

148

Braun S. [1] Quelques théorèmes sur les cribles boreliens. Fund. Math. 20 (1933), pp. 166-172.

Hausdorff F. [1] Mengenlehre. Berlin-Leipzig 1935.

Kuratowski C. [1] Topologie I. Monografie Matematyczne 3, Warszawa-Lwów 1933.

- [2] Sur une généralisation de la notion d'homéomorphie. Fund. Math. 22 (1934), pp. 206-220.

Kuratowski C. et Posament T. [1] Sur l'isomorphie algébro-logique et les ensembles relativement boreliens. Fund. Math. 22 (1934), pp. 281–286.

Lusin N. [1] Leçons sur les ensembles analytiques et leurs applications. Collection Borel, Paris 1930.

Mostowski A. [1] Abzählbare Boolesche Körper und ihre Anwendung auf die allgemeine Metamathematik. Fund. Math. 29 (1937), pp. 34-53.

Sierpiński W. [1] Hypothèse du continu. Monografie Matematyczne 4, Warszawa-Lwów 1934.

Stone M. H. [1] The theory of representations for Boolean algebras. Trans. Amer. Math. Soc. 40 (1936), pp. 37-111.

Szpilrajn E. [1] Remarques sur les fonctions complètement additives d'ensemble et sur les ensembles jouissant de la propriété de Baire. Fund. Math. 22 (1934), pp. 303-311.

- [2] Sur l'équivalence des suites d'ensembles et l'équivalence des fonctions. Fund. Math. 26 (1936), pp. 302-326. Correction... Fund. Math. 27 (1936), p. 294.
- [3] On the equivalence of some classes of sets. Fund. Math. 30 (1938), pp. 235-241.
- [4] The characteristic function of a sequence of sets and some of its applications. Fund. Math. 31 (1938), pp. 207-2231.
- [5] Concerning convergent sequences of sets. Ann. Soc. Pol. Math. 17 (1938), p. 115.
- [6] On the isomorphism and the equivalence of classes and sequences of sets. Ann. Soc. Pol. Math. 17 (1938), pp. 119-120.

Tarski A. [1] Sur les classes d'ensembles closes par rapport à certaines opérations élémentaires. Fund. Math. 16 (1930), pp. 181-304.

— [2] Über additive und multiplikative Mengenkörper und Mengenfunktionen. Comptes-rendus Soc. Sc. Varsovie 30 (1937), pp. 151-181.

Whitehead A. N. and Russell B. [1] Principia Mathematica, vol. II. Cambridge 1927.

On the asphericity of regions in a 3-sphere.

 B_{y}

J. H. C. Whitehead (Oxford).

- 1. This note arises out of an attempt to answer two questions proposed by S. Eilenberg 1), namely:
- 1. pour quelles courbes simples fermées $\Omega_0 \subset S^3$ l'ensemble $S^3 \Omega_0$ est asphérique?
- 2. pour quels couples $\Omega_1, \Omega_2 \subset S^3$ de courbes simples fermées disjointes l'ensemble $S^3 (\Omega_1 + \Omega_2)$ est asphérique?

I first show how Reidemeister's theory 2) of "Homotopie-kettenringe" can be applied to the study of the first question in case Ω_0 is a polygonal knot, which I will call k, and in 4 I show how the methods of 2 and 3 can be applied to the study of similar questions. Some examples are given in 5, and 6 contains an "addition theorem" with an application to the study of knots and linkages. Taking $M^3 = S^3$ it follows from theorem 6, in 7, that the hypothesis " $S^3 - k$ is aspherical", k being any polygonal knot in a 3-sphere S^3 , implies the algebraic analogue of Dehn's lemma 3) for circuits in S^3 (i.e. it implies that, if k bounds a singular 3-cell without singularities on the boundary, then $\pi_1(S^3 - k)$ is cyclic.) The final section is an appendix on the group ring of an "indexed" group 4).

¹⁾ This paper is refered to as CF.

¹⁾ Fund. Math., **28** (1937), p. 241. We recall that a space X, is called aspherical (W. Hurewicz, Proc. Akad. Amsterdam, **39** (1936), p. 215) if all the (additive) higher homotopy groups $\pi_n(X)$, n>1, reduce to zero. $\pi_1(X)$ is the (multiplicative) fundamental group, which need not reduce to 1.

²⁾ See: Abh. Math. Sem. Hamburg, 10 (1934), p. 211; Journal für die r.u.a. Math., 173 (1935), p. 164, and other papers.

³⁾ Math. Annalen, **69** (1910), p. 147. There is a gap in Dehn's argument (at the top of p. 151) which has not yet been filled. See also E. Pannwitz, Math. Annalen, **108** (1933), p. 629 (§3), and I. Johansson, Math. Annalen, **110** (1934), p. 312 and **115** (1938), p. 658.

⁴⁾ J. W. Alexander, Trans. American Math. Soc., 30 (1928), 290.

I wish to express my gratitude to Dr. Eilenberg for many valuable suggestions, which have led, among other things, to great improvements in theorems 5 and 6 (the proof of theorem 5 is due mainly to him).

2. Let $k \subset \mathbb{R}^3$ be any oriented, polygonal knot in $S^3 = \mathbb{R}^3 + w$, where R^3 is Euclidean 3-space and w is an ideal point at infinity. Let R^2 be any plane which does not meet k, and let V be a point which is separated from k by R^2 and which is in general position relative to k. Let C be the singular 2-cell swept out by the recti-linear segment VP as P describes k. Let $P_1,...,P_n$ be the points in which kpierces C, arranged so that P_i and $P_{i+1}(P_{i+1}=P_1)$ are consecutive and the cyclic order $P_1,...,P_n$ determines a positive orientation of k (n>2 if k is knotted and we may assume that n>2 even if kis unknotted). Let T^3 , an open set, be a thin tubular neughbourhood of k, whose (polyhedral) boundary T^3 , cuts C in simple circuits $\bar{f}_1,...,\bar{f}_n$ enclosing $P_1,...,P_n$; let Q_i be the point in which \bar{f}_i meets VP_i and let $\bar{e}_i = Q_i Q_{i+1}$ be that segment of the circuit $C \cdot \dot{T}^3$ which does not contain the other points Q_i . Let e_i and f_i be the 1-cells $\overline{e}_i - (Q_i + Q_{i+1})$ and $\bar{f}_i - Q_i$, let E_i^2 be the 2-cell on \dot{T}^3 whose point-set frontier is $\bar{f}_i + \bar{e}_i + \bar{f}_{i+1}$, and let F_i^2 be the 2-cell on C whose frontier consists of 5) VQ_i , e_i and VQ_{i+1} , together with f_j and VQ_j for every j such that P_i lies in the 2-element swept out by VQ as Q describes \bar{e}_i . Then the frontier of the 3-cell $E^3 = S^{\overline{3}} - (\overline{T}^3 + C)$ consists of

$$\sum_{i=1}^{n} (E_{i}^{2} + F_{i}^{2} + e_{i} + f_{i} + VQ_{i}).$$

We now find a set of generators and relations for $G = \pi_1(S^3 - T^3)$, which can be written down by a well known rule 6) from the projection of k on R^2 from V, taking V to be "underneath" R^2 . Let us describe as the positive side of F_i^2 that side from which the segment VQ seems to be moving anti-clockwise as Q describes \bar{e}_i positively (i.e. from Q_i to Q_{i+1}). With any point in E^3 as base point, let a_i (i=1,...,n) be the element of G corresponding to an oriented

circuit in $S^3 - T^3$ which pierces C just once, in F_i^2 , the arrow of orientation pointing from the negative to the positive side of F_i^2 . Then as is well known, G is generated by $a_1, ..., a_n$, subject to the relations

