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On the asphericity of regions in a 3-sphere.
By
J. H. C. Whitehead (Oxford).

1. This note arises out of an attempt to answer two questions
proposed by S. Eilenberg?!), namely:

1. pour gquelles courbes simples fermées 2,CS° Pensemble ;S’3~Qo
est asphérique?

2. pour quels couples 2,2,C8" de courbes stmples fermées disjointe&
DPensemble Ss——(.Ql—{—Qz) est asphérique?

I first show how Reidemeister’s theory?) of ‘“Homotopie-
kettenringe” can be applied to the study of the first question in case
£, is a polygonal knot, which I will call %, and in 4 I show how the
methods of 2 and 3 can be applied to the study of similar questions.
Some examples are given in 5, and 6 contains an “addition theorem”
with an application to the study of knots and linkages. Taking
M= 8" it follows from theorem 6, in 7, that the hypothesis “S°—% is
aspherical”, k being any polygonal knot in a 3-sphere §’, implies
the algebraic analogue of Dehn’s lemma 3) for circuits in 8° (i.e. it
implies that, if ¥ bounds a singular 3-cell without singularities on
the boundary, then :rrl(S‘o’-—k) is eyclic.) The final section is an appendix
on the group ring of an “indexed” group 4).

') Fund. Math., 28 (1937), p. 241. We recall that a space X, is called asphe-
rical (W. Huréwicz, Proc. Akad. Amsterdam, 39 (1936), p. 215) if all the (addi-
tive) higher homotopy groups x (X), n>1, reduce to zero. 74(X) is the (multi-
plicative) fundamental group, which need not reduce to 1.

%) See: Abh. Math. Sem. Hamburg, 10 (1934), p.211; Journal fir die
r.uw.a. Math., 173 (1935), p. 164, and other papers.

) Math. Annalen, 69 (1910), p.147. There is a gap in Delm’s argument (at
the top of p. 151) which has not yet been filled. See also E. Pannwitz, Math.
Annalen, 108 (1933), p. 629 (§3), and 1. Johansson, Math. Annalen, 110 (1934),
p. 312 and 115 (1938), p. 658,

4 J. W. Alexander, Trans. American Math. Soc., 30 (1928), 290,
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I wish to express my gratitude to Dr. Hilenboerg for many
valuable suggestions, which have led, among other things, to great
=

improvements in theorems 5 and 6 (the proof of theorem 5 is due
mainly to him).

2. Let kCR® be any oriented, polygonal knot in &= i*- w,
where R’ is Euclidean 3-space and w is an ideal point at infinity,
Let R* be any plane which does not moet k, and let V be a point
which is separated from k by R* and which is in general position
relative to k. Let C be the singular 2-cell swept out by the rocti- linear
segment VP as P describes k. Let Py,...,P, be the points in which &
pierces (', arranged so that P; and Pq(P,1=P;) are consecutive
and the cyclic order Py,...,P, determines a positive orientation
of & (n>2if k is knotted and we may assume that n>-2 oven if J
is unknotted). Let 7% an open set, be a thin tubular neughbourhood
of k, whose (polyhedral) boundary 7°, cuts (! in simple circunits
Fiy-eesJu enclosing Py,..., P,; let @; be the point in which #; meets V P,
and let &=@Q;Q:y be that segment of the ecircuit ¢/-7" which does
not contain the other points @;. Let ¢; and f; be the 1-cells er—(Qi+ Q1)
and f;i—@; let Hi be the 2-cell on 7° whose point-set frontier is
fi+@+fie, and let F} be the 2-cell on ¢ whose frontier consists
of®) V@i, ¢ and V@, together with f; and V@, for every j such
that P; lies in the 2-element swept out by V@ as ¢ describes g). Then,
the frontier of the 3-cell E3::SB___(T‘3+ () consigts of '

g.:; (B 77+ ei+1i-+VQ,).

We now find a set of generators and relations for (= nl(Sg-T3),
which can be writ9ten down by a well known rule %) from the pro-
jection of % on R® from V, taking V to be “underneath” R*. Let
us describe as the positive side of F? that side from which the se-
gment V() seems to be moving anti-clockwise as @ describes 2 po-
sitively (i.e. from @; to Qi+1). With any point in #*® as base point,
let a; (i=1,...,n) be the element of @ corresponding to an oriented

; '5) We shall use V@, to stand both for the open I-cell and for the (recti-
linear) segment consisting of this 1-cell and its end points, ¥ and @, 16 will always
be clear from the context which is meant. ‘

%) See, for example, K. Reidemeister, Knotentheorie, Berlin (1932),
pp. 50 and 53.
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circuit in §°—17% which pierces € just once, in Fy, the arrow of orien-
tation pointing from the negative to the positive side of F?. Then
as is well known, @ is generated by ay,...,a,, subject to the relations

