F. Rothberger.

300

Démonstration. En effet, Ψ étant une telle famille, à savoir une famille assujettie aux conditions du lemme 1, ω_{η} est d'après (4) non confinal avec ω (ce qui est d'ailleurs évident); par conséquent toute sous-famille dénombrable de Ψ est contenue dans un segment de la suite transfinie des éléments de Ψ . Or, en vertu du lemme 4, tout segment de Ψ correspond à un G_{δ} relatif à $\nu(\Psi)$, et, en vertu de (3) et du théorème 1, ce G_{δ} jouit de la propriété λ (puisque λ' entraîne λ). Par conséquent tout sous-ensemble dénombrable de $\nu(\Psi)$ est un G_{δ} relatif à $\nu(\Psi)$, donc lui-même un G_{δ} relatif à $\nu(\Psi)$. Ainsi $\nu(\Psi)$ jouit de la propriété λ .

D'autre part, puisque Ψ est non borné, il résulte du lemme 3 que \mathcal{R} n'est pas un G_{δ} relatif à $\nu(\Psi) + \mathcal{R}$. Par conséquent $\nu(\Psi) + \mathcal{R}$ ne jouit pas de la propriété λ , c. q. f. d.

Corollaire 1. Il existe un ensemble linéaire jouissant de la propriété λ , mais dépourvu de la propriété λ' .

En conséquence, la propriété λ n'est pas une propriété additive.

L'ensemble $\nu(\Psi)+\mathcal{R}$, en tant que somme de deux ensembles toujours de première catégorie, est lui-même toujours de première catégorie. On a par conséquent ce

Corollaire 2. Il existe un ensemble linéaire toujours de première catégorie, ne jouissant pas de la propriété λ .

Sur les ensembles concentrés.

Par

Wacław Sierpiński (Warszawa).

Nous dirons, d'après M. Besicovitch, qu'un ensemble linéaire indénombrable E est concentré s'il existe un ensemble linéaire dénombrable D (pas nécessairement contenu dans E), tel que pour tout ensemble linéaire ouvert U contenant D l'ensemble E-U est au plus dénombrable. Dans ce cas, nous dirons aussi que l'ensemble E est concentré par rapport à l'ensemble D.

M. Besicovitch a déduit de l'hypothèse du continu la proposition P suivante 1):

P. Il existe un ensemble linéaire concentré de puissance du continu.

Or, j'ai démontré a l'aide de l'hypothèse du continu la proposition Q suivante²):

Q. Il existe une suite infinie convergente de fonctions d'une variable réelle $f_1(x), f_2(x), \dots$ qui convergent non uniformément sur tout ensemble indénombrable.

Le but de cette Note est de démontrer (sans faire appel à l'hypothèse du continu) que les propositions P et Q sont équivalentes.

Commençons par établir l'implication $P \rightarrow Q$.

Soient E un ensemble linéaire concentré de puissance du continu et $D=(x_1,x_2,\dots)$ 'un ensemble dénombrable tel que $\overline{\overline{E-U}} \leqslant \aleph_0$ pour tout ensemble ouvert $U \supset D$.

¹⁾ A. S. Besicovitch, Acta Math. 62 (1934), p. 289.

²) C. R. Soc. Sc. Varsovie 1928, p.84-87; voir aussi mon livre *Hypothèse du continu*, Monografie Matematyczne **4** (Warszawa-Lwów 1934), p. 52, proposition C₉.

Posons $f(x_n)=1/n$ pour n=1,2,... et f(x)=0 pour $x \, non \, \epsilon \, D$. La fonction f(x) est évidemment semi-continue supérieurement (pour tous les x réels), continue pour $x \, non \, \epsilon \, D$ et discontinue pour $x \, \epsilon \, D$. De plus, comme on voit sans peine, la fonction f(x) est discontinue sur tout ensemble P tel que $PP'D \neq 0$.

En tant que semi-continue supérieurement, la fonction f(x) est limite d'une suite monotone (non croissante) de fonctions continues $\{f_n(x)\}$.

Soit N un sous-ensemble indénombrable de E: je dis que la suite $\{f_n(x)\}$ converge non uniformément sur N. En effet, supposons qu'on ait sur N uniformément $\lim_{n\to\infty} f_n(x)=f(x)$. Soit $\overline{N}=N+N'$ la fermeture de l'ensemble N. Les fonctions $f_n(x)$ $(n=1,2,\ldots)$ étant continues, la suite $\{f_n(x)\}$ converge donc encore uniformément sur \overline{N} et la fonction $f(x)=\lim_{n\to\infty} f_n(x)$ est continue sur \overline{N} , d'où il résulte d'après la définition de la fonction f(x) que N'D=0.