(2.1)
$$a_{j_i}^{\epsilon_i} a_i = a_{i-1} a_{j_i}^{\epsilon_i} \qquad (i=1,...,n; a_0 = a_n),$$

where $f_i \subset \overline{F}_{ji}^2$ and $\varepsilon_i = +1$ if e_i lies on the positive side of F_{ji}^2 , $\varepsilon_i = -1$ if e_i lies on the negative side of F_{ji}^2 . Let $\Re = \Re(G)$ be the integral group ring of G, the elements of \Re being linear forms

$$n_1\beta_1 + n_2\beta_2 + ...,$$

where $\beta_i \in G$ and $n_1, n_2, ...$ are rational integers, all but a finite number of which are zero.

Two remarks concerning "Homotopiekettenringe": First the r-chains in \widetilde{K} , the universal covering complex of a complex K, will be written as

$$C_1^r \xi_1 + C_2^r \xi_2 + ... + C_p^r \xi_p, \qquad \xi_i \in \Re\{\pi_1(K)\},$$

with the coefficients ξ_i on the right of the basis elements $C_1^r, ..., C_p^r$. Secondly we recall a rule which, for the purposes of reference, we shall call the fundamental rule. Let E^r be any cell in K and let s_1 and s_2 be two oriented segments leading from a point O, in K, to a point in E^r . Let α be the element in $\pi_1(K)$, with base point O, corresponding to the oriented circuit $s_1 - s_2$. As usual, let a point \widetilde{P} in \widetilde{K} be defined by a class of segments in K joining O to an arbitrary point P, two segments being in the same class if, and only if, one is deformable into the other with O and P held fixed throughout the deformation. Let \widetilde{E}_i^r be the cell in \widetilde{K} corresponding to E^r and the segment s_i (i=1,2). Then the fundamental rule is

$$\widetilde{E}_1^r = \widetilde{E}_2^r \alpha$$
.

We have seen that S^3-T^3 carries a complex K, consisting of a 3-cell E^3 , 2-cells E_i^2, F_i^2 , 1-cells e_i , f_i and VQ_i , and vertices V, Q_i . Let \widetilde{K} be the universal covering complex of K; let $O \in E^3$ be the base point of $G = \pi_1(K)$ and \widetilde{O} the point in \widetilde{K} corresponding to the unit element G. As a basis for the r-chains (r=1,2,3) in \widetilde{K} , with coefficients in \Re , we take:

^{&#}x27;5) We shall use VQ_i to stand both for the open 1-cell and for the (rectilinear) segment consisting of this 1-cell and its end points, V and Q_i . It will always be clear from the context which is meant.

⁶) See, for example, K. Reidemeister, Knotentheorie, Berlin (1932), pp. 50 and 53.

Asphericity

- (1) (r=3) the 3-cell \mathcal{E}^3 , covering E^3 , which contains \widetilde{O} ,
- (2) (r=2) the 2-cells \mathcal{E}_i^2 , on $\dot{\mathcal{E}}^3$ covering E_i^2 , together with the 2-cells \mathcal{F}_i^2 , on $\dot{\mathcal{E}}^3$ covering the positive sides of F_i^2 ,
- (3) (r=1) the 1-cells \widetilde{e}_i incident with both \mathcal{E}_l^2 and $\overline{\mathcal{E}}_l^2$ and the 1-cells \widetilde{f}_l , on $\dot{\mathcal{E}}_l^2$ covering f_l . Thus, if \mathcal{E}_l^2 , seen from inside \mathcal{E}^3 , is visualized as a long thin rectangle with an arrow pointing lengthwise, in accordance with the orientation of k, \widetilde{e}_l is the long side on the left of the arrow and \widetilde{f}_l is the short side at the beginning of the arrow. The remaining 1-cells, and the 0-cells of the basis may be chosen arbitrarily.

We now fix the orientations of the various cells. Let abcd be a simplex in E^3 , of which the face abc is in F_i^2 and d is on the positive side of F_i^2 . Then the positive orientation of E^3 is the one determined by the even permutations of abcd if the cyclic order abc, when seen from d, determines a clockwise rotation 7). The positive orientation of F_i^2 is to be the one determined by the cyclic order abc. The same applies to E_i^2 , the simplex abc being in this case in E_i^2 and the vertex d inside E^3 . Thus \mathcal{F}_i^2 and \mathcal{E}_i^2 are positively related to \mathcal{E}^3 , and it follows from the fundamental rule that

(2.2)
$$\dot{\mathcal{E}}^3 = \sum_{i=1}^n \{ \mathcal{E}_i^2 + \mathcal{F}_i^2 (1 - \alpha_i) \}.$$

The segments \bar{e}_i have already been oriented, Q_i being the first and Q_{i+1} the last point for each value of i. Thus \tilde{e}_i is positively related to \mathcal{E}_i^2 , negatively related to \mathcal{E}_i^2 , and is not on the boundary of any other 2-cell in the basis. By the fundamental rule

(2.3)
$$\dot{\mathcal{E}}_i^2 = \widetilde{e}_i (1 - a_i) + \dots, \qquad \widetilde{\sigma}_i^2 = -\widetilde{e}_i + \dots$$

The circuits \bar{f}_i are to be oriented in the sense $Q_i^-Q_iQ_i^+$, where $Q_i^-Q_iQ_i^+$ is an oriented arc of \bar{f}_i passing from the negative to the positive side of F_i^2 . Thus \tilde{f}_i is negatively related to \mathcal{E}_i^2 . The remaining orientations may be assigned arbitrarily.

Now let

(2.4)
$$\Gamma^2 = \sum_{i=1}^n \left(\mathcal{S}_i^2 \, \xi_i + \mathcal{F}_i^2 \, \eta_i \right)$$

be any 2-chain in K.

$$\dot{\Gamma}^2 = \sum_{i=1}^{n} \widetilde{e}_i \{ (1-a_i) \, \xi_i - \eta_i \} + ...,$$

whence, if Γ^2 is a cycle,

(2.5)
$$\eta_i = (1 - a_i) \, \xi_i$$
.