{2.1) ola=a,_,

Ji i—17); (1:1,--.,‘71;(10:(1,,),

where f;C Ffl and e;=-+1 if ¢ lies on the positive side of Fj, &=—1
if ¢; lies on the negative side of Fi Let R=R(G) be the integral
group ring of @, the elements of R being linear forms

Ny fr+Ny Byt .,

where f;e G and ny,n,,... are rational integers, all but a finite number
of which are zero.
Two remarks concerning ‘‘Homotopiekettenringe”: First the

-r-chaing in K, the universal covering complex of a complex K, will

be written as

Cl&+ Cr b+ ...+ Cp&y, e R{my(K)},

with the coefficients & on the right of the basis elements f,..., 05
Secondly we recall a rule which, for the purposes of reference, we
shall call the fundamental rule. Let E" be any cell in K and let s,
and s, be two oriented segments leading from a point O, in K, to
a point in E'. Let a be the element in =,(K), with base point 0, cor-
responding to the oriented circuit s;—s,. As usual, let a point P
in K be defined by a class of segments in K joining O to an
arbitrary point P, two segments being in the same class if, and
only if, one is deformable into the other with O and P held fixed

throughout the deformation. Let B be the cell in K corresponding
to E" and the segment s; (1=1,2). Then the fundamental rule is

B = Fa
We have seen that S*—7° carries a complex K, consisting
of a 3-cell E’, 2-cells E;,F, 1-cells e, f; and V@, and vertices V,Q,.
Let K be the universal covering complex of K; let OcE’ be the
base point of G=m(K) and 0 the point in K corresponding to the

unit element G. As a basis for the r-chains (r=1,2,3) in ¥, with
coefficients in R, we take:
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(1) (r=3) the 3-cell ””, covering E”, which containg ?)‘,
(

r=2) the 2-cells &, on & covering Kj, together with the
2-cells c/;, on & covering the positive sides of F7, ‘

(3) (r=1) the 1- cells & incident with both & and & and the
1-cells f,, on & covering f. Thus, if &, seen from inside &,
is visualized as a long thin rectangle with an arrow pointing
lengthwise, in accordance with the orientation of &, ¢, is the
long side on the left of the arrow and 7; is the short side at
the beginning of the arrow. The remaining 1-cells, and the
0-cells of the basis may be chosen arbitrarily.

We now fix the orientations of the various cells. Let abed
be a simplex in E°, of which the face abe is in F and d is on the
positive side of F;. Then the positive orientation of E® is the one
‘determined by the even permutations of abed if the cyclic order abe,
when seen from d, determines a clockwise rotation 7). The pmmve
orientation of F; is to be the one determined by the cyclic order abe.
The same applies to H;, the snnplex abe bung in this cage in E,
and the vertex d inside B’. Thus &#° and & are positively related
to & , and it follows from the fundamental rule that

1(2.2) | § _2{ 81+ 7 (1—a)).

The segments & have already been orwnted Q, being the
first and Q1+1 the last point for each Va.lue of i. Thus ¢ is positively
related to é,, negatively related to ¢, and is not on the boundar y
of any other 2-cell in the basis. By the fundamental rule

(2.3) §i=Ei(1—a)+..., T B,

The circuits f; are to he oriented in the sense QQ Q, , Where
Q. Q:Q is an oriented arc of }; passing from the neg‘u,lve to the
positive side of F%. Thus fl is negatively related to &%. The remaining
orientations may be assigned arbitrarily.

Now let

(2.4) It =21.‘ (& &+ )

be any 2-chain in K.

) This may be taken as the definition of “clockwine’.
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Then

=g1 e{(L—a) Si— i+ ..
whence, if I is a cycle,
(2.5) 7= (1—a:)&. .
In finding the coefficient of 7; in I we distinguish between
two cases. First let E; lie on the positive side of Ffi. Then
u,-=——?,:+..., 5‘?~1=47,-ajl.~{—..., cfjf—_—.’ﬁ—}—

and 7: is not on the boundary of any other 2-cell in the basis. If I™
is a cycle it follows from these equations and from (2.5) that

—&; +ay; i1 - (l_'afi) EJ'IZO’

or
(2.6) §i—&=a, (§r1—&j).
On the other hand if Ef is on the negative side of If’f—'i we have
=—fitu., Sa=fia e,  Fy=—fa +
whence, if I'"is a cycle,
— &t ag E—ag) (1—ay) &,=0,

or
(2.7) Ei*—fji=aj71(fi—1*—§ii)-

The equations (2.6) and (2.7) may be combined into
(2.8) 51‘“‘5]1:“},{(&—1—5&)7

where, as in (2.1), ’si=—]-1 or —1 according as e; lies on the positive
or negative side of T

The equations (" 8) are obviously satisfied if &=..=&,=¢,
for any value of & Such a set of solutions will be described as trivial,
any other as mon-trivial.

