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(B1) Let first a,=1/3. Substituting it into R, and multiplying by
4, we get 5a2= 4/5 (mod 1), and so a,= —2'5 or— 3/5, Since a,=—2/5
gives 2¢,=2a,—6a,/5—a;=4/5 (mod 1), which contradicts 20, =0
(mod 1), we have a,=~3/5. Then from (30), we get

a,=a,—3a,/5—%a,=0, a,= —a,+5a,/4=—3/4 (mod 1)
Hence we have a,=0, a,=—3/4, a,=—3/5, a,=—1/3, a,=—} and
they give the form f,,.

It can be easily computed that the adjoint form of Jog I8
11 ('lix% + %xg + '45 (x3 ")L' %Exz 'l— %‘7‘:1)2 + 'g (x4 + 'gx:s + ?i‘xz —i' ‘?yxl)z 'i“ (xs "J(" 'Qlfx4
+x3 +%x2+x1)2 +H (xe T El'xs + 1 Xy =+ 3 xa'i‘ %’g'xz -+ x1)2)

and it represents the value 4 for x,=x, = x;= 0, x, =1, X, = xg=—1.

Since 4 <11, the form /,, can be decomposed into a sum of a square and
a positive definite quadratic form both with integer coefficients.

(B2) Let then a,= —}, Substituting it into R, and multiplying by 4,
we get 5a2=1/5 (mod 1) and so a,=—1/5 or—4/5. Since a,=—1/5
gives 2a,=—6a,/5—a;=1/5+1/5 (mod 1), which contradicts to 24, =0
(mod 1). Hence we have a,=—4/5. From (30), we get

a,=a;—3a,/5—4a; =0, a,=5a,/4—a, =0 (mod 1).

Hence a,=a,=0, a,=—4/5, a,=—1/6, a,=—3. These values give
the form fs3.

It can be easily computed that the adjoint form of Jos is
11 (“é'xf + i‘xH‘% (1 1, + ‘%xl)z +3 (EA + x, + x, + ‘g'xl)z +(x5 -+ %x4
Fx bt ) b x4 a1,
which represents the value 4 for x, =x, =x§ =x,=0, x,= 1, x,=—1,
Hence 75 can be decomposed as 4 is less than the determinant value of Joa
Here the proof of lemma 8 and so the theorem 3 is completed,

In closing, I should like to thank Prof. Mordell for his kind help with
my manuscript.

(Received 22 Niovember, 1937.)
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On the positive definite quadratic forms
with determinant unity.

By

Chao Ko (Manchester).

It will make the results of this paper more intelligible to the reader if

we commence by giving a brief resumé of a little of the theory of quadratic
forms.

Let

n

fo= X

i,j=1

axx; (@ =aj)

be a positive definite quadratic form with determinant D, and integer
coefficients a;. Denote the minor determinant of the matrix (a,-f)
(ij=1, ..., n) of f, formed by the elements at the intersections of rows
iy &y +.. i, and columns j, j,...,j, by Agf') Wafs o b the greatest
common divisor of all the minors of order k=1, ..., nby d w so that
d, | d,, Write d,=1, d_ +y=0. Denote the greatest common divisor of all
the integers

b )
Aiyceig e iBe 2A0 g g de
by 5,= lor 2 (k=1, ..., n), and write 5,=1. Define the numbers, really

integers
0,= d,‘+1dkﬁ‘/df{ (k=1,...,n),

so that
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= —2,n—1
(1) D,=d,=d, 0n—10}—... 0} %0},

Then the o’s and o's are arithmetical invariants of fa. All the forms having
the same system of o's and o's belong to the same order.

Write
{2] A(k)s,2,.,.,lz: 1,2, ..., k/d/eck=Ak (k—:lr""n);

then by a linear transformation, we can make all the A’s relatively prime tf)
20,0, .. . 0n1?). For sufficiently large f, we also can transform /, by a uni-
modular linear substitution into /,’, a form in n variables §, &, such that

2Y0% (mod 2y o> >0,20,

3 J =

s

ita-

where the v's are integers and o, is either of the type

T

(3.1) 0= > aiibis (»s an integer),

i=1
or

A7y
(32) ¢=3 Qubibt2e,t &+ 2478 E) (% even),

i=1

)

the a;, o, being odd and X % =n?).
s==1
Write
{4) o=v—v—1 (=1,...,n—1),
and
(5) W=0,12% 6y, 0,=2%e; (i=1,...,n—1).