In finding the coefficient of \tilde{f}_i in \dot{f}^2 we distinguish between two cases. First let E_i lie on the positive side of F_{i}^2 . Then

$$\dot{\mathcal{E}}_{i}^{2} = -\widetilde{f}_{i} + ..., \qquad \dot{\mathcal{E}}_{i-1}^{2} = \widetilde{f}_{i} \alpha_{i} + ..., \qquad \dot{\mathcal{E}}_{i}^{2} = \widetilde{f}_{i} + ...,$$

and \widetilde{f}_i is not on the boundary of any other 2-cell in the basis. If Γ^2 is a cycle it follows from these equations and from (2.5) that

$$-\xi_i + a_{j_i}\xi_{i-1} + (1-a_{j_i})\xi_{j_i} = 0,$$

 \mathbf{or}

Then

(2.6)
$$\xi_i - \xi_{j_i} = a_{j_i} (\xi_{i-1} - \xi_{j_i}).$$

On the other hand if E_i^2 is on the negative side of F_{i}^2 we have

$$\dot{\mathcal{E}}_i = -\widetilde{f}_i + ..., \quad \dot{\mathcal{E}}_{l-1}^2 = \widetilde{f}_i a_{j_i}^{-1} + ..., \quad \dot{\mathcal{E}}_{j_l}^2 = -\widetilde{f}_i a_{j_i}^{-1} + ...,$$

whence, if Γ^2 is a cycle,

$$-\xi_i + a_{j_i}^{-1} \xi_{i-1} - a_{j_i}^{-1} (1 - a_{j_i}) \xi_{j_i} = 0,$$

or

(2.7)
$$\xi_{i} - \xi_{i} = a_{i}^{-1} (\xi_{i-1} - \xi_{i}).$$

The equations (2.6) and (2.7) may be combined into

(2.8)
$$\xi_{i} - \xi_{j_{i}} = a_{j_{i}}^{i_{i}}(\xi_{i-1} - \xi_{j_{i}}),$$

where, as in (2.1), $\varepsilon_i = +1$ or -1 according as e_i lies on the positive or negative side of $F_{j_i}^2$.

The equations (2.8) are obviously satisfied if $\xi_1 = ... = \xi_n = \xi$, for any value of ξ . Such a set of solutions will be described as *trivial*, any other as *non-trivial*.

Theorem 1. Any 2-cycle in \hat{K} is of the form

(2.9)
$$\Gamma^2 = \sum_{i=1}^n \left\{ \mathcal{E}_i^2 + \mathcal{F}_i^2 \left(1 - a_i \right) \right\} \xi_i,$$

where $\xi_1,...,\xi_n$ satisfy (2.8), and $\Gamma^2 \sim 0$ if and only if $\xi_1 = ... = \xi_n$. Conversely, the 2-chain given by (2.9) is a cycle if $\xi_1,...,\xi_n$ satisfy (2.8).

⁷⁾ This may be taken as the definition of "clockwise".

It follows from (2.5) that any 2-cycle in \widetilde{K} is of the form (2.9), and we have proved that if Γ^2 , given by (2.9), is a cycle, then $\xi_1, ..., \xi_n$ satisfy (2.8). It $\xi_1 = ... = \xi_n = \xi$, say, we have $\Gamma^2 = (\mathcal{E}^3 \xi)^{\bullet}$, and since \mathcal{E}^3 is a basis for the 3-chains in \widetilde{K} , any bounding 2-cycle is of this form, and is therefore given by (2.9) with $\xi_1 = ... = \xi_n$.

It remains to prove that Γ^2 , given by (2.9), is a cycle provided $\xi_1,...,\xi_n$ satisfy (2.8). Let the basis for the 1-chains in \widetilde{K} be completed by segments $\widetilde{V}\widetilde{Q}_1,...,\widetilde{V}\widetilde{Q}_n$, covering $VQ_1,...,VQ_n$, and let the co-efficient of $\widetilde{V}\widetilde{Q}_i$ in $\dot{\Gamma}^2$ be ζ_i . The co-efficients of \widetilde{v}_i in $\dot{\Gamma}^2$ are zero, and, in consequence of (2.8), so are the co-efficients of \widetilde{f}_i . Therefore the co-efficient of \widetilde{Q}_i in $\ddot{\Gamma}^2 = (\dot{\Gamma}^2)^{\bullet}$ is $\pm \zeta_i$. But $\ddot{\Gamma}^2 = 0$. Therefore $\zeta_i = 0$, whence $\dot{\Gamma}^2 = 0$, and the theorem is established.

It is obvious that $\pi_r(S^3-k)=\pi_r(S^3-T^3)=\pi_r(K)$ for all values of r, and well known that $\pi_r(K)=\pi_r(\widetilde{K})$ if r>1. Since $\pi_1(\widetilde{K})=1$ it follows from a theorem due to Hurewicz 8) that $\pi_2(\widetilde{K})=\beta_2(\widetilde{K})$, where $\beta_n(X)$ is the n^{th} homology group of X. Since $\beta_r(\widetilde{K})=0$ if r>2 it follows from the same theorem that if $\beta_2(\widetilde{K})=0$, then $\pi_r(\widetilde{K})=\beta_r(\widetilde{K})=0$ for all values of r, and hence that $\pi_r(K)=0$ if r>1. Therefore we have

Theorem 2. The space S^3-k is aspherical if, and only if, the equations (2.8) imply $\xi_1=...=\xi_n$.

There is a simple rule for writing down the equations (2.8), possibly with trivial modifications, from the projection of the knot on R^2 from V, which is to be regarded as "below" the plane R^2 . Just one equation corresponds to each crossing, and if s_i is the upper segment at any crossing, s_h and s_i the lower segments (h=i-1 or i+1), and if s_i is the one which, seen from above, is on the left of s_j , positively described, then the corresponding equation is

irrespective of whether h=i-1 or i+1.

3. Theorem 3. Any one of the equations (2.8) is satisfied in consequence of the others.

It is enough to prove that Γ^2 , given by (2.9), is a cycle in consequence of equations (2.8) with i=1,...,r-1,r+1,...,n, say with

i=1,...,n-1. The co-efficients of $\widetilde{e}_1,...,\widetilde{e}_n$ in $\dot{\varGamma}^2$ are zero for any values of $\xi_1,...,\xi_n$, and the co-efficients of $\widetilde{f}_1,...,\widetilde{f}_{n-1}$ are zero in consequence of (2.8) with i=1,...,n-1. As in the last part of theorem 1 the co-efficients of $\widetilde{V}\widetilde{Q}_1,...,\widetilde{V}\widetilde{Q}_{n-1}$ in $\dot{\varGamma}^2$ are zero. Therefore the coefficient of V in $\ddot{\varGamma}^2$ is $\pm \zeta_n$, where ζ_n is the co-efficient of $\widetilde{V}\widetilde{Q}_n$. Therefore $\zeta_n=0$, and the co-efficients in $\dot{\varGamma}^2$ of all the 1-cells, except possibly \widetilde{f}_n , are zero.

Let $\dot{F}^2 = \widetilde{f}_n \varrho$ and let \widetilde{Q}_n be taken as the common end point, of \widetilde{e}_n and \widetilde{f}_n . Then it follows from the fundamental rule that

$$\dot{\widetilde{f}}_n = \widetilde{Q}_n(\alpha_n - 1).$$

Therefore $\ddot{\Gamma}^2 = \widetilde{Q}_n(a_n-1)\varrho$, whence $(a_n-1)\varrho = 0$. Making multiplication commutative in G we see that a_n is not of finite order. It follows from an argument in $\mathbf{8}$ below that a_n-1 is not a 0-divisor, and hence that $\varrho = 0$. Therefore Γ^2 is a cycle and the theorem is established.