Posons $N_1 = N - D$. C'est encore un sous-ensemble indénombrable de E est on a $\overline{N}_1 D = 0$.

Posons $U=C\overline{N}_1$. C'est un ensemble ouvert contenant D (puisque $CU\cdot D=\overline{N}_1D=0$). D'après la définition de E, nous aurons donc $\overline{E-U} \leq \mathbf{x_0}$. Or, $E-U\supset N_1-U=N_1-C\overline{N}_1=N_1\overline{N}_1=N_1$, donc $E-U\supset N_1$, d'où $\overline{E-U}\geqslant \overline{N}_1>\mathbf{x_0}$, ce qui est une contradiction. La suite $\{f_n(x)\}$ ne peut donc converger uniformément sur N.

Nous avons ainsi démontré que la proposition P entraı̂ne la proposition Q^* suivante:

 Q^* . Il existe une suite infinie monotone $\{f_n(x)\}$ de fonctions continues d'une variable réelle qui converge vers 0 pour tous les x réels sauf ceux qui forment un ensemble dénombrable D, et il existe un ensemble E de puissance 2^{\aleph_0} , tel que la suite $\{f_n(x)\}$ converge non uniformément sur tout sous-ensemble indénombrable de E.

Or, l'ensemble E dont il s'agit dans la proposition Q^* étant de puissance du continu, il existe une fonction $\varphi(x)$ d'une variable réelle qui transforme d'une façon biunivoque l'ensemble X de tous les nombres réels en l'ensemble E. Posons, pour n naturels et x réels: $F_n(x)=f_n(\varphi(x))$, où f_n (n=1,2,...) sont les fonctions dont il est question dans la proposition Q^* . Il en résulte tout de suite que la suite $\{F_n(x)\}$ converge non uniformément sur tout ensemble linéaire indénombrable.

On a ainsi l'implication $Q^* \rightarrow Q$; comme $P \rightarrow Q^*$, on a donc $P \rightarrow O$.

Admettons maintenant la proposition Q. Soit $f(t) = \lim_{n = \infty} f_n(t)$ (pour t réels), où f_n (n=1,2,...) sont des fonctions d'une variable réelle satisfaisant à la proposition Q. Il existe, pour tout t réel et tout k naturel, un nombre naturel n tel que

$$|f_i(t)-f(t)| < 1/k$$
 pour $i \ge n$;

nous désignerons par $n_k(t)$ le plus petit des tels nombres n, c. à d. nous poserons

(1)
$$n_k(t) = \text{borne inf. } \underset{n}{\text{E}} [|f_i(t) - f(t)| < 1/k \text{ pour } i \geqslant n].$$

Soit E l'ensemble de tous les nombres irrationnels

$$\frac{1}{|n_1(t)|} + \frac{1}{|n_2(t)|} + \frac{1}{|n_3(t)|} + \dots$$

correspondants à tous les nombres réels t, c. à d. soit

(2)
$$E = \left\{ \frac{1}{|n_1(t)|} + \frac{1}{|n_2(t)|} + \dots \right\}_{t \in X}.$$

L'ensemble E est de puissance 2^{\aleph_0} , puisqu'il existerait autrement, comme on voit sans peine, un ensemble indénombrable T de nombres réels, tel que

$$n_i(t) = n_i(t')$$
 pour $t \in T$, $t' \in T$ et $i=1,2,...$

et, vu (1), la suite $\{f_n(t)\}$ convergerait uniformément sur T, contrairement à Q.

Je dis que l'ensemble E est concentré. Pour le démontrer, je vais établir d'abord ce

Lemme 1). Si U est un ensemble linéaire ouvert contenant tous les nombres rationnels de l'intervalle $\langle 0,1 \rangle$, il existe une suite infinie $\{m_i\}$ de nombres naturels, telle que U contient comme élément tout nombre irrationnel $\frac{1}{|n_1|} + \frac{1}{|n_2|} + \frac{1}{|n_3|} + \dots$ pour lequel il existe au moins un i naturel tel que $n_i \geqslant m_i$.

¹⁾ Cf. F. Rothberger, ce volume, p. 297, lemme 2.

Ensembles concentrés

305

Démonstration. U étant un ensemble ouvert contenant le nombre 0, il existe un nombre naturel m_1 tel que $\langle 0, 1/m_1 \rangle \subset U$. Or les nombres 1/k, où $k=1,2,...,m_1-1$, en tant que rationnels, appartiennent à l'ensemble ouvert U; il existe donc un nombre naturel m_2 tel que

$$\left\langle \frac{1}{|k|} + \frac{1}{|m_2|}, \frac{1}{k} \right\rangle \subset U$$
 pour $k=1,2,...,m_1-1$.

