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'ensemble des points de .S correspondant, dans une similitude
entre S et [0,1], & I'ensemble des points rationnels de [0,1]; on
démontre facilement *¥) que I'ensemble

(67) %"mo (S)

est un sous-ensemble de E partout dense sur £,

~ Or, I'ensemble (67) est dénombrable ce qui est une consé-
quence de (60) d'une part et de l'identité p ¢, (S) =%, (S¢ WD)
d’'autre part; bref, I'ensemble ordonné £ est séparable, c. q. f. d.

(Se W (D))

24. En modifiant légérement la démonstration précédente
du théoréme 3, on démontre le

Théoréme 3", Pour qu'un ensemble ordonné E wérifiant
la condition de Souslin soit séparable, il faut et il suffit que tour
tableau ramifié, transformable en un sous-ensemble de E par une
transformation uniforme croissante, soit normal (cf. théoréme 2",

M) Voir loe. cit.f) p, 120,

(Regu par la Rédaction le 31, 8. 1937),
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(Ponomo)

Asrop pois'asys oy mpolioMy, AKY UOCTABMB B IIONe-
penmilt cpoiit mpani?), & B if posssarm nupoBamKye Mine imumM
raxmit suemopor: Homma moewncmenia eim’s F' poGpe
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ciM'o @, pismoli ocmuam 8 cimew F, i axofi momuui
eMeMeHT He & HOTaTKOBEM BimpisxoMm iunuroro eme-
MemETYy oiMt O,
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Ramanujan sums and almost periodic functions
by
P. ERDOS, M. KAC, E. R. van KAMPEN and A. WINTNER (Baltimore).

Introduction. Several classical formal trigonometrical
expansions of the analytic theory of numbers have recently been
shown?) to be periodic or almost periodic Fourier series of the
functions which they represent. The object of the present paper
is to prove a corresponding result for an extensive class of
multiplicative arithmetical sequences.

In particular, it will be shown that the celebrated formal
trigonometrical series of Ramanujan?) are almost periodic Fourier
series in the sense of Besicovircr?®). Hence the Ramanujan coeffi-
cients will turn out to be Fourier averages which vanish for in-
commensurable values of the frequency parameter, the almost
periodic functions in question being always limit-periodic. It should
be emphasized that the fact that Ramanujan's trigonometrical
expansions turn out to be Fourier expansions leads without any
further device to his explicit formulae, if one writes down the
Fourier average representation of the coefficients.

Although the arithmetical functions f(n) will only be consi-
dered for n==1,2,..., one can realize the usual assumption of
the Besicovitch theory by placing f(— n) = f(n) for n=1,2,..,

1) A. Wintner, Amer. Jour. Math. 57 (1935) p. 534—538; Duke Math.
Jour. 2 (1936) p. 443—446; Amer, Jour. Math. 59 (1937) p. 629—634; P. Hart-
man and A. Wintner, Travaux Inst. Math, Thilissi 3 (1938) p. 113~119; P.Hart-
man, Amer. Jour. Math, 61 (1938) p. 66 —74.

3 S. Ramanujan, Collected Papers, Cambridge, 1927, p. 179 —199.

% A. S, Besicoviteh, Almost Periodic Functions, Cambridge, 1932,
p. 91112,
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and f(0)=0 (the multiplicative character of f then remains pre-
served). It is understood that a class (B') of functions S(n) which
are defined for integers may be introduced either directly 9 or
by considering the step function f(f) which has the value f(n)
for n<t<n-1.