Theorem 1. Any 2-cycle in K is of the form
(2.9) : re _-‘_ (4 (1=} &,
=
where Ey,..., &, satisfy (2.8), and I*~0 if and only if Ey=...=&,. Con-
versely, the 2-chain given by (2.9) is a eyele if &y,...,&, satisfy (2.8).
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~
It follows from (2.5) that any 2-cycle in A is of the form (2.9),
and we have proved that if 1’2, given by (2.9), is a cycle, then &,,...,¢,

2 3 . 3
satisty (2.8). It &1=...=&,=§, say, we have [” = (8"£)°, and since &
) S . B § . R AT
is a basis for the 3-chains in I, any bounding 2-cycle is of this form,
and is therefore given by (2.9) with &=..=§,.

It remains to prove that I, given by (2.9), is a cycle Dbro-
vided &y,...,&, satisfy (2. 8) Let 131‘1\(? bhasis for the 1-chains i K be
completed by segments ¥ Ql, ,V Qny, covering V¢q,... VQ,,, ;u}‘(:l let:
the co-efficient of 1" Q, in I be £ The co-efficients of ¥ in [™ are
zero, and, in consequence of (2.8), so are the co-efficients of ;f, The-
refore the co- effmlent of Q[ in "= (,I’Z) is +¢&. But /*=0, There-
fore £;=0, whence =0, and the theorem is established.

It is obvious that x,.(Sg——k)zn,.(Sq ’1’3) ==g,(K) for all v'a,huw
of », and well known that n:,,(I{)_—_n,.(l\) it r>1. hm(u :rz](]() =1
it follows from a theorem due to Hurewicz 8) that ng(h)-~ /)’2(1\,’ )y
where f,(X) is the »" homology group of .V. Since  f, ([\\~_«0
if r>2 it follows from the same theorem that if fy( I\ ==(), then

(K ) Br( K) 0 for all values of », and hence that 71,([\)~-0 if
1>1. Therefore we have

Theorem 2. The space S°—Fk is ‘aspherical if, and only if,
the equations (2.8) imply & =..=§,.

There is a simple rule for writing down the equations (2. 8),
possibly with trivial modifications, from the projection of tho knot
on R’ from V, which is to be regarded as “below” the plane R
Just one equation corresponds to each crossing, and if « 8; i8 the upper
segment at any crossing, s, and s, the lower segments (h==i—1
or i+1), and if s; is the one which, seen from above, is on the left
of s;, positively described, then the corresponding equation is

(2.10) §i—&=oy(én—§)),
irrespective of whether h=i—1 or i-+1. V

3. Theorem 3. Any one of the equations (2.8) s satisfied
in consequence of the others.

It is enough to prove that I"*, given by (2.9), is a cyele in con-
sequence of equations (2.8) with i=1 vy =1, r-1,.,m, say with

8) Proc. Akad. Amsterdam, 38 (1935), p.522.
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i=1,..,n—1. The co-efficients of ¢,...,2, in I are zero for any
values of &,...,¢ , and the co-efficients of f,, . f _; are zero in con-
gequence of (2.8) with 4=1,...,n—1. As in the laJst part of theorem 1
the co-efficients of I’Qi, vV @,._1 in I are zero. Therefore the co-
efficient of V in 7™ is +n, where £, is the co-efficient of I’Q,, The-
refore ,=0, and the co-efficients in I of all the 1-cells, except

possibly f,,, are Zero.

Let j _.f,,n and let Q,, be taken as the common end point,
of ¢, and f,, Then it follows from the fundamental rule that

?,', =§,,(a“'—]).

Therefore I'*=@,(u,~1)o, whence (a,—1)p=0. Making multi-
plication commutative in @ we see that a, is not of finite order.
It follows from an argument in 8 below that a,—1 ig not a 0- divisor,
and hence that g=0. Therefore I is a oycle and the theorem is
established. v

It follows from theorem 1 that the 2-cycles in K are in a (1—1)
correspondence, given by (2.9), with the sets of solutions of (2.8),
the bounding cycles corresponding to the trivial sets of solutions.
Thus we may think of solutions &,...,&,, of (2.8), as “co-ordinates”
of the cycle (2.9). In each homology class there is a unique cycle,
namely ,1’2—5?35,,,, whose m™ co-ordinate vanishes. Combining these
observations with theorem 3 we have;

Theorem L. The 2-dimensional homology classes of K are
tn (1—1) correspondence with the sets of solutions of the equations

{3.1) E=§ =l =) £,=0

where A=1,..,7—1,r+1,...,n (b==E&,).