Then the following characters are also arithmetical invariants of /%)

1) Bachman, Zahlentheorie, vol, 4, part 1, 452,
2) Ibid. 444.
8) Ibid. 473.
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A,
(6,1) (7]‘), the Legendre symbols of quadratic residuacity, where p, runs
through the different odd prime divisors of o
{6.2) when p,;>2, the units (—1) %(A'_l);

(6.3) when p,>3, the units (—1) ¥4 ang (—1) @8,

(640 when pi1>2, =0, p>2, 6,;=1 and e; 4y A =1 (mod 4),
the units (—1) HA— 1D,

All the forms having the same system of characters belong to the same
genus; and all the forms equivalent to each other belong to the same class.
In one order, there may be several genera; and in one genus, there may be
several classes of forms.

For given n and D», we shall denotethe number of orders, genera, and
classes by Onp, Gpp,and C,,.

An aufomorph is defined as an integral linear transformation with de-
terminant *1, which transforms /, into itself, The reciprocal of the number
of automorphs of /, is the mass of the class represented by f,; and the mass of
a genus of forms is the sum of the masses of all the different classes of the
genus,

Hermite *) proved that for n=1, ..., 7; C,.1=1 with a numerical er-
ror corrected by Stouff when n==7, and so G, 1 = 0, :=1. For n=3§,
%) proved that there is only one class of forms which represents odd inte-
gers and Mordell ®} proved that Csi= 2, from which we easily deduce
that Gg1= 0s1=2. For n=09, I7) proved that Cs; =2 and one can de-
duce that Gy1=0s3=1. By using my method, Ketley®) proved that
Cio1= 2. and so Gi,1=0Oy,1=1. ‘A long time ago, Minkowski® proved
that C,1>[n/8]+ 1. Magnus!®) proved that the mass of the principal
genus of forms in n variables with determinant D, is greater than
=4 for n>n,, where s=¢ (ny) is a small fixed positive quantity,
and so, as Dr. Mahler pointed out, Cn,p,>n"0~% for n>n,. By other
considerations, Erdés and I!!) proved that C,;>2"" for large n.

4) Hermite, Oeuvres, vol. 1, 129,

%) Ko, Quart. J. Math. {Oxford) 8 (1937), 81—98.

¢) Mordell, J, de Mathématique, 17 (1938), 41—46,

7) Ko, J. London Math. Soc., 13 (1938), 102—110.

8) M. Sc. dissertation of Manchester University, (1938).

) Minkowski, Gesammelte Abhandlungen, 1 (1909), 77.

10) Magnus, Math. Annalen, 114 {1937), 465—475,

1) Erdés and Ko, "On the decomposition of a definite quadratic form into a sum
of two definite or semi-definite quadratic forms,” may appear in Acta Arithmetica,
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In the present note, I shall prove

THEOREM 1. Gui=On1=1 for all n == 0 (mod 8) and Gu 1= 0n1=2
for all n=0 (mod 8).

THEOREM 2. C1041 = C11,1 =2 and C12,1 = C13_1 >'3.
To prove these theorems, we require the following known lemmas.

LEMMA 1), There exist forms f, with D, =1 not representing odd
integers, if and only if n=0 (mod 8).

LEMMA 2 %9). Letv=[{ (n—1)] and B, E; be the absolute values of
the Bernoulli and Euler’s numbers, respectively. Then when D, =1, for
the mass of the principal genus

M= /e 11 (Bu/2i) (1—2-%);, (o odd),
i=1

(1 M= @Byt @E—1) ,ﬁI(Bz,/zi)(l—ﬂ); (n=0 (mod 4),

My=@ig) E2—tt 11 (Bul2)(1—27);  (n=2 (mod 4)),
' i=1

where

2, 3, 4, 5, 1, 8 (mod 8);

8 =142 -2t 1427, 1427, 1, 1—29—22, 1—27, 1—27, §

where j = [$(i—1)].

Proof of theorem 1. Since D, =1, from (1), all the o's are1; and
from (3), A==1, v,= Ofor otherwise; D,=0 (mod 2).