1. By a multiplicative function f is meant a sequence f(n)
n=1,2,3,... for which f(n, n;) = f(n)) f(n,) whenever (n,,n,) =1,
and f(n) == 0 for at least one n (so that /(1) ==1). In order to
simplify the formulae, only those multiplicative f(n) will be con-
sidered for which

¢y f(n)m,{lf(p), e f(p) =f(P)=f(B) =..., (f(D)=1),
pln

where the p denote prime numbers. An f(n) which satisfies (1)
will be called strongly multiplicative. A classical instance of (1) is

@ foy =28 o=t gy 20

pn P pin P
(9 == Euler’s function).
For any f(n) and for any positive integer k, put

P9 =1 or £ (n) == f(p,) according as
ne:0 or ne==0 (mod p,),

3
where p, is the k-th prime; and put
k "
KC)) f/, (n)mjl{f(j)(n), 50 that fk(n) == f.lf(P); where P Qp,‘-
= nlp

According to (3), the function f®(n) of n has the period p, and
possesses the Fourier expansion
— N A
®  fm=1e LT
Pr. )

exp (2ri = n),
mea) Pr

whic.h is,. in fact, nothing but the formula of equidistant trigono-
metrical interpolation, According to (4), the function [ (n) of n

4 C{. I. Seynsche, Rendie. Circ, Math, Palermo 55 (1931) p. 395421,
where Bohr's uniformly almost periodic case 1a considered,
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has the period P,=p,p,... p,_, p, and possesses, in view of (4)
and (5), the Fourier expansion

(6) fk(n)=ck+ C,,Z' 2 .”

q9|Py, gmm)ml ple
>1 m<q

where ¢, ]I(l-{— Z-(ﬁl)-;_—_—l)

PSpL

f(p)—1
f(p)—1+p

cos (2n-’§—n),

It is understood that the denominators in the product occur-
ring in (6) are compensated by the factors of ¢,.

"~ 2. For a function g= g(n) defined for n=1,2,3,..., put

M{g)=M{g (@)} =lim = Sg(m),

m==1

@

if this mean value exists.

If f(n) is strongly multiplicative and

S
then
©) nien = I (1— 2=L2).

In fact, it follows from the: Mobius inversion formula that

FO+ oot f) = Zu® FO®[ 1], where F® = TTA—F(p).

plk

On the other hand, it is clear from (8) and from Euler’s factori-
zation that

5 lu(k)/f'(k)l — IT(t+ 1—~pf(p))_
Hence, M{f(n)} exists and is represented by
« (k) F (k)  1—Ff(p)\ -
niay = 3 LOL0 _ gy (1 =10,

3. A corollary of (8) and (9) is that for a strongly multi-
plicative f(n) == 0 one has :
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me==]

_1—f)
© (=7 )
oy [ 1— f(p)]

2 e <

. In fact, on writing ‘7&7 for f(p) in (8) and (9), one obtains (10),

since

. L 12 1 o
(10 bis) if — Xa; then also Togn ,,,%: a2

me=]

Similarly, if f(n)' denotes the I-th power of f(n), then
Ay My = 11 (1—L=LP), i 3 L=S0] o,

where [ is any real number. In fact, (11) follows from (8) and
(9) by writing f(n)' for f(n). Since

if _;1: )_Ej a,~ «, then also
(11 bis) .
_J;;:_fi > mlam--—* o for every A> —1,
n

me==]

it follows from (11) that

n ) - A
b e Sy 1 B

m ==l

A
if Z'LLT;&)——'@o,me

Clearly, (10) may be interpreted as the limiting case A== —1.
Needless to say, the relation belonging to any A}> —1 is an
essentially weaker statement than is (9) itself. In fact, the con-
verse of (10 bis) or of (11 bis) is only true on Tauberian as-
sumptions.

As an illustration, consider the example (2); so that
f(»)=1—p~" Thus, (10) is applicable and goes over into
LANDAU’S relation

icm
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1 a1 @O
S e ZTm =t

1 )= o(1—p~°% .
p(p—1) OA—pHOoa—p>’

since /F (1 +

while (11) is applicable for — 00 </ <+ o0 and gives ScHurR’s
relation

Cu{(TON = (- L a-Ly)

for every real / (and, as seen from the proof of (9) or (11), for
every complex / also?)).