Pareillement, les nombres $\frac{1}{|k|} + \frac{1}{|l|}$, où $k = 1, 2, ..., m_1 - 1$ et $l = 1, 2, ..., m_2 - 1$, en tant que rationnels, appartiennent à U; il existe donc un nombre naturel m_3 tel que

$$\left\langle \frac{1}{|k} + \frac{1}{|l}, \frac{1}{|k} + \frac{1}{|l} + \frac{1}{|m_3|} \right\rangle \subset U$$
 pour $\left\{ k = 1, 2, ..., m_1 - 1 \atop l = 1, 2, ..., m_2 - 1 \right\}$.

En raisonnant ainsi de suite, on obtient une suite infinie de nombres naturels m_1, m_2, \dots telle que

(3)
$$\left\langle \frac{1}{|k_{1}|} + \frac{1}{|k_{2}|} + \dots + \frac{1}{|k_{i-1}|}, \frac{1}{|k_{1}|} + \frac{1}{|k_{2}|} + \dots + \frac{1}{|k_{i-1}|} + \frac{1}{|m_{i}|} \right\rangle \subset U,$$
resp. $\left\langle \frac{1}{|k_{1}|} + \frac{1}{|k_{2}|} + \dots + \frac{1}{|k_{i-1}|} + \frac{1}{|m_{2}|}, \frac{1}{|k_{1}|} + \frac{1}{|k_{2}|} + \dots + \frac{1}{|k_{i-1}|} \right\rangle \subset U$
pour $k_{i} = 1, 2, \dots, m_{i} - 1; \quad j = 1, 2, \dots, i - 1; \quad i = 1, 2, \dots$

Soit maintenant $\{n_i\}$ une suite infinie de nombres naturels pour laquelle il existe un p naturel tel que $n_p \geqslant m_p$. Soit i le plus petit de tels nombres p. On a donc $n_j < m_j$ pour j = 1, 2, ..., i-1 et $n_i \geqslant m_i$, d'où selon (3)

$$\text{resp.} \qquad \frac{\left<\frac{1}{|n_1} + \frac{1}{|n_2} + \ldots + \frac{1}{|n_{i-1}}, \frac{1}{|n_1} + \frac{1}{|n_2} + \ldots + \frac{1}{|n_i}\right> \subset U,}{\left<\frac{1}{|n_1} + \frac{1}{|n_2} + \ldots + \frac{1}{|n_i}, \frac{1}{|n_1} + \frac{1}{|n_2} + \ldots + \frac{1}{|n_{i-1}}\right> \subset U,}$$

done, à plus forte raison, $\frac{1}{|n_1|} + \frac{1}{|n_2|} + \frac{1}{|n_3|} + \dots \in U$, c. q. f. d.

Le lemme étant ainsi établi, soit U un ensemble linéaire ouvert contenant tous les nombres rationnels de l'intervalle $\langle 0,1\rangle$. Soit $\{m_i\}$ une suite infinie de nombres naturels satisfaisant aux conditions du lemme. Je dis que l'ensemble

(4)
$$N = \underset{t}{\mathbf{E}} \left[t \in X; \ n_k(t) \leqslant m_k \text{ pour } k = 1, 2, \dots \right]$$

est au plus dénombrable.

En effet, en supposant que N est indénombrable, il résulte tout de suite de (1) et (4) que

$$|f_i(t)-f(t)|<1/k$$
 pour $i\geqslant m_k$ et $t\in N$,

ce qui prouve que la suite $\{f_i(t)\}$ est uniformément convergente sur l'ensemble indénombrable N, contrairement à la proposition Q. Or, l'ensemble N étant au plus dénombrable et la suite $\{m_i\}$ satisfaisant aux conditions du lemme, on conclut de (2) et (4) que $E-U\subset N$. L'ensemble E-U est donc également au plus dénombrable et par conséquent l'ensemble E est concentré, c. q. f. d.

Nous avons ainsi démontré que $Q \rightarrow P$. Comme $P \rightarrow Q^* \rightarrow Q$, les propositions P, Q et Q^* sont équivalentes 1).

¹⁾ Comme j'ai démontré dans mon livre précité (p. 52-59), la propriété Q (qui y est désignée par C₂) équivaut à chacune des trois propositions C₁₀, C₁₁ et C₁₂ (où C₁₁ est le Théorème II de MM. Banach et Kuratowski, Fund. Math. 14 (1929), p. 128). Toutes les quatre propositions sont donc équivalentes à la proposition P.