132

Ipo mesaxeacnd ¢ymenii (V)
I, Hlrefmrays (Tonin),

(Posromo)

Hexatt £x mosmatyé ,entier de x®, mexail [x] == x — Ex;
xamemo, mo F(#) (0<t <o) mMag BracTHBiCTs exBiraprmmii
(mod 1), axmo ¢ymruiz [f()] Mae raxy puerpuCyaury s [¢].
Tammevw cmonamy, g 0 LA <1 @

|EALFO1 <D= 45

mpx npody wopes | £ |, mosmawyemo pertrusuy mipy suomuni E,
ax o puseueno B womyuinari (IV) 1), onanyernesd, mo saxuo f(f)
moe wiracrsicrs ewsinapruuif, [f]1[g] ¢ uensmencui, o | f + ¢]
pomarusno mmmipui, wo f () - g (f) Mae a0 TIO BIACLIABICTE
(Teopema 8). wmo hf+ kg Moo nmactmmiors oxpiiuprunil wpn
mominsmmx wimax h ik, xo [f(H)] i [g(#)] & nesamensui (Too-
pema 4). dk BAGTOCYBANMS OMEPHCYEMO ILIP., IO MIOKMILL ‘_I)ny;xc-
uifk {sin 2% (¢4 a)’},, onopmana spiem uio a upuiivaa el uitt-

cHi BHAUOHNS, MAG IAPAME MOBANGKIL CIOMENTH. SBiECH KOXO-

mmMo o poss'asxy mesmoro mmramma Hamio me Mopie.
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On extreme points of regular convex sets
by
M. KREIN and D. MILMAN (Odessa).

Let £ be a Banach space (a linear normed complete space)
and let £ be the space of linear functionals adjoint to it.

A set KCE is called regularly convex?) if for every fye E
not belonging to K such an element x;¢E can be found that

?:11? f(xo) < fo (%)

It is obvious that every regularly convex set is convex.

Let fOGEf x€E (x| <1,i=1,2,...,n) and £>0; then by
the neighbourhood U(f,; x,,...x,, ) we shall mean the set of
all fe £ such that =

fE)—F@l<s (=1,2...,n).

“All possible neighbourhoods U(f; xy,..., x,, &), where
foeE, xe B, |x|<1 (i=1,2,...,n; n=1,2,...,) and ¢>0,
define in E a certain topology, which is called weak topology
(Tychonoff’s topology) *).

From Tychonoff’s theorem on bicompactness of the topolo-
gical product of segments, as it has been pointed out by Vera
GantvacHEr and V. SmuLyan 8), results the following proposition:

A. A bounded convex set KCE is regularly convex if and
only if it is bicompact in the weak topology.

1) This definition has' been Yprrowed by us from the work of M. G, K'rein
andV.]J.Smulyan, Onregularly closed sets etc.. Annals of Mathematics 41 (1940).

% A.Tychonoff, Uba_ar topologische Erweiterung von Raumen, Mathem.
Annalen 102 (1929) 548. o

» V. Smulyan, Sur les topologies différentes dans I'espace de Banach,
Comptes Rendus de I'Acad. des Sc. de 'URSS, 23, 4 (1939).
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A. point of a convex closed set is called an exireme point
if it is not an inner point of any segment belonging to the
given set,

We now prove the theorem.

Theorem. Let KCE be a bounded regularly convex set,
Then the set S of exireme points of K is not emply and ifs re-
gularly convex envelope *) coincides with K.

Proof. According to proposition A, K is a bicompact set
in the weak topology. To every element xe £ corresponds a func-
tion @, (f) ==f(x) continuous on the bicompact set K.

Let {x} (¢ <9) be the set of all the elements of £ with
|x| <1 well ordered in any way.

Correspondingly to the sequence {x.}; (¢<¥) we form a se~
quence of bicompact sets {K.} (<), each one containing the
following (K, 2 K for @ <p <), by induction.

Define K, as a set of those elements feK on which the
* function ¢, (f) reaches its maximum. The set K| is closed in the
weak topology, and consequently is bicompact. Now let all X,
‘be defined for @ <& (§ < 9). If & is not a limiting' number, then
we ‘denote by K the set of those fe K;_, on which the function
@, (f) considered on K;_, reaches its maximum.

If & is a limiting number, then we denote by Kj the inter-
section of all K, with @ <§; since K;DK,D...K DK, 47...
are bicompact, so K} is non-empty. K will now denote the set
of all the points of Kj, on which the function lpxe(f) (feKp
reaches its maximum.