4. For every strongly multiplicative, positive f(n), let
T, f " (n) denote the strongly multiplicative, positive functions
which at an arbitrary n=p attain the values /¥ (p) = max (1, £(p)),
S~ (p) =min (1, f(p)), respectively. Then (2) shows that

A2) f@=FF() £~ (); (12) 0<f~ (<1< ()
while (4) clearly implies that

(13) fF @ >f50), £~ ) <)

13) f=fi= = Ff + = Ff %

Notice that either of the functions f j,i is uniquely determined by
fand &, i. e, that (f%)= ()%

Using these notations, it will be easy to deduce from (9)
the following theorem: '

Every strongly multiplicalive, positive function f(n) which
satisfies (8) is almost periodic (B); furthermore,

(14) M{f—£]}— 0, as k— oo;

%) E. Landau, Géottinger Nachrichten, 1900, p. 177—186; the result of
1. Schur was' published by I. Schoenberg, Math, Zeitschrift 28 (1928) p. 194
It should be mentioned that the corresponding result which belongs to (28)
below (H. Davenport, Berlinexr Sitzungsberichte, 1933, p. 830—837) may also be
established by the above method.
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In fact, it is clear from (7) and (6) that M{f}==c,. Since
¢, in (6) was defined as the k-th partial product of the infinite
product (9), it follows that

c,= M{f}— M{f}, as k— oo,

Hence, (14) is certainly true if either f(n) > £, (n) or f(n) < f,(n)
for every n and k. It follows therefore from (13) that

(15) M{fT—fh}—0 and M{|f"—

(14 bis)

fly—0, as k-0,

But the funetion (6) of n is penodxc for every f, hence also for

%, so that either of the functions JE ;. of n is periodic for eveg

It follows therefore from (15) that either of the functions f™(n)

is almost periodic (B). Since (12,) shows that £~ (n) is a bounded

function, it follows from (12,) that f(n) is almost periodic (B).
In order to prove (14), notice first that, by (13,) and (13,),

M{f—FI < MU=+ MG — £

The sum M+ M on the right of (15 bis) may readily be written

“in the form 2M{f7 fy — M{f} — M{f,}. It follows therefore
from (14 bis) and (15 bis) that in order to prove (14), it is suffi
cient to show that M{f 7 f1) — M{f}, as k— c. But this is
obvious from (9) and from the definitions of f7, and s

(15 bis)

5. The almost periodicity (B) of f(n), proved in § 4, im~
plies that the n-average M{f(n) exp 27ikn} exists for every
real A, It turns out that this Fourier coefficient vanishes for
every irrational A; so that f(n) is limit-periodic (grenzperiodisch);
more explicitly, the Fourier series (B) of f(n) is

a6 1)~ M+l 3 5 I 78T

. ‘
< & b f(p) cos( 7 — p n)

‘where the first (exterior) summation is over all quadraifrei ¢ >1,
and, if ¢ is fixed, the index p runs through all prime divisors p
of ¢, while m through the @ (q) values which satisfy (m, g) ==1
and 1< m<yq.

In fact, (16) follows from (14), (14 bis) and (6), since P,
in (6) was defined as the product of the first k primes.

icm®
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The restriction of the first summation index of (16) to
quadratfrei ¢ >1 may be eliminated, if one introduces the Mébius
function u(r), where r=1,2,3,.... In fact, (16) may then
clearly be written in the form

f) ~M{f} 3 u@e (n)ﬂ

r=1

— f(p)

14p’

{17 T 5=

if ¢,(n) is an abbreviation for the finite sum

c,(n) = 2 cos (27:‘—"’-_1— n), where (m,)=1and 1<m<r;

¢, (n) =1.

(18)

Since the @(r) angles which occur in the sum (18) are symme-
trically placed, the sum which one obtains by wrxtmg sin for cos
is 0; so that

c,(n) =2 exp (2m'-;—n), where (m,)=1land 1< m < r;
! c,(n)=1.