Suppose first n ==0 (mod 8). By lemma 1, all the forms reipresent
o0dd integers, and so the corresponding ¢, are of the type (3.1). Hence all
the o's are 1. This proves that On1=1. Since the o’s are 1, all the cha-

12) Thid, .
15) Magaus (10), 475. The value given by Magnus 3,= 12—/ 22— for i= 1
(mod 8) is incorrect.
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racters of (6.1) are 1. Then from (4) and (5), we have p,=0 and so the
characters of (6.2), (6.3) and (6.4) do not occur. This proves G,; = 1.
When n =0 (mod 8), by lemma 1, there exist forms which represent
only even integers; and so the corresponding ¢, are of the type {3.2). Hen-
ce from the definition of o on noting that o, . in (3.2) are odd, we obtain

6,=2, 0,=1, 6;,=2, ¢,=1,..., Gp1=2, 6,=1.

This proves O,1=2for n=0 (mod 8).
From (4) and (5),

b =0,

From (6), the only characters, which occur with respect to 2; are

P =2, 1,=0, B=2 . a1 =0,

(-1 340,
But from (3.2), it is easy to see that
Ay =—1 (mod 4), Ay =1 (mod 4),

hence all these characters are fixed for all the even forms and define only

one genus for all these even forms. This proves G,; =2 for n 0
(mod 8).

Proof of theorem 2. From lemma 2, we have 4)

M,=17/2°.91 .3.5, M,=5/2°.101.3, M, =31/2".11.3,
M,=31/2%.12(.3, M, =691/2".13!.5.
Now Cy;; ==2 and the representatives of the two classes are

9
f= 2 =,

=1

fi=rta,

where

8 8
fo= 2 (X x) 2%, x,— 2x,x,

i=1 i=1

representing only even integers., Since the number of automorphs of £, is
2°,9!, the number of automorphs of /' is

14) In Magnus (10), the values given by Magnus M; = 32.17/2°.9!.137, M, =
=32.5/2'9,10!. 137, M; =3.5.31/2".11],137 are incorrect. The number 137 standing
in the denominator should read 135,
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@) 1M, — 1/2°.9))=2".91.3.5.
Since f, does not represent unity, it is clear from (8) that the number of
automorphs of /s is
27.91,3.5.
Thus the number of automorphs of the form

n
St > x?
i=9
is
A, =2-%n—8)!.27.91.3.5.
From the values of Mye My;,
M,=1/2".10!.+ 1A, M, = 124 111+ 1/A,,.

n
Since the number of automorphs of 3%} for n=10, 11 are respectively
i=1
21 10! and 2. 11, the principal genus contains only two classes of forms
in each case. From theorem 1, it follows that Cioq = Cu1==2.
From the values of M, Mis,

Mpgp=1/22 12!+ 1/Ap+1/21.12],
)
Mis=1/28.134+1/A; +1/21.12],

hence Cyz,1 > 3, C132 >3. Suppose that the number of automorphs of the classes

of the representative forms /®),.., /2, other than the two known ones in 12

variables are A1z1,. .. Azia It is clear that these forms do not represent
unity and so the auomorphs of the classes of forms

JE .. o fR
are in number, respectively, 2411, .. ., 2A1n. From (9), we have

121,120 = 1/ Aps+. . . H 1240
But

1/2lz L121= 1/2A12,1+. Lt 12A10,

it follows that C 31 = Cis,1. Hence theorem 2 is proved.
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Remark. For n=12, the form )

12 11
J2=23x2+2 'Zz 27+ 10x, x,+2 > X Xy,
i= i=2

does not represent unity and so is not equivalent to the other two forms

12 12
X x* and f,+ 3 x2

i=1 i=9

Probably the number of automorphs of f1152°.12! and so C,,, =
Cy3, =3, but this number is very tedious to calculate, '
For n=14, 15, we have from (7),

Miu=61.691/2 . 141.33,5=1/21 1414+ 1/25.6!.27.91.3.5
+1/22.20.21 121+ 1/283. 10!, 3%. 7,
Mis=43.691/25 .15 .32 =1/215. 15[+ 1/27.71.27.91.3. 5
+1/23.31.21,1214+1/2.2% ., 101. 3,7 +1/25. 15!,

Hence Cisy > 4 and Ci51> 5 and four and five forms can be written
down, since it is known that for n-=14, 15, the forms!'®)

13 12
8x +6x,x, 12 b x2tx2+2 2 x Hoepr + 6ags 214+ 822,
i=2 i=2
and
15 14
15x%+ 8x,x,t 2 ) x242 2 x X1
i=2 =2

do not represent unity. It is very probably that Cyy=4and Cy =5

In closing, I should like to thank Prof. Mordell for his kind help W-ith
my manuscript.

(Received 12 March, 1933.)

15), 16] See 1), ‘ ' ) ' -


GUEST