There is a close formal analogy between the equations (3.1),
in which we take m=r=mn to simplify the notation, and the equations
from which Alexander’s polynomial is derived. For write a,=t,
a;=a;t. Then the relations (2.1), expressed in terms of ay,...,a,—y,t,
become ‘

(mjl.t)"'ait= a1_.1t(aj,t)”, an=1.
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If g=1 we have a;ia;= a;-11a;, or
(3.2) Wy 001 == Q1 —1 R0y

where a,=1t"a;’. Making multiplication commutative between
api and ag; (4,j=1,..,0—1; p,q=0, +1,...), replacing commutative
multiplication by commutative addition, and 1 by 0, and writing
ap=1x"a;, (3.2) becomes

;- Ly, = a,jl—}— B—1 or W=y == (G — a’fi)

with a,=0. A similar process leads to
(1;1-—-041 = g1 ((I/[_.,1 —_ (1(/,)

if &= —1. It is well known that each of the relations (2.1) is impliad
by the rest of them, and, omitting the one for which i==n, what
may be called Alexander’s relations take the form

(3.3) a,;—ajzzmm(a,zwi——ajx), a, =0,

where A=1,...,n—1 (ap=a,=0).

If multiplication is made commutative in &, and hence in R,
and if £, is replaced by a,, and a; by %, the equations (3.1) become (3.3).
It ay,as,...,a, are treated as unknown variables the determinant
of the co-efficients in (3.3) is +-wrPA(x), where A(x) is Alexander’s
polynomial. Since®) A(x)+=0 any solutions of (3.1) must reduce
to (0,...,0) when multiplication is made commutative.

Except for the paragraph containing theorem 2 everything
we have said remains valid if R(@) is replaced by R(G/d,), where
G, is any invariant sub-group of &, and K by a regular covering
of K with G, as its fundamental group. Taking @, to be the com-

mutator group of @, it follows from the last paragraph that, in
this case 1), B,(K)=0.

4. Let theknot % in 1 be replaced by a finite, but not necessarily
connected, semi-linear graph g. Then the residual space §°— ¢ may
be studied by similar methods to those described in 1. The star ¢,
with V as its centre, is defined as before. Instead of a solid torus 7
we have a 3-dimensional manifold bounded by one or more surfaces

%) 4(I)=1 (Alexander, loc.eit., p. 299),
19) This is also implicit in Eilenb erg’s vesults (loe, eit. theorems 1 and 4).

icm

Asphericity 157

of arbitrary genus. Here, as in 1, it may be shown that B* is a 3-cell
(i.e. a homeomorphic image of R’). But this is unnecessary, since
we only need to know that = (B’)=1, ﬁZ(E3)=O, which is obvious.
The only essential differences are those which arise when g contains
multiple vertices, that is to say vertices whieh are incident with
more than two edges (rejecting the case where f,(g)=90, we may
assume that every vertex of ¢ is ineident with at least two edges)
First- we assign either one of the two possible orientations to each
“string” in g, where a string means either a line whose end-points,
but none of whose internal points, are multiple vertices, or a circuit
containing at most one multiple vertex. Then, projecting g on R from
V (as before V is to be below R®) the generators of G=x(8’—yg) are
defined as in the case of a knot or linkage, except that the segments
81,...,8n, corresponding to the generators ay,...,a,, may terminate
either at a crossing or at a multiple vertex. To each crossing corres-
ponds a relation of the form (2.1) and to a multiple vertex P,
a relation of the form '

(4.1) a;‘ a;‘;’ =1,

where si,..,s;, are the segments incident with P, and &=41,
according as P is the first or last point of s;.

The manifold M>, corresponding to Tg, may be cut up into
cells E,’ by the method used in 1. If E’,-Zl,...,E?p are those which
correspond to the segments s;,...,8;, meeting at a multiple vertex P,
we take the 1-cells of E,; in the neighbourhood of P to be segments
2 and tz4q1 (tp+1=11), joining the two points in which VP meets M
near P, and such that E’}l meets E?A-l—i in f;4q. If the orientations
are such that each cell of M is positively related to B we can attach

a unique set of co-ordinates £&i,...,&, to each 2-cycle in f(, where
&yy..., &, satisfy equations defined as follows:

(1) to each crossing corresponds an equation of the form (2.10),

(2) to each multiple point corresponds an equation of the form
Ey=...=§, where 1%i,...,7, mean the same as in (4.1).

There is no difficulty in extending theorems 1, 3 and 4 to the
situation considered here, and theorem 2 is valid if the discarded
equation is one which corresponds to a crossing.


GUEST


158 J. 1. C. Whitehead:
5. Baamples:

1. The equations (2.10) are:

(1) & —Ey=uy(&—&,),
L @ ~@—a:%@25m
J (3) v ‘51*““1(54"“51)7
A (4) 5“’52“"‘2(54 &),
to which we may add &,==0.
2 From (2) and (4), with &,=0, we
Fig. 1, have
fy=asdy §= (1 —ug)é,.

Substituting in (3) we have
(agFay—1)Ey=uy(a,—1) &,
or p&,=0, where g=1—a,—ay—a,+aa, With a notation explained
in 8 below, we may take 6(a;)=1, in which case p=1-+ o, Wwhere
every term in ¢ has a positive degree, Therefore it follows from

an argument in 8 that o is not a 0-divisor. Therefore £,=0, whence
&=&=0 and the residual space is aspherical.