It follows from theorem 1 that the 2-cycles in \widetilde{K} are in a (1—1) correspondence, given by (2.9), with the sets of solutions of (2.8), the bounding cycles corresponding to the trivial sets of solutions. Thus we may think of solutions $\xi_1, ..., \xi_n$, of (2.8), as "co-ordinates" of the cycle (2.9). In each homology class there is a unique cycle, namely $\Gamma^2 - \dot{\xi}^3 \xi_m$, whose m^{th} co-ordinate vanishes. Combining these observations with theorem 3 we have;

Theorem 4. The 2-dimensional homology classes of \widetilde{K} are in (1-1) correspondence with the sets of solutions of the equations

$$\xi_{\lambda} - \xi_{j_{2}} = a_{j_{2}}^{\iota_{\lambda}} (\xi_{\lambda-1} - \xi_{j_{2}}), \qquad \xi_{m} = 0,$$

where $\lambda = 1, ..., r-1, r+1, ..., n \ (\xi_0 = \xi_n)$.

There is a close formal analogy between the equations (3.1), in which we take m=r=n to simplify the notation, and the equations from which Alexander's polynomial is derived. For write $a_n=t$, $a_l=a_lt$. Then the relations (2.1), expressed in terms of $a_1,...,a_{n-1},t$, become

$$(a_{i,t})^{i}a_{i}t = a_{i-1}t(a_{i,t})^{i}, \qquad a_{n} = 1.$$

⁸⁾ Proc. Akad. Amsterdam, 38 (1935), p. 522.

Asphericity

If $\varepsilon_i = 1$ we have $a_{i,i}ta_i = a_{i-1}ta_{i,i}$, or

$$(3.2) a_{1i}a_{0i} = a_{1i-1}a_{0i},$$

where $a_{pl} = t^{-p} a_l t^p$. Making multiplication commutative between a_{pi} and a_{qj} $(i,j=1,...,n-1; p,q=0, \pm 1,...)$, replacing commutative multiplication by commutative addition, and 1 by 0, and writing $a_{pj} = x^p a_j$, (3.2) becomes

$$a_i + xa_{j_i} = a_{j_i} + xa_{i-1}$$
 or $a_i - a_{j_i} = x(a_{i-1} - a_{j_i})$

with $a_n = 0$. A similar process leads to

$$a_i - a_{j_i} = x^{-1} (a_{i-1} - a_{j_i})$$

if $\varepsilon_i = -1$. It is well known that each of the relations (2.1) is implied by the rest of them, and, omitting the one for which i=n, what may be called Alexander's relations take the form

(3.3)
$$a_{\lambda} - a_{j_{\lambda}} = x^{\ell \lambda} (a_{\lambda - 1} - a_{j_{\lambda}}), \quad a_{n} = 0,$$

where $\lambda = 1, ..., n-1$ $(a_0 = a_n = 0)$.

If multiplication is made commutative in G, and hence in \Re , and if ξ_{λ} is replaced by a_{λ} , and a_{j} by x, the equations (3.1) become (3.3). If $a_{1}, a_{2}, ..., a_{n}$ are treated as unknown variables the determinant of the co-efficients in (3.3) is $\pm x^{p} \Delta(x)$, where $\Delta(x)$ is Alexander's polynomial. Since $\Delta(x) = 0$ any solutions of (3.1) must reduce to (0, ..., 0) when multiplication is made commutative.

Except for the paragraph containing theorem 2 everything we have said remains valid if $\Re(G)$ is replaced by $\Re(G/G_0)$, where G_0 is any invariant sub-group of G, and \widetilde{K} by a regular covering of K with G_0 as its fundamental group. Taking G_0 to be the commutator group of G, it follows from the last paragraph that, in this case 10), $\beta_2(\widetilde{K}) = 0$.

4. Let the knot k in **1** be replaced by a finite, but not necessarily connected, semi-linear graph g. Then the residual space $S^3 - g$ may be studied by similar methods to those described in **1**. The star C, with V as its centre, is defined as before. Instead of a solid torus T^3 we have a 3-dimensional manifold bounded by one or more surfaces

of arbitrary genus. Here, as in 1, it may be shown that E^3 is a 3-cell (i.e. a homeomorphic image of R^3). But this is unnecessary, since we only need to know that $\pi_1(E^3)=1$, $\beta_2(E^3)=0$, which is obvious. The only essential differences are those which arise when q contains multiple vertices, that is to say vertices which are incident with more than two edges (rejecting the case where $\beta_1(q)=0$, we may assume that every vertex of q is incident with at least two edges) First we assign either one of the two possible orientations to each "string" in q, where a string means either a line whose end-points, but none of whose internal points, are multiple vertices, or a circuit containing at most one multiple vertex. Then, projecting q on R^2 from V (as before V is to be below R^2) the generators of $G = \pi_1(S^3 - q)$ are defined as in the case of a knot or linkage, except that the segments $s_1,...,s_n$, corresponding to the generators $a_1,...,a_n$, may terminate either at a crossing or at a multiple vertex. To each crossing corresponds a relation of the form (2.1) and to a multiple vertex P, a relation of the form

$$a_{i_1}^{\epsilon_1} \dots a_{i_p}^{\epsilon_p} = 1,$$

where $s_{i_1}, ..., s_{i_p}$ are the segments incident with P, and $\varepsilon_i = \pm 1$, according as P is the first or last point of s_i .

The manifold M^2 , corresponding to \dot{T}^3 , may be cut up into cells E_i^2 by the method used in **1**. If $E_{i_1}^2, ..., E_{i_p}^2$ are those which correspond to the segments $s_{i_1}, ..., s_{i_p}$ meeting at a multiple vertex P, we take the 1-cells of $\dot{E}_{i_2}^2$ in the neighbourhood of P to be segments t_2 and t_{2+1} ($t_{p+1}=t_1$), joining the two points in which VP meets M^2 near P, and such that $\bar{E}_{i_2}^2$ meets $\bar{E}_{i_{2}+1}^2$ in t_{2+1} . If the orientations are such that each cell of M^2 is positively related to E^3 we can attach a unique set of co-ordinates $\xi_1, ..., \xi_n$ to each 2-cycle in K, where $\xi_1, ..., \xi_n$ satisfy equations defined as follows:

- (1) to each crossing corresponds an equation of the form (2.10),
- (2) to each multiple point corresponds an equation of the form $\xi_{i_1} = ... = \xi_{i_p}$, where $i_1, ..., i_p$ mean the same as in (4.1).

There is no difficulty in extending theorems 1, 3 and 4 to the situation considered here, and theorem 2 is valid if the discarded equation is one which corresponds to a crossing.

⁹⁾ $\Delta(1) = 1$ (Alexander, loc.cit., p. 299).

¹⁰⁾ This is also implicit in Eilenberg's results (loc. cit. theorems 1 and 4).

