is proved.
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