2. The equations are

(1) —53~—as(51 §a)y

(2) —&=ay(é &),

(3) -—§5=a5(§4 —&), 7 y
@ E—h=alg—t), y

() 5—Ey=ay(E5—Ey),

(6) S—&=a(£—8)), Fig. 2.

to which we may add £=0.

From (4) and (6) we have &,=—a, &= &g, Substituting in
(3) and (5), we have

0‘156—55:“5(?1“1)55’ ‘55_““156‘"""'(13(1“‘11)56-
From the second of these we have

55::(“1“[‘“3—’13‘11)50;
and adding the second to the first

(e —1) E5+ag(1—ay) €= 0.
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Therefore pfe=0, where o=uaz(a;—1) (a4 tg—aguy)+ ag(1—ay).
Writing é(a;)=1 we have p=a,+ 0, where each term in o is of higher
degree than the first. Therefore o is not a 0-divisor and £6=0. The-
refore &y=§&,=£=0, and from (1), with &=0, we have Eg=0.
Therefore the residual space is aspherical.

3. The equations are

(1) &—E=ay(&—&), (6)  &—&=uy(f—8&),
(2) &—E=u5(5,—&), (1) &G—&=a (&8,
(3) &y —Ey=ag(&—E), (8)  &—ép=u(E—Ey),
(4) G—S=ay(§3—&), (9)  Sp—&=ay(&—E,),

(8) §=§&=E=£, to which we may add £,=0.

From (5), with &,=0, we have 7

1=&=£=0, and from (1) and (2) m\
2 79
52=(1f‘a3)53; Q/j é \j
s=a5 &= ag(1—ay) &, 5 1 0 4
Writing d(e;)=1 we see that

1—ag5(1—as) is not a O-divisor, and Fig. 3.

bence that &=0. Therefore &,=0,

and from (4), (3) (since 1—ag is not a 0-divisor), (7) and (8) we
have successively &,=0, £=0, &=0 and £=0. Therefore the
residual space is aspherical.

Uy

6. Let P=P,+ P, P,=P,-P, where P,P, and P, are con-
nected polyhedra, and
1. let n.(P)=0 (i=1,2; r=2,...,n),
if n>2 let ms(P1y)=0 (s=2,...,n—1) 1),
let any circuit in P,, which is homotopic to a point in P, or
in P, be homotopic to a point in P, If P, is connected we

shall express this by saying that =,(Py,) is a sub-group of =,(P,)
and of =y (P,).

w1

Lheorem 5. Under these conditions m,(P)=0 (r=2,...,n).

1) Though a,(X) is only defined, in general, if X is connected, a(X)=0
will have the obvious meaning whether X is connected or not.
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First let Py, be connected. Then it follows from the third con-
dition that m,(P) is a free product '), with identified sub-groups,
of m(P;) and_ m(Py). Therefore my(P;) and m(Py,) are sub-groups

of =, (P). Let Prea universal covering space of P and let P! and P

he the sub-spaces of P covering P; and Pia. bmce nl(P) and swy(Pys)
are sub-groups of m(P) each component, P, or Pu, of P, or P,
is a universal covering space of P; or Pi. Therefore n,(P,)__ 0 and
m,(Pm) 0, whence®) f,(Pf)=0 and pBs(P1 H)=0 for e=1,.

and o=1,...,n—1. It follows from a known theorem 14) that f, (P)._
whence n,-(P)——n:, (P)=0 (r=2,...,n). Thus the theorem is cbtabllslwd
in case Py, is connected.

If P,, is not connected let ¢ be a (connected) tree with exactly
one point in each component of Py, and no other point in P. Lot
Q=P+t, Q;=P;+t and Qu=@; @;=Pyp-+1. Then ¢, is connected.
On comparing the universal covering spa;ces of P and ¢ it obvious
that if #.(Q)=0 then = (P)=0 (r=2,..,m). Similarly it follow
from the first two conditions on P; and Py, that m,(@:)=0 for r=2,...,n,
and my(Q12)==0 for s=2,...,n—1 if n>2, In consequence of the third
condition satisfied by Py, it follows without difficulty that m,(¢),)
is a sub-group ®) of m(Q,) and of m;(@,). Therefore it follows from
what we have already proved that =,.(Q)=n.(P)=0 and the theorem
is established. ‘

Corollary. If P, P, and Py, are aspherical so is P, subject
to the third condition of theorem 4.

It follows from the corollary to theorem 5 that the residual
spaces of many knots and linkages obtained from others by a process
which 1 have described elsewhere as doubling'®) are aspherical.
For let T} be a tubular neighbourhood of the knot %, in the linkage
illustrated by fig. 2, B, and let P;=8'—(T{+%)). We have seen

that Sg—-(h—{—kz), and hence that P, is aspherical. Moreover

12) H. Seifert and W. Threlfall, Lehrbuch der Topologie, Lieipzig (1934),
p. 177. For a definition of free products with identified sub-groups see K. Reide-
meister, Binfithrung in die Kombinatorische Topologie, Brunswick (1932), p.4l.