5. Examples:

1. The equations (2.10) are:

(1)
$$\xi_1 - \xi_3 = a_3(\xi_2 - \xi_3),$$

(2)
$$\xi_3 - \xi_4 = a_4(\xi_2 - \xi_4),$$

(3)
$$\xi_3 - \xi_1 = a_1(\xi_4 - \xi_1),$$

(4)
$$\xi_1 - \xi_2 = a_2(\xi_4 - \xi_2),$$

to which we may add $\xi_4 = 0$.

From (2) and (4), with $\xi_4=0$, we have

Fig. 1.

$$\xi_3 = a_4 \xi_2, \qquad \xi_1 = (1 - a_2) \xi_2.$$

Substituting in (3) we have

$$(a_4+a_2-1)\xi_2=a_1(a_2-1)\xi_2$$

or $\varrho\xi_2=0$, where $\varrho=1-a_1-a_2-a_4+a_1a_2$. With a notation explained in **8** below, we may take $\delta(a_l)=1$, in which case $\varrho=1+\sigma$, where every term in σ has a positive degree. Therefore it follows from an argument in **8** that ϱ is not a 0-divisor. Therefore $\xi_2=0$, whence $\xi_1=\xi_3=0$ and the residual space is aspherical.

2. The equations are

(1)
$$\xi_2 - \xi_3 = \alpha_3(\xi_1 - \xi_3),$$

(2)
$$\xi_2 - \xi_4 = a_4(\xi_1 - \xi_4),$$

(3)
$$\xi_3 - \xi_5 = a_5(\xi_4 - \xi_5),$$

(4)
$$\xi_4 - \xi_1 = \alpha_1(\xi_5 - \xi_1),$$

(5)
$$\xi_5 - \xi_3 = \alpha_3(\xi_6 - \xi_3),$$

(6)
$$\xi_3 - \xi_1 = \alpha_1(\xi_6 - \xi_1),$$

Fig. 2.

to which we may add $\xi_1 = 0$.

From (4) and (6) we have $\xi_4 = a_1 \xi_5$, $\xi_3 = a_1 \xi_6$. Substituting in (3) and (5), we have

$$a_1 \xi_6 - \xi_5 = a_5 (a_1 - 1) \xi_5,$$
 $\xi_5 - a_1 \xi_6 = a_3 (1 - a_1) \xi_6.$

From the second of these we have

$$\xi_5 = (\alpha_1 + \alpha_3 - \alpha_3 \alpha_1) \xi_6$$

and adding the second to the first

$$a_5(a_1-1)\xi_5+a_3(1-a_1)\xi_6=0.$$

Therefore $\varrho\xi_6=0$, where $\varrho=a_5(a_1-1)$ $(a_1+a_3-a_3a_1)+a_3(1-a_1)$. Writing $\delta(a_l)=1$ we have $\varrho=a_3+\sigma$, where each term in σ is of higher degree than the first. Therefore ϱ is not a 0-divisor and $\xi_6=0$. Therefore $\xi_3=\xi_4=\xi_5=0$, and from (1), with $\xi_1=0$, we have $\xi_2=0$. Therefore the residual space is aspherical.

3. The equations are

(1)
$$\xi_2 - \xi_3 = \alpha_3(\xi_1 - \xi_3),$$
 (6) $\xi_7 - \xi_9 = \alpha_9(\xi_6 - \xi_9),$

(2)
$$\xi_3 - \xi_5 = a_5(\xi_2 - \xi_5),$$
 (7) $\xi_8 - \xi_4 = a_4(\xi_7 - \xi_4),$

(3)
$$\xi_4 - \xi_8 = \alpha_8(\xi_3 - \xi_8),$$
 (8) $\xi_9 - \xi_{10} = \alpha_{10}(\xi_8 - \xi_{10}),$

(4)
$$\xi_5 - \xi_2 = \alpha_2(\xi_4 - \xi_2),$$
 (9) $\xi_{10} - \xi_7 = \alpha_7(\xi_9 - \xi_7),$

(5)
$$\xi_1 = \xi_5 = \xi_6 = \xi_{10}$$
, to which we may add $\xi_{10} = 0$.

From (5), with $\xi_{10} = 0$, we have $\xi_1 = \xi_5 = \xi_6 = 0$, and from (1) and (2)

$$\xi_2 = (1 - a_3) \xi_3,$$

 $\xi_3 = a_5 \xi_2 = a_5 (1 - a_3) \xi_3.$

Writing $\delta(a_i) = 1$ we see that $1-a_5(1-a_3)$ is not a 0-divisor, and hence that $\xi_3 = 0$. Therefore $\xi_2 = 0$,

Fig. 3.

and from (4), (3) (since $1-a_8$ is not a 0-divisor), (7) and (8) we have successively $\xi_4=0$, $\xi_8=0$, $\xi_7=0$ and $\xi_9=0$. Therefore the residual space is aspherical.

6. Let $P=P_1+P_2$, $P_{12}=P_1\cdot P_2$, where P,P_1 and P_2 are connected polyhedra, and

- 1. let $\pi_r(P_i)=0$ (i=1,2; r=2,...,n),
- 2. if n>2 let $\pi_s(P_{12})=0$ $(s=2,...,n-1)^{11}$,
- 3. let any circuit in P_{12} which is homotopic to a point in P_1 or in P_2 be homotopic to a point in P_{12} . If P_{12} is connected we shall express this by saying that $\pi_1(P_{12})$ is a sub-group of $\pi_1(P_1)$ and of $\pi_1(P_2)$.

Theorem 5. Under these conditions $\pi_r(P) = 0$ (r=2,...,n).

¹¹) Though $\pi_n(X)$ is only defined, in general, if X is connected, $\pi_n(X)=0$ will have the obvious meaning whether X is connected or not.

160

First let P_{12} be connected. Then it follows from the third condition that $\pi_1(P)$ is a free product 12), with identified sub-groups, of $\pi_1(P_1)$ and $\pi_1(P_2)$. Therefore $\pi_1(P_i)$ and $\pi_1(P_{12})$ are sub-groups of $\pi_1(P)$. Let \widetilde{P} be a universal covering space of P and let P_i^* and P_{12}^* be the sub-spaces of \widetilde{P} covering P_i and P_{12} . Since $\pi_1(P_i)$ and $\pi_1(P_{12})$ are sub-groups of $\pi_1(P)$ each component, \widetilde{P}_i or \widetilde{P}_{12} , of P_i^* or P_{12}^* , is a universal covering space of P_i or P_{12} . Therefore $\pi_2(\widetilde{P}_i) = 0$ and $\pi_2(\widetilde{P}_{12}) = 0$, whence $P_1(P_i) = 0$ and $P_2(P_i^*) = 0$ for $P_2(P_i) = 0$, whence $P_2(P_i) = 0$ and $P_2(P_i^*) = 0$ for $P_2(P_i) = 0$, whence $P_2(P_i) = 0$ from a known theorem $P_2(P_i) = 0$, whence $P_2(P_i) = 0$ from a known theorem is established in case $P_2(P_1) = 0$ is connected.

