A Note on Unconditional Convergence
by
A. E. TAYLOR!) (Los Angeles).

A series ‘
(1) s,
i=1
of elements x, of a space £ of type (B) is said to converge un-
conditionally if it converges no matter in what order the terms

are arranged. Concerning such series W. Orucz has proved the
following result?):

If the space E is weakly complete a necessary and sufficient
condition for the unconditional convergence of the series (1) is
that the series

) 3f)!

i=1
be convergent for each linear functional f in the conjugate space E.

In this note we shall prove a similar theorem about series
of elements of the conjugate space £. We shall assume that the
unit sphere: ‘x| <1 of the space £ is weakly compact — that
is, given an infinite set {x,} with |x ||<{1, it is possible to choose
a subsequence {x,} and an element x; of £ such that

lim £(x,) = £(x)

for all fin E. (It then follows that all bounded sets in £ are
weakly compact). The spaces L”, I” (p > 1) have this property.
The theorem to be proved is the following.
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) W, Orlicz, Beitrage zur Theorie der Orthogonalentwicklungen, I,
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Theorem 1. Let E be a space of type (B) in which the
unil sphere is weakly compact, and let

x
3 >,

=1 .
be a series of elements of the conjugate space E (also of type (B)).
Then a necessary and sufficient condition that the series (3) be
unconditionally convergent is that the series

kd

4) 2@

i=1
converge for each element x of E.

Remarks: It is easily proved that if the unit sphere of F
is weakly compact £ is weakly complete. The converse is not
true, however; for example, L is weakly complete but its unit
sphere is not weakly compact. It is also known that if the unit
sphere of E is weakly compact then the space £ has this same
property ). Consequently we required more of the space £ than
would be required by the theorem of Orucz, if applied to the
series (3). The condition imposed by our theorem on series (4)
is less stringent than that given by Oeucz, however, for in ge-
neral not every element of the conjugate space E of £ can be
expressed in the form f(x), where x is some element of E4).

The proof of the theorem rests on the following propo-
sition :

Lemma. Let E satisfy the condition of Theorem 1. Let the
series (4) converge for each element x of E. Then the series con-
verges uniformly for all elements x such that |x1 <1, and there
exists a constant C, depending only on the {f}, such that

o«
(5) 2] <l
i=1
% V. Gantmakher and V. Smulian, Sur les espaces linéaires dont
la sphére unitaire est faiblement compacte, Comptes Rendus (Doklady) de 'Aca-
démie des Sciences de I'U. R. S. S. 17 (1937) p. 91—94, Theorem 3.

4 If E is separable, however, our theorem is the same as that of Or-
licz, for in this case every linear functional on £ can be.expressed in the form
f(x), where x is a suitably chosen element of E. (S. Banaech, Opérations
linéaires, p. 189—191). )
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Proof: Suppose the first assertion of the theorem were
false. Then fqr some positive &, there will exist a sequence of
elements {x,}, x," {1, and a sequence of integers {n,}, limn =0,
such that _ T

&0
—)-/Wf,‘(lg)’>/€0 (V:::‘LQ!-")-
i=n,
Since the unit sphere in £ is weakly compact we may select
a sub.sequence of {x,}, say {y,), and an element y, of £ such
that ’l_lgxc f(y,)=F(y,) for each fin E. Therefore we may as well
assume that

©) PATANETY ¢=1,2,...)
Now let {{} be a sequence of numbers forming an element
of the space (m) so that |&,| << M for some constant M. The series

VACORIPINAC))
) i=1
is then fsvidently convergent, and it is clear, by a well known
theorem ), that f£.(x) is a linear functional defined on E. Hence

N

lim /. (3.) = f(y,)-

Consider next the matrix 4 of elements

A4,= f(y,)
We have
SAE=LE) =19,

Thus A orders to the element § of (m) a convergent sequence

1 ;
/:(g,)} — that is, an element of the space (c). By a theorem
of I Scrur %) it follows that we must have,

: given any positi
an /V, depending on ¢, such that Y positive &,

€N
3 [«
i:VlAri! & (7)":1)2"")'
) Banach, loec. cit. p. 80, Theorem 5.
9 L Schur, Uber | i
8 er lineare Transformationen in der Theorie der unendli-

chen Reihen, Journ. f. Math, 151 (1921) p, 82 and 88—90.
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In other words,
2fy) < r=1,2,....
i=N

But this contradicts (6). The validity of the inequality (5) is
easily deduced from what has just been established.