1) Hurewicz, Proc. Akad. Amsterdam, 38 (1935), p. 522.

1) P. Alexandroff and H. Hopf, Topologie I, Berlin (1935), p. 294.

18) 7,(@Q,) is the free product of m(P)) and a free group. If X is any component
of Py, my(X) is a sub-group of = (P,) and lence of (@)

) Journal of the L.M. 8., 12 (1937), p. 63. The process of doubling is
illustrated by fig. 2 and fig. 4. The knot &’ in fig. 4 (next page) is obtained by
doubling %, in fig. 2, p. 158.
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M. H. A. Newman ") and I have proved that =,(7%) is a sub-group
of 7 (P,). Therefore, if T is a tubular neighbourhood of a
knot k in. a linkage kL, such that P ::Ss——(T3 -+.L) is aspherical and
nl(Tg) is a sub-group of z;(P,), then S —(k'+-L) is aspherical, where &’
is a knot obtained by doubling k.
For example, taking L+% to be the
linkage k,+k, itself (fig. 2), with
k=k,, the region 8 —(k'+k,) is as-
pherical, where k'4%, is the linkage
indicated by fig. 4. Similarly the
residual spaces of all the linkages P
considered in the joint paper by -
Newman and myself are aspherical.
Eilenberg®) has observed that if LCS® is a linkage such
that §*—L is aspherical, the asphericity of §*—L expresses some
kind of interlinking between the component circuits of L. The pre-
ceding paragraph shows that S*—(k+%') may be aspherical even
though k and %' are not feebly linked (faiblement enlacées), or even
n-linked 1°) (n-enlacées) for a given value of n. This suggests that
—(k-+k’) may be aspherical provided % is not contained in any
(non-singular) 3-element which does not meet %’. More generally,
using F' to denote a closed set in S%, we may ask;

Fig. 4.

Is 8—F aspherical unless F=F,-+F, where Fy==0, F,=%0,
and F, is contained in a 3-element which does not meet Fy%

This is equivalent to the question 20):

If U is a open set in 8 is my(U)=0 provided every non-singular,
polyhedral 2-sphere in U bounds a 3-element in U*?

To conclude this section I will show that an affirmative answer
to this question is implied by an affirmative answer in case S—U
is a recti-linear graph. First, if U= S? it is well known that z,(U)=0,

17) Quarterly Journal of Math. (Oxford), 8 (1937), p. 14 (theorem 2).

18) Fund. Math., 28 (1937), p. 242.

1) Lilenberg, Fund. Math., 29 (1937), p. 118 et seq.

2} This question has been answered in the affirmative by Eilenberg
on the asswmnption that U and 83— are connected and 7, (U) i3 an infinite cyolic
group. (Fund. Math., 28 (1937), p. 238, theorem 1).
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and if U+8" we may assume that §—U is a polyhe< ron. For let
f(8)CU be any map of a 2-sphere in U. Then 8 —U iy contained
in a polyhedron P which does not mect f(8%), and is such that
every component of P* containg a componcnt of 8'—U. It f(&)
is homotopic to a point in Ul_S —P" it is homotopic to a point
in U, since U,CU. Moreover, any non-singular 2- -sphere in U, boundy
g 3-element in U, assuming that U has thls property. For a 2-sphere
in U, bounds a 3-element B in U, and if E’ were to meet P° it would
contain a component of P°, and hence a component of §'—U. So
we may take U=8*—P in the first place, where P is a polyhedron.
By a familiar process of contracting 3-simplexes of P which have
9-simplexes in common with U we may replace P by a 2-dimensional
polyhedron So we suppose 8°—U to be a 2-dimensional, simplicial
complex P°. It is easy to see that the effect on its homotopy type
of replacing U by U-+A, where A is the interior of a 2-simplex
in P% is the same as the effect of replacing U by U--s, where s
is a segment with its end points, but no inner point, in U. On com-
paring the universal covering spaces of U and U--s it is clear
that my(T)=0 if m(U+s)=0. Moreover it is easily proved that
if any non-singular 2-sphere in U bounds in U (and therefore bounds
a 3-element #) in U the same in true of U-+.4. Therefore we may
remove the 2-simplexes of P'z leaving the graph composed of the
edges and vertices of P“ and it follows from the hypothesis that
7y(U)=0 (whence U is a.spherlcal since we are agsuming that Uss= Y.

7. Let & be a polygonal circuit in a (polyhedral) connected,
3-dimengional manifold Ma, which may be open (i.e. an infinite,
unbounded polyhedron), closed or bounded. Let 7" be a tubular
neighbourhood of k¥ in M 3. agsuming that % is internal to M if the
latter is bounded, and let m be an oriented ‘“‘meridian” ecircuit
on T*=1" (i.e. m bounds a 2-element in 7° which cuts % in a smgle
point). Let I be a simple circuit on 7* which does not bound in 7°
and cuts m in a single point 0. Taking O as the base point of
G=m;(M*—T*), let a be the element of @ corresponding to I and 8
the element corresponding to m.