If P_{12} is not connected let t be a (connected) tree with exactly one point in each component of P_{12} , and no other point in P. Let Q=P+t, $Q_i=P_i+t$ and $Q_{12}=Q_1\cdot Q_2=P_{12}+t$. Then Q_{12} is connected. On comparing the universal covering spaces of P and Q it obvious that if $\pi_r(Q)=0$ then $\pi_r(P)=0$ (r=2,...,n). Similarly it follow from the first two conditions on P_i and P_{12} that $\pi_r(Q_i)=0$ for r=2,...,n, and $\pi_s(Q_{12})=0$ for s=2,...,n-1 if n>2. In consequence of the third condition satisfied by P_{12} it follows without difficulty that $\pi_1(Q_{12})$ is a sub-group P_{12} is follows without difficulty that P_{12} is a sub-group P_{13} of P_{14} and of P_{14} . Therefore it follows from what we have already proved that P_{14} and the theorem is established.

Corollary. If P_1, P_2 and P_{12} are aspherical so is P, subject to the third condition of theorem 5.

It follows from the corollary to theorem 5 that the residual spaces of many knots and linkages obtained from others by a process which I have described elsewhere as doubling ¹⁶) are aspherical. For let T_1^3 be a tubular neighbourhood of the knot k_1 in the linkage illustrated by fig. 2, 5, and let $P_1 = S^3 - (T_1^3 + k_2)$. We have seen that $S^3 - (k_1 + k_2)$, and hence that P_1 is aspherical. Moreover

M. H. A. Newman ¹⁷) and I have proved that $\pi_1(T_1^3)$ is a sub-group of $\pi_1(P_1)$. Therefore, if T^3 is a tubular neighbourhood of a knot k in a linkage k+L, such that $P_2 = S^3 - (T^3 + L)$ is aspherical and $\pi_1(T^3)$ is a sub-group of $\pi_1(P_2)$, then $S^3 - (k' + L)$ is aspherical, where k'

is a knot obtained by doubling k. For example, taking L+k to be the linkage k_1+k_2 itself (fig. 2), with $k=k_1$, the region $S^3-(k'+k_2)$ is aspherical, where $k'+k_2$ is the linkage indicated by fig. 4. Similarly the residual spaces of all the linkages considered in the joint paper by Newman and myself are aspherical.

Fig. 4.

Eilenberg ¹⁸) has observed that if $L \subset S^3$ is a linkage such that $S^3 - L$ is aspherical, the asphericity of $S^3 - L$ expresses some kind of interlinking between the component circuits of L. The preceding paragraph shows that $S^3 - (k+k')$ may be aspherical even though k and k' are not feebly linked (faiblement enlacées), or even n-linked ¹⁹) (n-enlacées) for a given value of n. This suggests that $S^3 - (k+k')$ may be aspherical provided k is not contained in any (non-singular) 3-element which does not meet k'. More generally, using F to denote a closed set in S^3 , we may ask;

Is S^3 —F as pherical unless $F=F_1+F_2$, where $F_1 \neq 0$, $F_2 \neq 0$, and F_1 is contained in a 3-element which does not meet F_2 ?

This is equivalent to the question 20):

If U is a open set in S^3 is $\pi_2(U)=0$ provided every non-singular, polyhedral 2-sphere in U bounds a 3-element in U?

To conclude this section I will show that an affirmative answer to this question is implied by an affirmative answer in case $S^3 - U$ is a recti-linear graph. First, if $U = S^3$ it is well known that $\pi_2(U) = 0$,

¹²) H. Seifert and W. Threlfall, Lehrbuch der Topologie, Leipzig (1934), p. 177. For a definition of free products with identified sub-groups see K. Reidemeister, Einführung in die Kombinatorische Topologie, Brunswick (1932), p. 41.

¹³⁾ Hurewicz, Proc. Akad. Amsterdam, 38 (1935), p. 522.

¹⁴) P. Alexandroff and H. Hopf, Topologie I, Berlin (1935), p. 294.

¹⁵) $\pi_1(Q_i)$ is the free product of $\pi_1(P_i)$ and a free group. If X is any component of P_{12} , $\pi_1(X)$ is a sub-group of $\pi_1(P_i)$ and hence of $\pi_1(Q_i)$.

¹⁶⁾ Journal of the L. M. S., 12 (1937), p. 63. The process of doubling is illustrated by fig. 2 and fig. 4. The knot k' in fig. 4 (next page) is obtained by doubling k, in fig. 2, p. 158.

¹⁷⁾ Quarterly Journal of Math. (Oxford), 8 (1937), p. 14 (theorem 2).

¹⁸⁾ Fund. Math., 28 (1937), p. 242.

¹⁹⁾ Eilenberg, Fund. Math., 29 (1937), p. 118 et seq.

²⁰) This question has been answered in the affirmative by Eilenberg on the assumption that U and S^3-U are connected and $\pi_1(U)$ is an infinite cyclic group. (Fund. Math., 28 (1937), p. 238, theorem 1).

and if $U \neq S^3$ we may assume that $S^3 - U$ is a polyhedron. For let $f(S^2)\subset U$ be any map of a 2-sphere in U. Then S^3-U is contained in a polyhedron P^3 , which does not meet $f(S^2)$, and is such that every component of P^3 contains a component of S^3-U . If $f(S^2)$ is homotopic to a point in $U_1 = S^3 - P^3$ it is homotopic to a point in U, since $U_1 \subset U$. Moreover, any non-singular 2-sphere in U_1 bounds a 3-element in U_1 , assuming that U has this property. For a 2-sphere in U, bounds a 3-element E^3 in U, and if E^3 were to meet P^3 it would contain a component of P^3 , and hence a component of S^3-U . So we may take $U=S^3-P$ in the first place, where P is a polyhedron. By a familiar process of contracting 3-simplexes of P which have 2-simplexes in common with \overline{U} we may replace P by a 2-dimensional polyhedron. So we suppose S^3-U to be a 2-dimensional, simplicial complex P^2 . It is easy to see that the effect on its homotopy type of replacing U by U+A, where A is the interior of a 2-simplex in P^2 , is the same as the effect of replacing U by U+s, where s is a segment with its end points, but no inner point, in U. On comparing the universal covering spaces of U and U+s it is clear that $\pi_2(U)=0$ if $\pi_2(U+s)=0$. Moreover it is easily proved that if any non-singular 2-sphere in U bounds in U (and therefore bounds a 3-element 21) in U the same in true of U+A. Therefore we may remove the 2-simplexes of P^2 , leaving the graph composed of the edges and vertices of P^2 , and it follows from the hypothesis that $\pi_2(U)=0$ (whence U is aspherical, since we are assuming that $U\pm S^3$).

7. Let k be a polygonal circuit in a (polyhedral) connected, 3-dimensional manifold M^3 , which may be open (i.e. an infinite, unbounded polyhedron), closed or bounded. Let T^3 be a tubular neighbourhood of k in M^3 , assuming that k is internal to M^3 if the latter is bounded, and let m be an oriented "meridian" circuit on $T^2 = T^3$ (i.e. m bounds a 2-element in \overline{T}^3 which cuts k in a single point). Let l be a simple circuit on T^2 which does not bound in \overline{T}^3 and cuts m in a single point O. Taking O as the base point of $G = \pi_1(M^3 - T^3)$, let a be the element of G corresponding to l and l the element corresponding to m.