(18 bis)

Thus, the ¢ (n) are precisely the Ramanujan sufns, and so the

. Fourier series (B) of f(n) is identical with Ramanujan’s formal

trigonometric series for f(n). The coefficients of the series

a9 f) ~ Fac,(n)
re=l
are
(20) a"””a(f) M{f},u(r) .Pll.rz—;'—(';r—'—— (r=1’2’3:'--)’

by (17); while the expansion functions (18) of (19) may be ex-
pressed in terms of the Euler @-function and the Mébius p-func-
tion as follows9):

(21) c.(n)® (-:—) = () u (Tr) , where £ = (m, r);

(this directly implies®) that c (n) is a real integer and that it
represents, for fixed n, a multiplicative function of r).

% O, Hélder, Prace Mat. Fiz. 43 (1936) p. 13—23.
Studia Mathematica, T, IX, 4
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6. According to (16), the frequencies (Fourier exponents)
of the almost periodic function f(n) are rational numbers between
0 and 1 (or, rather, between — 1 and 1). Let the terms of the
Fourier series (16) be ordered in the Ramanujan fashion (17) - (18),
and suppose that each of them actually occurs, i. e., that none
of the coefficients (20) of (19) vanishes. Then the frequen-
cies of f(n) are uniformly distributed on the interval [0,1] (or,
rather, [— 1, 1]). This may be proved as follows:

Since | (m)| <1, while @ (m) — © as m — o, HoLper’s
formula (21) implies an observation of Ramanujan, according to
which ¢ (n) == 0(1), when either r is fixed and n~- 0, or n is
fixed and r~ o0, In particular

(21 bis) le %—%} == 0 for every fixed n>1.

. Now, (21 bis) is equivalent to the equidistribution of the frequen~
cies of (19).
In fact, let S denote, for any fixed r3>1, the sequence
] ) (]

my m, My,

r ] r 1ty r

(22) S,

of those ®@(r) fractions m[r whose numerator m satisfies the con~
ditions (m, 7) ==1 and 1<Cm <r. And let ¢, (x), 0 L x =1, de
note the distribution function of the @(r) fractions contained
in S, Then (18 bis) shows that the ratio occurring on the left
of (21 bis) is the n~th Fourier- Stieltjes coefficient of ¢, (x), i. e,
that
1 o ()

(22 bis) . Jexp 2rminxde (x) == (1) (n>1.

Thus it is clear from the criterion of WeyL for equidistribution
(mod. 1), that the content of (21 bis) may be expressed as follows:
The ordered infinite sequence of fractions which is obtained by
writing r==1,2,... in (22) is uniformly distributed on the inter-
val [0,1]. This fact, which is equivalent to a result of PdLya,
may be obtained without the Fourier analysis (22 bis) of the

4] © »
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sequence (22) also, and contains the corresponding fact concer-
ning the ordered infinite sequence of Farey sections?).

7. The considerations of (§ 4 and) § 5 may be modified in
such a way as to lead from (B) to (B%. To this end, one merely
has to replace the condition (8) by the pair of conditions

ey zUO=U o, pUO=i.

Then one obtains the following theorem:

A strongly multiplicative, positive f(n) which satisfies (23)
is almost periodic (B® and has the Fourier expansion (16) or
(19), (20); furthermore, '

(24) M{(f— f)y—0, as k— o0,

and the Parseval relation takes the form

(25) mify =300)a,
re=1
In fact, if (23) is satisfied, then (4) shows that (9) is appli-
cable to any of the three functions f(n); fk(n)z; F(n) £, (n).
Thus, the three averages M{f%}; M{f,"}; M{ff,} exist and have

the respective values

ﬂ(1_w)_2). ITa— _1_:.1.(!’_)3).
3 P ' PSPk p ’

_1—fp’ _1—f
I ——2>=). [t o)

P=pp P>rr

Hence, M{f(n)’} + M{f,(n)’} —2M{f (n) f,(n)} — O, as k— 0.
This proves (24). Since f, (n) is, by § 1, a periodic function of n,
it follows from (24) that f(n) is almost periodic (BY. Finally,
(25) is clear from (17), since (19) and (18) show that every
amplitude (20) occurs in (17) exactly @ (r) times.