Theorem 6. If M°—T° is aspherical and if a=1, then & is
eyclic, 7ty (M*)=1 and M® is closed.

) Cf. J. W. Alexander, Proc. Nat. Academy of Sciences, 10 (1924), p. 6.
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Let K Dbe the universal covering space of K=M’—T" First,
I say that, since a==1, the sub-group of G generated by f is infinite,
whether K is aspherical or not. For if g were of finite order each
component of K covering T* would be a torus, which is impossible
gince 22) ﬁl(]i“f)=_0. Therefore f is not of finite order and, since a=i,
the part of K covering 7" consists of one or more cylinders
O[ (7;———1 _)4, ).

Let ZCC’1 be a circuit covering I, let 0 be the image of O on
7 and let ]’0 be a chain in K bounded by l Let y be any element
in G and 00 an oriented segment in K whose image in K is
a cireuit which represents the element y. If 0,¢C, we may take
00, to be on (,, since m,(K)=1, and it follows that y is a power
(positive, negative or zero) of f.

Eilenberg has proved a lemma ) which, with trivial altera-
tions in the wording, may be stated as follows: Let X, and ¥ be
compact gets in K and let Xm=2Xy7™, where 7 is an element, not
of finite order, in the group of covering transformations (Deck-
bewegungsgruppe). Then there is a posmve N such that X, -¥=0
if +m>N. Taking Xnml’o, Y= 001 and 7 to be a transla.tmn of
C, into itself, we find 2-chains P_N, FN which do not meet 001,
and whose boundaries bound a band B>C (s, containing 0. Since K is
aspherical there is a chain I such that

=T y+B+I'% (mod?2).

Since B’CK the closure of It’ I'* meets I™ in a sub-set2)
of I y+Ty. Therefore points in r (]’L_N+J’;v) are separated from
points in K-r® by e N+FN, and since I y+I'% does not meet
the segment 00, the point 0, lies in I'. Since Ok and v is
9 topological transformation, 04 sK Therefore Oyel™ , since a point
on the boundary of an n-dimensional mamfold cannot be internal
to an n-chain in the manifold. Therefore O;eB’CCi, y is a power
of g and @ is the cyclic group generated by §B.

Since ¢ is genemted by B and m bounds a 2-cell in M? it fol-
lows that m(M )=1.

22) }[. Kneser, Gott. Nach., 1925, p. 128.
23) Fund. Math., 28 (1937), p. 2386.

) This is a proper sub-set only if '3, and hence I y

have 2-cellg in E .
11*
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Let E* be a 2-cell in K bounded by I. Since my(K)=0, a sin-
gular 2-sphere which covers 7% (which we now assume to be oriented)
with degree 1, and E* with degree 0, bounds a singular 3-cell in K.
Therefore there is a finite chain (°CK such that®) ¢*=1T% and
¢*— 1" is a finite, non-zero 3-cycle on M°. Therefore M® is closed
and the theorem is established.

8. We conclude with same remarks on a group ring R==R(F).
Let Gy be a sub-group of G and R, the group ring of G, Let one
element be selected from each residue class Gy in G. Then each
element in G has a unique representation in the form ¢g;, where
yeGy and By,f,,... are the selected elements. Therefore each element
in R has a unique representation of the form g8, pyBy~ ..., Where
0i6Re. That is to say, R is a modulus with coefficients in. R, and
B1y By --. a8 linearly independent basis elements. If o(o,8,+ 0s85-...)=0
it follows that pp;=0 (4=1,2,...) and we have our first result:

If oMy is not a O-divisor in Ry it is not a O-divisor in R.

In particular, if ae@ is not of finite order no non-zero poly-
nomial f(a), in which negative exponents are allowed, is a 0-divisor.

In the case of a knot k, each element f in G=m; (8"—%) has
a “degree” §(f), given by &(B)=L(s,k), where s is a circuit repre-
senting # and IL(s,%) is the looping co-efficient of s and % 2¢). Moreover
8(1)=0 and O(f8,)=0(py)+0(B,) (i.e. B—>d(B) is a homomorphism
of & on the additive group of integers). An element W1 frt 1By
of R will be described as homogeneous of degree m if §(B1)=...— O(Br)y=m,
and any element of R may be written in the form

(8'1) n:np+"'+nrly

where 7, is homogeneous of degree m (m=p,...,q) and p<...<q.
It will be convenient to regard the zero element of R as homo-
geneous of all degrees. Now let 7 be given by (8.1) with N,54=0, 7,0

and let ={. 4.0 (r<...<<s8;£,3=0, {,=+0), where ¢, is homo-
geneous of degree m. Then