Theorem 6. If M^3-T^3 is aspherical and if $\alpha=1$, then G is cyclic, $\pi_1(M^3)=1$ and M^3 is closed.

Let \widetilde{K} be the universal covering space of $K=M^3-T^3$. First, I say that, since $\alpha=1$, the sub-group of G generated by β is infinite, whether K is aspherical or not. For if β were of finite order each component of \widetilde{K} covering T^2 would be a torus, which is impossible since 22) $\beta_1(\widetilde{K})=0$. Therefore β is not of finite order and, since $\alpha=1$, the part of \widetilde{K} covering T^2 consists of one or more cylinders C_i $(i=1,2,\ldots)$.

Let $\widetilde{l}\subset C_1$ be a circuit covering l, let \widetilde{O} be the image of O on \widetilde{l} and let Γ_0^2 be a chain in \widetilde{K} bounded by \widetilde{l} . Let γ be any element in G and \widetilde{OO}_1 an oriented segment in \widetilde{K} whose image in K is a circuit which represents the element γ . If $\widetilde{O}_1 \in C_1$ we may take \widetilde{OO}_1 to be on C_1 , since $\pi_1(\widetilde{K})=1$, and it follows that γ is a power (positive, negative or zero) of β .

Eilenberg has proved a lemma ²³) which, with trivial alterations in the wording, may be stated as follows: Let X_0 and Y be compact sets in \widetilde{K} and let $X_m = X_0 \tau^m$, where τ is an element, not of finite order, in the group of covering transformations (Deckbewegungsgruppe). Then there is a positive N such that $X_m \cdot Y = 0$ if $\pm m > N$. Taking $X_0 = \Gamma_0^2$, $Y = \widetilde{OO}_1$ and τ to be a translation of C_1 into itself, we find 2-chains Γ_{-N}^2 , Γ_N^2 which do not meet \widetilde{OO}_1 , and whose boundaries bound a band $B^2 \subset C_1$, containing \widetilde{O} . Since K is aspherical there is a chain Γ^3 such that

$$\dot{\Gamma}^3 = \Gamma_{-N}^2 + B^2 + \Gamma_N^2 \pmod{2}$$
.

Since $B^2\subset \widetilde{K}$ the closure of $\widetilde{K}-\Gamma^3$ meets Γ^3 in a sub-set ²⁴) of $\Gamma^2_{-N}+\Gamma^2_N$. Therefore points in $\Gamma^3_{-N}-(\Gamma^2_{-N}+\Gamma^2_N)$ are separated from points in $\widetilde{K}-\Gamma^3$ by $\Gamma^2_{-N}+\Gamma^2_N$, and since $\Gamma^2_{-N}+\Gamma^2_N$ does not meet the segment \widetilde{OO}_1 the point \widetilde{O}_1 lies in Γ^3 . Since $\widetilde{O}\in\widetilde{K}$ and τ is a topological transformation, $\widetilde{O}_1\in\widetilde{K}$. Therefore $\widetilde{O}_1\in\Gamma^3$, since a point on the boundary of an n-dimensional manifold cannot be internal to an n-chain in the manifold. Therefore $\widetilde{O}_1\in B^2\subset C_1$, γ is a power of β and G is the cyclic group generated by β .

Since G is generated by β and m bounds a 2-cell in M^3 it follows that $\pi_1(M^3)=1$.

²¹⁾ Cf. J. W. Alexander, Proc. Nat. Academy of Sciences, 10 (1924), p. 6.

²²) H. Kneser, Gött. Nach., 1925, p. 128.

²³⁾ Fund. Math., 28 (1937), p. 236.

²⁴) This is a proper sub-set only if Γ_0^2 , and hence $\Gamma_{\pm N}^2$ have 2-cells in \widetilde{K} .

Let E^2 be a 2-cell in K bounded by l. Since $\pi_2(K)=0$, a singular 2-sphere which covers T^2 (which we now assume to be oriented) with degree 1, and E^2 with degree 0, bounds a singular 3-cell in K. Therefore there is a finite chain $C^3 \subset K$ such that L^{25} is a finite, non-zero 3-cycle on L^3 . Therefore L^3 is closed and the theorem is established.

8. We conclude with same remarks on a group ring $\mathfrak{R}=\mathfrak{R}(G)$. Let G_0 be a sub-group of G and \mathfrak{R}_0 the group ring of G_0 . Let one element be selected from each residue class $G_0\beta$ in G. Then each element in G has a unique representation in the form $\gamma\beta_l$, where $\gamma \in G_0$ and β_1, β_2, \ldots are the selected elements. Therefore each element in \mathfrak{R} has a unique representation of the form $\varrho_1\beta_1+\varrho_2\beta_2+\ldots$, where $\varrho_l\in\mathfrak{R}_0$. That is to say, \mathfrak{R} is a modulus with coefficients in \mathfrak{R}_0 and β_1, β_2, \ldots as linearly independent basis elements. If $\varrho(\varrho_1\beta_1+\varrho_2\beta_2+\ldots)=0$ it follows that $\varrho\varrho_l=0$ $(i=1,2,\ldots)$ and we have our first result:

If $\varrho \in \mathbb{R}_0$ is not a 0-divisor in \mathbb{R}_0 it is not a 0-divisor in \mathbb{R} .

In particular, if $\alpha \in G$ is not of finite order no non-zero polynomial $f(\alpha)$, in which negative exponents are allowed, is a 0-divisor.

In the case of a knot k, each element β in $G=\pi_1$ (S^3-k) has a "degree" $\delta(\beta)$, given by $\delta(\beta)=L(s,k)$, where s is a circuit representing β and L(s,k) is the looping co-efficient of s and k^{26}). Moreover $\delta(1)=0$ and $\delta(\beta_1\beta_2)=\delta(\beta_1)+\delta(\beta_2)$ (i.e. $\beta\to\delta(\beta)$ is a homomorphism of G on the additive group of integers). An element $n_1\beta_1+\ldots+n_r\beta_r$ of \Re will be described as homogeneous of degree m if $\delta(\beta_1)=\ldots=\delta(\beta_r)=m$, and any element of \Re may be written in the form

$$\eta = \eta_p + \dots + \eta_q,$$

where η_m is homogeneous of degree m (m=p,...,q) and p<...< q. It will be convenient to regard the zero element of \Re as homogeneous of all degrees. Now let η be given by (8.1) with $\eta_p = 0$, $\eta_q = 0$ and let $\zeta = \zeta_r + ... + \zeta_s$ $(r<...< s; \zeta_r = 0, \zeta_s = 0)$, where ζ_m is homogeneous of degree m. Then

$$\eta \zeta = \eta_p \zeta_r + \dots + \eta_q \zeta_s,$$

the degree of each remaining term being greater than p+r and less than q+s. If a sum of homogeneous elements in \Re , of different degrees, is zero it is obvious that each element is zero. Therefore $\eta \zeta = 0$ implies $\eta_p \zeta_r = \eta_q \zeta_s = 0$, and we have the result 27)

If η , given by (8.1) is a 0-divisor, so are η_p and η_q .