Denote by P the non-empty intersection of all X, (1 L a<).
If g,feP then g,fc K, and consequently

frd=g(x) (1<e<),

whence g=f. Thus P consists of one point g We shall prove
that this point g is an extreme point of the set K, We assume
the contrary, i e. that with some f},/f,, € K (fi==/f;) and some
t(0<t<<l)

¢Y) g=tfy+A—19f.

4) That is the amallest regularly convex sst containing .S,
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Take the first K; to which neither of the elements f, f, belong.
Consider two cases. Let & not be a limiting number. Then
£, f,€K;:_,, and consequently

g(x;) = sup f (xg) > £, (x) (i=1,2),

the equality sign being excluded at least for one of £, f, (namely
for that f; which is not included in K;). Whence

2  grp=1g@x)+ (1 —tg)>tfilxp+A—Df(x),
Which contradicts to (1).

Let now £ be a limiting number. Then f,, f,€ K, with & <&,
and consequently £, f,€ K;. Whence

g(x5> = fsal}?é f(xE).'>/fl(xtf§) (i=1, 2),

the equality sign being, as before, excluded, and consequently (2)
holds, which contradicts to (1).
Thus we have proved that the point g is an extreme point

of the set K, and consequently the set S is not empty.

We now prove that the regularly convex envelope K’ of
the set S coincides with K. It is evident that K’ C K. Assuming
that K’ does not coincide with K, we take an element f,e K—K".
Since K’ is regularly convex, there exists an element x, € E (| x,| =1)
such that : C

®3) sup f () < f; (xo)-

Consider then the set K, of those ye K on which the func-
tion @, (f)=f(x)) (feK) reaches its maximum. Evidently  the
set K,CK is in the weak topology a certain convex bicompact
set, and consequently is a regularly convex set. Whence, in virtue
of the facts already proved, K, has an extreme point g, which
is an extreme point of K (for it is easily seen that every extreme
point of the set K| is also an extreme point of the set K); on
the other hand, in virtue of (3) and the definition of the set K,
the intersection of K, with K”, and consequently, with S is empty.
We have come to a contradiction, which ¢ompletes our proof.
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Corollary. If a space E is regular (reflective), then any
bounded convex closed set is the convex closed envelope of the
set of its extreme points. ;

M. Krenv and V. SmuLyan %) have proved that if S < Z is a
bounded set, then its regularly convex envelope econsists of those
and only those g¢Z that admit the representation

g == M{p, (f)} (xeE, 9, (f) == f(x)),

where M{p} is a certain mean value defined on the space of all
bounded and continuous in the weak topology functions ¢ () (fe.S).

As it has been shown by A. Markorr ¥), to every mean value
M{g} corresponds in a unique way an additive non-negative
function w(e) of sets eC.S (1(S)==1) possessing a number of
properties and such that

Migy=[9(Ndu@,

where the integral is understood in the sense of Fréchet-Stieltjes 7).

Owing to all this, our theorem permits us to say that every
point of a regularly convex space is, in a certain sense, the centre
of gravity of masses, distributed on the extreme points of this
set.

Notice that the unit sphere |f|<{1 of the adjoint space is
regularly convex and therefore if £ is infinite-dimensional, then
the sphere has an infinite set of extreme points. Hence:

If the unit sphere of an infinite-dimensional space E has a fi-
nite number of exireme points, then E is not adjoint to any
Banach space.

We shall now give two examples to which this remark is
applicable.

1. Let Q be a topological space and let C, be a linear set
of all the bounded continuous functions ¢ (¢) (g¢ Q), with the de~
finition of the norm:

]| = ggglw(q)h

%) See their work quoted in footnots 1),

: ) A, Markoff, On mean values and exterior densities, Recuell Mathé-
matique 4 (46), 1 (1938),

") For more details see A, Markoff ¢) loe, oit,
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It is easily seen that in this case the point ¢ (g) of the unit
sphere K (¢ <1) of the space C, is an extreme point for K
if and only if |9(¢)|=1 (¢ Q). Therefore, if the space Q is
decomposed on @ components ) then K has exactly 2° extreme
points. . '
In virtue of this, if @ is a finite number and C, is infinite-
dimensijonal (the latter, for instance, is carried out if Q contains
an infinite. number of points and is completely regular) %), then £
is not adjoint to any Banach space.

2. Let Q be an arbitrary abstract set, and let x () be an
additive’ function of the subsets ec Q, forming a certain Borel-
corpus B. Let the corpus B besides that possess in respect to
w(e) the following property: if u(e) > O for a set ee B, then there
exists a sub-division of e: e=¢, ¢, (¢,,¢,¢ B) such that w(e) >0
and u(e,) > 0. ‘

Denote by LZ a linear set of all the functions ¢(g) (g¢ Q)
measurable and absolutely integrable in respect to the function w(e),
the norm ¢ being defined by the equality:

o] = J 19(g)) dus ).