It is now easy to prove Theorem 1. As for the sufficiency
of the condition, we define a functional f by the series

J @) = 2'fi(x).
i=1
This is the /. used in the proof of the lemma, for the special
choice &1, and it is an element of £. We assert that
/=3,

i=1

the convergence being‘ according to the norm in £, For

f Bfi=su £ — Sf6)

i=1 i=1

— sup | 20| -:{\s.}'xgl( 2]

He izt f==n1

and the expression on the right approaches zero as n—~o, by’
the lemma. Since the condition on series (4) is independent of
the ordering of the f, we conclude that (3) is unconditionally
convergent.

The necessity of the condition is trivial in view of the equi-
valence of the concepts of absolute and unconditional conver-
gence for numerical series.

As an application of the above results we shall prove a the-
orem concerning the nature of a linear transformation on £ to (I).

Theorem 2. If E is a space of type (B) in which the unit
sphere is weakly compact the most general linear transformation
on E to () has the form T(x)=§=(§,,&,,...), where E=f.(x),

@ o

and }Y'f, is an unconditionally convergent series of elements of E.
i==1

Conversely, every such series defines a linear transformation T.

T is completely continuous.
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Proof. If T(x) = & =(§, §,,...), and we define f; by
§;=f,{x), it is clear that if 7 is linear, then since

I= Y@< IT|xl],

f==1

the functionals f, are also linear. By Theorem 1 they form an

unconditionally convergent series.

Conversely, if, starting from the unconditionally convergent

series (3), we define

T(x) = (£,(x), £,(x),...)

then all that we need to do to prove that 7 is linear is to
establish an inequality of the form

o
(7) XS] Clx
i=1
where C is some positive constant. That such an inequality must
hold is a trivial consequence of Theorem 1 and the lemma.

Theorem 2 is a sharpening of a theorem of B. J. Perms?).
That 7 is completely continuous may be proved directly with
the aid of the lemma, or by an argument involving the fact that
if a sequence in (/) converges weakly it also converges according
- to the norm. Since both proofs are essentially contained in the
paper of Perns (who makes use of the theorem of OrLicz), we
shall not give any details.

In conclusion we shall show that for the validity of the
criterion in Theorem 1 it is not sufficient to assume that £ is
weakly complete. For let £ be the space L of functions defined
and integrable (Lebesgue) on (0,1). L is weakly complete, as is.
well known. As the sequence {f} we choose the functionals

1
]‘,.(x):/x(t)f/v,.(i)dt ' (i=1,2,..),

where x(t)e L and ’

gy =ltlr 12T <rcu,
‘ Lo, 0<e<ct2™, 172 1.

) B. J. Pettis, A Note on Regular. Banach Spaces, Bull. Am. Math.
Soc. 44 (1938) p. 420— 428, Theorem 4’
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It is readily verified that
12
i@ [ ix@) .
i=1 :
U

Therefore the sequence {f} satisfies the conditions of the the-
orem®). Yet since £ is equivalent to M, and
X f = max (Y o.(t)| =1 where m<n,

i==m i=m

o0
the series Eﬁ cannot be convergent. The above considerations
i=1
also prove that the unit sphere in L is not weakly compact —
a fact which may be shown by a variety of other methods.
%) In connection with this example see Orlicz, loc. cit. where it is used
to prove that A is not weakly complete.

(Recu par la Rédaction le 70. 10. 1938).

Editorial remark. The paper of S. BANACH and S. MAZUR, Zur
Theorie der linearen Dimension, Studia Math, 4 (1933) p. 100—112, contains
the following theorem (p. 108, b) and p. 109 ref. '¥)): If the space E of iype
(B) is such that the space E is weakly complete, a necessary and sufficient con-

el .
dition for the unconditional convergence of the series Ef, of elements of the

i=1
o
space E is that the series Zlfl(\’)l converge for each element x€ E. If the

unit sphere in the spacelE is weakly compact, then the unit sphere in the
space £ is also weakly compact and therefore the space £ is weakly complete
(see 1. c.®)). Hence the above result of BANACH and MAZUR contains the
theorem 1 of Mr. TAYLOR and even more. From the weak completness of the
space £ does not follow the weak compactness of a unit sphere in the space
E, as for instance in the case of the space (C) of continuous functions. Simi-
larly the lemma used in the proof of theorem 1 remains true if the space E is
weakly complete (see the proof of b}, p. 108 —109); the same is to be said con-
cerning theorem 2. The proofs of Mr. TAYLOR are direct and therefore interesting.