" Cf. G. Pélya and G. Szeg?s, Aufgaben und Lehrsiitze, Berlin, Sprin-
ger 1925, chap. VIII, nos. 263—264 and chap. II, nos. 188189,
4*
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As an illustration, consider the example (2). Then f(p)==1—p™;
w0 that (23) is satisfied, and (20) shows that the coefficients (19) are

(26) %=MUMMQW~W% (f(n) = O (n)[n).

8. The following theorem may be considered as the ana-
logue to BOHR’s theorem concerning uniformly almost periodic
functions with linearly independent exponents:

A strongly multiplicative positive function f(n) is uniformly
almost periodic if and only if

27) 21— f(p)] <e.

The sufficiency of condition (27) is obvious, sin¢e (27) implies
that the periodic functions (4) tend to f(n) uniformly for all n,
as k— . In order to prove the necessity of (27), notice first
that one can assume f(p) <1. In fact, .

ITf(p) <= (and therefore [ (f(p) —1) <w),

flp)>1 flp)>1

since if JJf(p) = w0, then f(n) cannot be bounded. Suppose then
fp)>1
that f(p) <1 and let L be a number such that every sequence

of L consecutive integers contains a translation number belonging
to 1/2. Suppose further that (27) does not hold. Then //f(p)==0.
Hence, there exist indices ky==1<k <... <k, satisfying

1
f(P},j)f(ij.H)'-'f(ij+1) <7 for j==0,1,..., L—1,
But there obviously exists an integer /V such that

N+j=0 (modpkjpkj_H...p,cHui) for j==0,1,..., L~1.

Hence, f(V+j) <—%— for j==10,1,..., L—1, This contradicts
f(1)=1, since there must exist at least one j, (0 << L~1)
such that |f(N+j) — ()| < 5.

It may be mentioned that the proof could be modified in
such a way as to dispose of the restriction f(n)> 0.

o © ‘
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9. It is clear that all of the above considerations remain
valid if one omits the condition of strong multiplicativity and
replaces, for the resulting class of unrestricted multiplicative
functions, the conditions formulated above by corresponding con-
ditions. This holds, in particular, for the functions '

@8 fo =22 oy =TT,

n d|n

whose formal trigonometrical expansions (which now turn out to
be Fourier expansions) were explicitly determined by Ramanujan.

(Received 10-th 5, 1939).

Pamanyanoni cymu ra maface meplopmumi §ymemil
IO, €pmomr, M, Kaw, 1 P, nax Komoox i A, Biarmep (Baxrivop).

(Poearome)

Bigome rpuromoMerpuime PaMaHyamoBe pPOSrOPHEHHES IO
name Gea [OBOIOHE ONepIRyeTsea fk posropmenna Dyp'e maiime
mepioymarnx Pymunilt Besixosmua. Teoperamo-ancemsaa GyRrmia
Hexalt Gyme CHIBHO~MYIHTHINIIKATIBES, mobro mexalt Mmae Bia-
crmsiors (1). Bmasnserses, mo Boma Topi Malime mepiommuma
i rpamryno-mepioxmana. Boma mae posropmemms B pax Dyp's.
e posropmemea ixmemrmame poaropmemmm (19), £e c,(n) Pama-
mygroni cymm (18 bis), a a, Busmaveni wepes (20). Dymrnii ¢, (r)
MOWHS IPOLCTABETE 38 Aomomoron Efmeposol $ymrmii @ i Me-
Giycomoi w, ax me wmraemo B Jopmymi (21). Taxmm cmocoGom
LOKOHAHO imemTmixamiio 060X pPOBrOPHEHE.
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