It is easily seen that the unit sphere |¢| <1 in the space
L{, does not have extreme points and therefore L, is not adjoint
to any Banach space. :

For the space (L) this result (in a more considerable gen-
eral form) has been obtained by . M. GrLranpi),

8 i e on disjointed closed connected pa'rts. ‘
% Selim Krein has called our attention to the fact that in order that

‘the space CQ (with a finite «) should be infinite-dimensional, it is necessary

and sufficient that Q should contain an infinite number of points and that the
number of dimensions should be greater than a. The necessity of the conditions
is obvious. To prove their sufficiency we show that if Cp is finitely-dimensional,
then the number of dimensions of Cg exactly equals c. In fact, in this case the unit:
sphere K in Cp contains exactly m (m is the number of dimensions of Cop) li-
nearly independent extreme points ¢. But as we know, for every such point
@ (g) == 1 and consequently there is exactly a of such linearly independent
points, and accordingly m == q.

19 I Gelfand, Abstrakte Funktionen und lineare Operatoren, Recueil
Mathématique 4 (46), 2 (1938) p. 265.

(Received 10-th 4. 1940).
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]I])O mwwpemn.ur,ui TOMRH POIYIAPHO lEOIlH(HQ(HlJIX MOHONEHIN
M. Tpoitn i JL Minnmas (Opecn).

(Posiomo)

Hexait £ 6 npoc'mp Bauaxa (robro niniiimni, nopmomumir
v mosumit mpocwip) i £ empamennii xo mporo mpoerip mimil-
pux (yHrmionairis.

Muomus, K C E aperves poryiapio KOLBOKCILOI0Y),
sxmo g woiroro f, ¢ £, e namenuoro ;o muonunn K (feK),
snaiinerses Taumi eremenr x € E, mo

?Fgf (xp) < fy (xg)-

B mift crarm newaumoBrio@rnes Tane

Tooponma Srmo KCE 6 06Momona porynsapio
KOMBOKCHN MIOMBEAA, TO MILOMUITE S ORCTPOMUILLIUAX
rogon K me ¢ wyemwa i, Glupm woro, maiimonia ponry-
AAPHO KOWBEKCOHS MIommma, mo micwums 5, cwip
nanxae 8 K.

TIpz mpomy Touka x manol womsoxenol Muomuni C anemnes
eXCTPOMAIBEO ToUk0olo C, AKIO BONA He 6 BILyTPimms
TOYRA IMOXEOTO CerMenTa, o yBixoxuts o C.

3 reopeMu GOBNOCEPOINKEO BUUIHBAE

Brzeunosox. dxujo upoerip £ ¢ perynapunit 1o
KOMHEA OOMOMOHS, KOUBOKONS, BOMKNOUA MIOMMUL 6

KOEBOKOHA BaMENenma 060oxomKa MIOMEHN CBOLIX
eRCTPOMATBIEX TOTOK,

JLoBemena meopeMa TOBBOLAG BRABATI OIILY OCTATHIO OBNAKY
roro, mob mammt mpocrip Bamaxa me Gy CIrpAKEREM XO WOXHONO
immroro mpooropy Bamaxa.
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Sur la divergence des séries orthogonales

par
S. BANACH (Léopol).
Introduction.

Soit § I’ensemble formé par toutes les suites {¢,(#)} ortho-
gonales et normées dans lintervalle (0,1). La distance de deux
suites {¢, (¥)}, {w,(¥)} appartenant & I'ensemble {§ sera définie par

w1 H‘Pi(t)“"//i(t)”
({(/’-(t)}: {'//1 (t)}) = lé: _21"' 1+“7’i 0 — m ) “

12
O] = ( f Q) dt) L’ensemble {F est alors un espace mé-

ol

trique, complet et séparable.
Dans ce Mémoire, nous démontrons les théorémes suivants:

Théoréme I L'ensemble P des suites complétes {9,(D} & F
est un ensemble G; partout de la seconde catégorie dans §.

Par conséquent, '’ensemble des suites incomplétes est un
ensemble F, de la premiére catégorie.

Théoreme . Si{c} est une suite numérique donnée, telle
que ¢l <w, alors deux cas seulement sont posstbles

1) la série 3 c,9,(f) est presque partout convergente pour

chaque suite {rpi(t)}s{S’
2) Pensemble Q des suites {,()} ¢F pour chacune des les-
quelles on a presque partout

}i’t‘_:o |:21'ci(pi(t)|=+oo

est un ensemble G; partout de la seconde catégorie dans §.
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