Similar remarks apply to a linkage, the degree of any element in $G = \pi_1 \{S^3 - (k_1 + ... + k_p)\}$ being the exponent of the corresponding element in some cyclic factor group of the homology group

$$\beta_1 \{S^3 - (k_1 + ... + k_p)\}.$$

If each element of G has a degree we may imbed \Re in the ring \Re^* , consisting of all linear forms, finite or infinite, $n_1\beta_1+n_2\beta_2+...$, which satisfy the conditions ²⁸)

- (1) $\delta(\beta_i) \geqslant p$, where p does not depend on i,
- (2) only a finite number of the elements $\beta_1, \beta_2, ...$ have any given degree.

We recall that an element η in any ring with a unit element 1 is called a right unit (or left unit) if there is an element η' (or η'') such that $\eta'\eta=1$ (or $\eta\eta''=1$). If η is both a right and a left unit (i. e. if $\eta'\eta=\eta\eta''=1$) it follows from the associative law that $\eta'\eta\eta''=\eta'=\eta''$, and η' is called the inverse, η^{-1} , of η . The elements in the ring which have an inverse obviously constitute a multiplicative group. Returning to the ring \Re^* :

If η_p is a right unit, or left unit, or has an inverse, so does $\eta = \eta_p + \eta_{p+1} + \dots$

For if $\zeta \eta_p = 1$ it follows from an equation similar to (4.2) that we may suppose $\zeta = \zeta_{-p}$ to be homogeneous of degree -p. Then

$$\begin{array}{ll} (1 + \theta_1 + \dots) \, \zeta_{-p} (\eta_p + \eta_{p+1} + \dots) = \\ = (1 + \theta_1 + \dots) (1 + \eta_1^* + \dots) = 1 & (\eta_q^* = \zeta_{-p} \eta_{p+q}) \end{array}$$

provided $\theta_q = -(\theta_{q-1}\eta_1^* + ... + \eta_q^*)$. Therefore $\eta' \eta = 1$, where

$$\eta' = \eta'_{-p} + \eta'_{-p+1} + ..., \quad \text{with} \quad \eta'_{-p} = \zeta_{-p}, \quad \eta'_{-p+q} = \theta_q \zeta_{-p}.$$

Similarly, if η_p is a left unit so is η , whence η has an inverse if η_p has an inverse.

²⁵) Alternatively, K has the same homotopy type as a graph, in this case a circle, since it is aspherical and $\pi_1(K)$ is a free group (Eilenberg, Annals of Math., 38 (1937), p. 656). Therefore $\beta_2(K) = 0$.

²⁶⁾ Cf. Alexander (loc. cit.).

²⁷) Cf. W. Magnus, Math. Annalen, 111 (1935), p. 259.

^{28) (}f. a forthcoming paper by G. Higman (Journ. London Math. Soc.).

The preceding results have an amusing formal consequence, valid for any ring \Re , with a unit element 1. Let η_1, η_2, \ldots be an infinite sequence of elements in \Re , with repetitions allowed. Then $\eta_q' = \eta_q''$, where η_q' and η_q'' are defined by the recurrence formulae, $\eta_0' = \eta_0'' = 1$ and

$$\begin{split} & \eta_{q}' = -(\eta_{q-1}' \eta_{1} + \eta_{q-2}' \eta_{2} + \ldots + \eta_{q}), \\ & \eta_{g}'' = -(\eta_{1} \eta_{q-1}'' + \eta_{2} \eta_{q-2}'' + \ldots + \eta_{q}). \end{split}$$

This is true for any ring since it is true for the ring which is freely generated by $\eta_0=1,\eta_1,\eta_2,...$, with infinite sums allowed, provided no product $\pm\eta_{m_1}...\eta_{m_n}$ is repeated infinitely many times. For if a degree, given by $\delta(\pm\eta_{m_1}...\eta_{m_n})=m_1+...+m_n$, is assigned to each product, only a finite number of terms in such a sum can have the same degree. It follows from induction on q that η_q' and η_q'' are homogeneous of degree q and, as before, that $\eta'\eta=\eta\eta''=1$, where

$$\eta = 1 + \eta_1 + \eta_2 + ..., \qquad \eta' = 1 + \eta_1' + \eta_2' + ..., \qquad \eta'' = 1 + \eta_1'' + \eta_2'' + ...$$

Therefore $\eta' = \eta''$, whence $\eta'_q = \eta''_q$.

Balliot College, Oxford, England.

On the relation between the fundamental group of a space and the higher homotopy groups.

By

Samuel Eilenberg (Warszawa).

1. \mathcal{Y} will denote a separable, connected metric space locally connected in dimensions $0,1,...,n^{-1}$). Given a compact metric space \mathcal{X} , the continuous functions $f(\mathcal{X}) \subset \mathcal{Y}$ with the distance formula

$$|f_0-f_1| = \sup_{x \in \mathcal{X}} |f_0(x)-f_1(x)|$$

form a metric space \mathcal{Y}^{x} .

Given two points $x_0 \in \mathcal{X}$ and $y_0 \in \mathcal{Y}$ the equation $f(x_0) = y_0$

defines a closed subset $\mathcal{Y}^{x}(x_0,y_0)$ of \mathcal{Y}^{x} .

I will denote the closed interval [0,1] by \mathcal{I} and $\mathcal{X} \times \mathcal{I}$ will stand for the cartesian product of \mathcal{X} and \mathcal{I} . Two functions $f_0, f_1 \in \mathcal{Y}^X$ will be called *homotopic* if there is a function $g \in \mathcal{Y}^{\mathcal{X} \times \mathcal{I}}$ such that

$$f_0(x) = g(x,0), \quad f_1(x) = g(x,1) \quad \text{for all} \quad x \in \mathcal{X}.$$

If also

$$g(x_0,t)=y_0$$
 for all $t \in \mathcal{I}$,

we say that $f_0, f_1 \in \mathcal{Y}^{\mathcal{X}}(x_0, y_0)$ are homotopic rel. (x_0, y_0) .

2. Let $\mathcal X$ be a polyhedron and X a subpolyhedron of $\mathcal X$. It is well known that $T = \mathcal X \times (0) + X \times \mathcal I$ is a retract of $\mathcal X \times \mathcal I$ and therefore that

(2.1) Every $f \in \mathcal{Y}^T$ has an extension $f' \in \mathcal{Y}^{x \times T}$ 2).

It follows immediately from (2.1) that

(2.2) Given two homotopic functions $f_0, f_1 \in \mathcal{Y}^X$ and an extension $f'_0 \in \mathcal{Y}^{\sharp}$ of f_0 , there is an extension $f'_1 \in \mathcal{Y}^{\sharp}$ of f_1 homotopic to f'_0 ²).

¹⁾ C. Kuratowski, Fund. Math. 24 (1935), p. 269.

²⁾ See for instance P. Alexandroff und H. Hopf, Topologie I, Berlin 1935, p. 501.