(8.2) =10+ .+ 0,0,
_ %) Alternatively, K has the same homotopy type as a graph, in this case
a circle, since it is asplerical and =,(K) is a free group (Eilenberg, Annuls
of Math., 38 (1937), p. 656). Therefore Ba(H)=0.
*#) Cf. Alexander (loc. cit.).
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the degree of each remaining term being greater than p--r and
less than g--s. If a sum of homogeneous elements in R, of different
degrees, is zero it is obvious that each element is z?ro. Therefore
7{=0 implies 7, = ’74,51,-:0’ and we have the result *7)

If #, given by (8.1) is a 0-divisor, so are 7, and 1,
Similar remarks apply to a linkage, the degree of any element

in G=m, 18°—(ky+...+kp)} being the exponent of the corresponding
element in some cyclic factor group of the homology group

ButS® — (k. K} |
Tt each element of @& has a degree we may imbed R in the ring

R*, consisting of all linear forms, finite or infinite, Ny By mgPot -y
which satisfy the conditions 28) '

(1) &(p)=p, where p does not depend on 1,
(2) only a finite number of the elements 13 Bas --- have any given degree.

We recall that an element # in any ring with a unit element 1
is called a right unit (or left unit) if there is an element 7’ (or 77’.’)
such that n’n=1 (or nn"=1). If 7 is both a right all?.d a left unit
(i.e. if n'np=nuy"'=1) it follows from the associative law that
n'yn''=y'=n", and #' is called the inverse, n—!, of - The ele-
ments in the ring which have an inverse obviously constitute a mul-
tiplicative group. Returning to the ring R*:

If 5 is a right unit, or left wnit, or has an inverse, so does
p
77: ?7p+ 77[)_}_1—‘[—"' .

For if ¢ =1 it follows from an equation similar to (4.2) that
we may suppgse {=C_, to be homogeneous of degree —p. Then
(A0 ) (1, Ty oe)=

=(14+0,+...) (174 )=1
.-+ n;). Therefore n’'n=1, where

(Mg =C_ppp)
provided 6q=—(60_
n'=n_,+ N_pytesy  With N, =C p Mpr=0,5

Similarly, if 5, is & left unit so is u, whence » has an inverse
if m, has an inverse.

2y (f. W. Magnus, Math. Annalen, 111 (1935), p. 259.
%) (f. a forchomiug paper by G. Higman (Journ. London Math. Soc.).
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, The preceding results have an amusing formal consequonce,
valid for any ring R, with a unit element 1. Lot #,,7,,... be an in-
finite sequence of elements in R, with repetitions allowed. Then
I, *“’7(,: where 77!, and 77" are defined by the recurrence formulae,
=1, =1 and

Ny="—(1y My My oMyt t1,);

My=— (M e 1,):

This is true for any ring since it is true for the ring Whieh. i
freely generated by 7,=1,7,,%,,..., With infinite sums allowed, pro-
vided no product 47, .7, is repeated infinitely many times,
For if a degree, given by 6(inml...n,llll):f;rlllw+....'[—m,,, is assigned
to each product, only a finite number of terms in such a sum cen
have the same degree. It follows from induetion on ¢ that 7, and N,
are homogeneous of degree g and, as before, that o' »==nn'': —-J where

"1+771+772+"': =140+, s 0=l ey

Therefore 5’'=1’', whence 77:]:17[','.

- Ballioi College, Oxford, England.
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On the relation between the fundamental group
of a space and the higher homotopy groups.

By

Samuel Eilenberg (Warszawa).

’ 1. Y will denote a separable, connected metric space locally
connected in dimensions 0,1,...,n 1). Given a compact metric space &,
the continuous funetions f(:r)c:y with the distance formula

[fo—hl=sup lfo(@)—F(2)|
form a metric space Y%
Given two points ze& and yoe?/ the equation f()="9o

defines a closed subset Y% (@,yo) of y

T will denote the closed interval [0,1] by J and FxJ will stand
for the cartesian product of & and J. Two flmomons forfreX™ will
be called homotopic if there is a function gey 7 such that

fol®)=g(%,0), fi(z)=g(x,1) for all xe .

If also

g(®o,t)=190 for all ted,

we say that fo,flsyg(mo,yo) are homotopic rel. (%g,¥o)-
2. Let & be a polyhedron and X a subpolyhedron of F. It

is well known that T=%x (0)+XxJ is a retract of ExJ and
therefore that

(2.1) BEvery feYT has an emtension’ feyT? o),

It follows immediately from (2.1) that

(2.2) Given two homotopic functions fo,;flef_)/X and an extension fie Y™
of fo, there is an extension ﬂeyi of f, homotopic to f; 2).

1y ¢. Kuratowski, Fund. Math. 24 (1935), p. 269.
2) See forinstance P, Alexandroff und H. Hopf, Topologie I, Berlin 1935,
p. 501.
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